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e Recent work [1-3] distills models to as few as 1-step.

e We build on these for generation quality and speed by:

1. During training, MSD partitions the dataset and
assigns them to different students.

2. During inference, MSD uses only one student.
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e We provide ablations and more results in the paper.

.‘“ Future Work

e Limitations to improve upon:
o More sophisticated routing schemes between students for quality
o Better methods to reduce student size for latency and quality
o Weight-sharing or hierarchical branching strategies among
students for training efficiency
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