Multi-Student Diffusion Distillation for Better One-step Generators

ICIVIL International Conference On Machine Learning

10.25s

Yanke Song, Jonathan Lorraine, Weili Nie, Karsten Kreis, James Lucas

Introduction

- **Goal:** We seek real-time high-quality AR video generation from video-diffusion backbones.
- **Problem:** Even distilling diffusion models to 1-step is not fast enough we need smaller students that maintain high-quality.
- Our Solution: Multi-Student Distillation (MSD), distills diffusion models into 1-step students, for:
 - Improved quality by specializing in subsets
 - Improved latency by distilling to small students
- Our strategy circumvents the capacity-latency tradeoff of existing diffusion distillation.

Our Method - Overview

- Recent work [1-3] distills models to as few as 1-step.
- We build on these for generation quality and speed by:
- 1. During training, MSD partitions the dataset and assigns them to different students.
- 2. During inference, MSD uses only one student.

Our Method - Using Small Students

- Existing distillations do not work for smaller students.
- We use a teacher score matching (TSM) stage for this.
- TSM trains small students to emulate teacher scores.

Experimental Results

(a) Teacher (multistep) (b)

(b) Same-sized student

(c) 83% smaller student

(a) Teacher (multistep) (b) Same-sized students (c) 42% smaller students(d) 71% smaller students

Experimental Results

 MSD boosts FID on class-conditional ImageNet-64x64 and text-to-image zero-shot COCO2014 generation, improving on single-student counterparts using only 4 students.

			1
Method	NFE (\downarrow)	FID (↓)	Method
Multiple Steps			Unaccelerated
RIN [23]	1000	1.23	DALL·E 2 [52]
ADM [12]	250	2.07	LDM [54]
DPM Solver [39]	10	7.93	eDiff-I [3]
Multistep CD [17]	2	2.0	GANs
Single Step, w/o GAN			StyleGAN-T [58]
PD [55]	1	15.39	GigaGAN [77]
DSNO [83]	1	7.83	Accelerated
Diff-Instruct [43]	1	5.57	DPM++ (4 step) [40]
iCT-deep [63]	1	3.25	InstaFlow-0.9B [37]
Moment Matching [56]	1	3.0	UFOGen [72]
DMD [76]	1	2.62	DMD [76]
MSD (ours): 4 students, DM only	1	2.37	EMD [70]
EMD [70]	1	2.20	DMD2 (w/o GAN)
SiD [88]	1	1.52	MSD (ours): 4 students, DM only
Single Step, w/ GAN			DMD2 [75]
Post-distillation, 4, 42% smaller students	1	11.67	MSD (ours): 4 students, ADM
MSD (ours): 4, 42% smaller students, ADM	1	2.88	SiD-LSG [86]
StyleGAN-XL [57]	1	1.52	teacher
CTM [27]	1	1.92	SDv1.5 (50 step, CFG=3, ODE)
DMD2 [75]	1	1.28	SDv1.5 (200 step, CFG=2, SDE)
MSD (ours): 4 students, ADM	1	1.20	-
SiDA [87]	1	1.11	
teacher			
EDM (teacher, ODE) [25]	511	2.32	
EDM (teacher, SDE) [25]	511	1.36	

We provide ablations and more results in the paper.

Future Work

- Limitations to improve upon:
 - More sophisticated routing schemes between students for quality
 - Better methods to reduce student size for latency and quality
 - Weight-sharing or hierarchical branching strategies among students for training efficiency

Links

- Webpage in QR-code: <u>research.nvidia.com/labs/toronto-ai/MSD/</u>
- [1] Yin, Tianwei, et al. "One-step diffusion with distribution matching distillation. 2024 IEEE." CVPR 2023.
- [2] Song, Yang, et al. "Consistency models." ICML 2023
- [3] Yin, Tianwei, et al. "Improved distribution matching distillation for fast image synthesis." NeurIPS 2024