
Compact Neural Graphics Primitives with Learned Hash Probing
TOWAKI TAKIKAWA, NVIDIA, Canada and University of Toronto, Canada
THOMAS MÜLLER, NVIDIA, Switzerland
MERLIN NIMIER-DAVID, NVIDIA, Switzerland
ALEX EVANS, NVIDIA, United Kingdom
SANJA FIDLER, NVIDIA, Canada and University of Toronto, Canada
ALEC JACOBSON, University of Toronto, Canada and Adobe, Canada
ALEXANDER KELLER, NVIDIA, Germany

JPEG
(80.1 kB, 40.21 dB)

Instant NGP
(80.0 kB, 35.18 dB)

Ours
(80.18 kB, 38.48 dB)

Reference Image
(502.9 kB)

 [Rho et al. 2023]
(345.52 kB, 29.8 dB)

Instant NGP
(1911.94 kB, 30.0 dB)

Ours
(373.96 kB, 29.8 dB)

Reference Image 3D Scene from Multiview Images

Fig. 1. Compact neural graphics primitives (Ours) have an inherently small size across a variety of use cases with automatically chosen hyperparameters. In
contrast to similarly compressed representations like JPEG for images (top) and masked wavelet representations [Rho et al. 2023] for NeRFs [Mildenhall
et al. 2020] (bottom), our representation neither uses quantization nor coding, and hence can be queried without a dedicated decompression step. This is
essential for level of detail streaming and working-memory-constrained environments such as video game texture compression. The compression artifacts
of our method are easy on the eye: there is less ringing than in JPEG and less blur than in Rho et al. [2023] (though more noise). Compact neural graphics
primitives are also fast: training is only 1.2–2.6× slower (depending on compression settings) and inference is faster than Instant NGP [Müller et al. 2022]
because our significantly reduced file size fits better into caches.

Neural graphics primitives are faster and achieve higher quality when their
neural networks are augmented by spatial data structures that hold trainable
features arranged in a grid. However, existing feature grids either come with
a large memory footprint (dense or factorized grids, trees, and hash tables)
or slow performance (index learning and vector quantization). In this paper,
we show that a hash table with learned probes has neither disadvantage,
resulting in a favorable combination of size and speed. Inference is faster than
unprobed hash tables at equal quality while training is only 1.2–2.6× slower,
significantly outperforming prior index learning approaches. We arrive at
this formulation by casting all feature grids into a common framework: they
each correspond to a lookup function that indexes into a table of feature

Authors’ addresses: Towaki Takikawa, NVIDIA, Canada and University of
Toronto, Canada, tovacinni@gmail.com; Thomas Müller, NVIDIA, Zürich, Switzer-
land, tmueller@nvidia.com; Merlin Nimier-David, NVIDIA, Zürich, Switzerland,
mnimierdavid@nvidia.com; Alex Evans, NVIDIA, London, United Kingdom,
bluespoon@gmail.com; Sanja Fidler, NVIDIA, Toronto, Canada and University of
Toronto, Canada, sfidler.com; Alec Jacobson, University of Toronto, Toronto, Canada
and Adobe, Toronto, Canada, jacobson@cs.toronto.edu; Alexander Keller, NVIDIA,
Berlin, Germany, akeller@nvidia.com.

vectors. In this framework, the lookup functions of existing data structures
can be combined by simple arithmetic combinations of their indices, resulting
in Pareto optimal compression and speed.

Additional Key Words and Phrases: Neural graphics primitives, compression.

�
al

it
y

(P
SN

R
)

Size (kB) 102 103 104

26

28

30
Instant NGP

Ours

[Rho et al. 2023]

Fig. 2. Size vs. PSNR Pareto curves on the NeRF scene from Figure 1. Our
work is able to outperform Instant NGP across the board and performs
competitively with masked wavelet representations [Rho et al. 2023].

HTTPS://ORCID.ORG/0000-0003-2019-1564
HTTPS://ORCID.ORG/0000-0001-7577-755X
HTTPS://ORCID.ORG/0000-0002-6234-3143
HTTPS://ORCID.ORG/0000-0001-7586-1735
HTTPS://ORCID.ORG/0000-0003-1040-3260
HTTPS://ORCID.ORG/0000-0003-4603-7143
HTTPS://ORCID.ORG/0000-0002-9144-5982
https://orcid.org/0000-0003-2019-1564
https://orcid.org/0000-0001-7577-755X
https://orcid.org/0000-0002-6234-3143
https://orcid.org/0000-0001-7586-1735
https://orcid.org/0000-0003-1040-3260
https://orcid.org/0000-0003-4603-7143
https://orcid.org/0000-0002-9144-5982

2 • Takikawa et al.

1 INTRODUCTION
The ever increasing demand for higher fidelity immersive expe-
riences not only adds to the bandwidth requirements of existing
multimedia formats (images, video, etc.), but also fosters in the use
of higher-dimensional assets such as volumetric video and light field
representations. This proliferation can be addressed by a unified
compression scheme that efficiently represents both traditional and
emerging multimedia content.
Neural graphics primitives (NGP) are a promising candidate to

enable the seamless integration of old and new assets across ap-
plications. Representing images, shapes, volumetric and spatio-
directional data, they facilitate novel view synthesis (NeRFs) [Milden-
hall et al. 2020], generative modeling [Lin et al. 2023; Poole et al.
2023], and light caching [Müller et al. 2021], among more applica-
tions [Xie et al. 2022]. Particularly successful are those primitives
that represent data by a feature grid that contains trained latent em-
beddings to be decoded by a multi-layer perceptron (MLP). Various
such feature grids have been proposed, but they usually come with
a substantial memory footprint [Chabra et al. 2020], even when
factorized into low-rank representations [Chen et al. 2022] or rep-
resented in terms of sparse data structures [Fridovich-Keil et al.
2022; Liu et al. 2020; Müller et al. 2022; Takikawa et al. 2021; Yu
et al. 2021]. In part, this limitation has been addressed by methods
that learn to index feature vectors [Li et al. 2023; Takikawa et al.
2022a] and leverage sparse tree structures to avoid storing feature
vectors in empty space. However, in these methods, index learning
causes long training time and maintenance of sparse tree structures
reduces flexibility.

Our work, Compact NGP, combines the speed of hash tables and
the compactness of index learning by employing the latter as a
means of collision detection by learned probing. We arrive at this
combination by casting all feature grids into a common framework:
they all correspond to indexing functions that map into a table
of feature vectors. By simple arithmetic combinations of their in-
dices, the data structures can be combined in novel ways that yield
state-of-the-art compression vs. quality trade-offs. Mathematically,
such arithmetic combinations amount to assigning the various data
structures to subsets of the bits of the indexing function—thereby
drastically reducing the cost of learned indexing that scales expo-
nentially in the number of bits.
Our approach inherits the speed of hash tables while compress-

ing much better—coming close to JPEG when representing images
(Figure 1)—while remaining differentiable and without relying on
a dedicated decompression scheme such as an entropy code. Com-
pact NGP works across a wide range of user-controllable compres-
sion rates and provides streaming capabilities where partial results
can be loaded in particularly bandwidth-constrained environments.
The paper is organized as follows: we review related work and

its relation to indexing schemes in Section 2 before we introduce
Compact NGP in Section 3. We demonstrate our method in Section 4
and discuss extensions, alternatives, and limitations in Section 5
ahead of the conclusion in the last section.

2 RELATED WORK AND PRELIMINARIES
In this article, we focus on lossy compression as it enables the
highest compression rates for the multimedia under consideration.
We begin by reviewing traditional techniques before studying the
connection between (neural) feature grids and indexing functions.

2.1 Compression
Traditional compression. Lossy compression techniques typically

employ transform coding [Goyal 2001] and quantization [Gray and
Neuhoff 1998] followed by lossless entropy coding such as Huffman
codes [1952]. On image and video content, linear transforms such
as the discrete cosine [Ahmed et al. 1974] and wavelet [Haar 1909]
transforms are applied to exploit coefficient sparsity and reduce the
visual impact of quantization errors. Rather than transform coding,
our work learns indices into a feature codebook, which is a form
of vector quantization [Gray 1984; Wei and Levoy 2000], to find
patterns in the data.

Texture compression relies on efficient random access to any part
of the image without having to first decode the entire compressed
representation. Most methods perform block-wise compression,
packing small tiles of the texture into codes of fixed size [Beers et al.
1996; Reed 2012; Ström and Akenine-Möller 2005]. Although our
approach is different, it similarly allows for random access queries
without a decompression step, enabling its potential use for texture
compression in real-time renderers where feature grids have already
shown promise [Müller et al. 2022; Vaidyanathan et al. 2023].
Volumetric compression in computer graphics [Balsa Rodríguez

et al. 2014] similarly uses block-based coding schemes [De Queiroz
and Chou 2016; Tang et al. 2018, 2020; Wang et al. 2021]. Taking
into account the often hierarchical structure of sparsity, subdivision-
based spatial data structures such as trees additionally improve
compression such as in OpenVDB [Museth 2021; Museth et al. 2019].
By contrast, our work combines index learning and hash tables that
both do not rely on a subdivision scheme for sparsity.

Neural compression. In neural image compression, auto-encoder
approaches use a neural network for transform coding [Ballé et al.
2020, 2018; Theis et al. 2017]. Other works use coordinate-based
neural representations to fit and compress images as continuous
vector fields, some without feature grids [Dupont et al. 2022; Lin-
dell et al. 2022; Song et al. 2015; Strümpler et al. 2022] and some
with feature grids [Martel et al. 2021; Müller et al. 2022; Saragadam
et al. 2022]. Although many of these works achieve a better equal-
quality compression rate than JPEG [Wallace 1992] at low parameter
counts, high parameter counts remain challenging. Our method is
also a feature-grid and coordinate-based representation, yet per-
forms competitively with JPEG across a wider range of qualities;
see Figure 7.
Coordinate-based neural representations are additionally appli-

cable to volumetric and spatio-directional data; most commonly
NeRFs [Mildenhall et al. 2020]. Without feature grids, Bird et al.
[2021] minimize the entropy of a multi-layer perceptron (MLP) and
Lu et al. [2021] apply vector quantization directly to the MLP pa-
rameters. Such pure MLP methods usually have high computational
cost and poor quality as compared to MLPs augmented by feature

Compact Neural Graphics Primitives with Learned Hash Probing • 3

grids, so our work instead focuses on compressing feature grids
while keeping the MLP sufficiently small to be fast.

2.2 Feature Grids in the Framework of Lookup Functions
Let us formalize feature grid methods in the following framework:
they train a feature codebook 𝐷 𝑓 ∈ R𝑁𝑓 ×𝐹 of 𝑁𝑓 𝐹 -dimensional
feature vectors that are associated with a conceptual grid in the
𝑑-dimensional application domain. The mapping from grid vertices
v = (𝑣0, 𝑣1, . . .) ∈ Z𝑑 to feature vectors is established by a lookup
function 𝑓 (v) that indexes into the codebook, denoted by 𝐷 𝑓 [·].1

Dense grids. The canonical feature grid is a dense Cartesian grid2,
visualized in Figure 3 (a), that establishes a one-to-one correspon-
dence of grid vertices to feature vectors, given for 𝑑 = 3 as

𝑓 (v) = 𝐷 𝑓 [𝑣0 + 𝑠0 · (𝑣1 + 𝑠1 · 𝑣2)] , (1)

where the scale s = (𝑠0, 𝑠1, . . .) defines the resolution of the grid.
Dense grids cannot adapt to sparsity in the data which makes them
undesirable in practice. For example, in 3D surface reconstruction
the number of dense grid vertices is O

(
𝑛3

)
while the surfaces to

be reconstructed only intersect O
(
𝑛2

)
cells. Therefore, practition-

ers either combine dense grids with classic sparsification methods
such as transform coding [Isik et al. 2022] or they choose more
sophisticated indexing schemes that will be discussed next.

𝑘-plane methods. [Chan et al. 2022; Chen et al. 2022; Fridovich-
Keil et al. 2023; Peng et al. 2020] project the dense grid along 𝑘

sets of one or more axes as shown in Figure 3 (b), and combine the
resulting lower-dimensional (but still dense, usually planar) lookups
arithmetically, e.g.

𝑓 (v) = 𝐷 𝑓 [𝑣0 + 𝑠0 · 𝑣1] · 𝐷 𝑓 [𝑠0 · 𝑠1 + 𝑣2] · 𝐷 𝑓 [. . .] + (2)

Special cases of this scheme are equivalent to tensor decompositions
of the dense grid [Chen et al. 2022]. While 𝑘-planes ensure fewer
than O

(
𝑛𝑑

)
parameters, they makes the strong assumption that

sparsity in the data can be well explained by axis aligned projections
that are decoded by the MLP. In practice, this is not always the
case, necessitating application-specific tricks such as bounding box
cropping [Chen et al. 2022] or transform coding of the projected
grids [Rho et al. 2023] for better compression.

Spatial hashing. Contrasting with the axis aligned parameter col-
lisions of 𝑘-planes, spatial hashing [Teschner et al. 2003] distributes
its collisions uniformly across lookups

𝑓 (v) = 𝐷 𝑓 [hash(v) mod 𝑁𝑓] , hash(v) =
𝑑−1⊕
𝑖 = 0

𝑣𝑖 · 𝜋𝑖 , (3)

where ⊕ is the binary XOR operation and 𝜋𝑖 are large prime num-
bers (optionally, 𝜋0 = 1). Well designed hash functions have the
benefit that the lookups always uniformly cover the codebook 𝐷 𝑓 ,
regardless of the underlying shape of the data, permitting sparsity
to be learned independently of the data and thus application [Müller
1Many methods maintain multiple codebooks at different resolutions, each with its own
lookup function [Müller et al. 2022; Takikawa et al. 2022a, 2021], the values of which are
combined before being fed to the MLP. Furthermore, most methods invoke the lookup
functions at several grid vertices to compute continuous outputs by interpolation [Liu
et al. 2020; Takikawa et al. 2021].
2Other tilings, such as permutohedral lattices [Rosu and Behnke 2023], are also possible.

(b) Factorization

0
1

(a) Dense grid

0

1

(c) Tree

0 1

(d) Hash

hash

()v = 0 1

(e) Learned indexing

0 1

0 1

0 1

indexing

Fig. 3. Various indexing schemes mapping integer grid coordinates v =

(𝑣0, 𝑣1, . . .) to feature vectors have been proposed, including (a) dense grids,
(b) 𝑘-planes, (c) sparse grids and trees, (d) spatial hashing, and (e) learned
indexing. Since each scheme ultimately computes an index into a codebook
of feature vectors, the schemes can be combined by arithmetic operations
on the indices they produce. Our method combines deterministic hashing
and a learned indexing as visualized in Figure 4.

et al. 2022]. But hashing also comes with the significant downside
of “scrambling” the entries of the learned codebook 𝐷 𝑓 (now a
hash table), precluding structure-dependent post processing such
as generative modelling or transform coding.

Subdivision. Some applications [Chabra et al. 2020; Kim et al.
2022; Martel et al. 2021; Takikawa et al. 2021] construct a sparse
hierarchical data structure such as a tree whose nodes hold indices
into the feature codebook:

𝑓 (v) = 𝐷 𝑓 [tree_index(v)] . (4)

Unfortunately, many tasks are ill-suited to such a subdivision scheme,
for example image compression where subdivision heuristics are
difficult to design or 3D reconstruction where sparsity is unknown
a priori and only emerges during optimization [Fridovich-Keil et al.
2022; Liu et al. 2020]. Furthermore, unlike the indexing schemes
above, tree traversal involves cache-unfriendly pointer chasing and
therefore incurs a non-negligible performance overhead.

Learning the indexing function. Rather than designing the index-
ing function by hand, it can also be learned from data [Li et al.
2023; Takikawa et al. 2022a]. In these methods, an index codebook
𝐷𝑐 ∈ N𝑁𝑐 holds the lookup indices into the feature codebook and is
in turn indexed by one of the methods above. For example, VQAD
[Takikawa et al. 2022a] has the lookup function

𝑓 (v) = 𝐷 𝑓

[
𝐷𝑐 [tree_index(v)]

]
, (5)

where 𝐷𝑐 is trained by softmax-weighted3 indexing into all en-
tries of 𝐷 𝑓 . This is expensive even for moderately sized feature
codebooks (and prohibitive for large ones) but has no inference
overhead and results in over 10× better compression than spatial
hashing. The compression is not quite as effective as a combination
of 𝑘-plane methods with transform coding [Rho et al. 2023] but has

3The softmax function 𝜎 : R𝑑 → R𝑑 is defined as 𝜎𝑖 (x) = 𝑒𝑥𝑖 /∑𝑗 𝑒
𝑥𝑗 .

4 • Takikawa et al.

hash

hash2

p
max

Bit concatenation

∇softmax

Indexing function f ()v

v=(,)00 11

MLP
interpolation

Gradients

Output

Indexing codebook Feature codebook

Fig. 4. Overview of Compact NGP. For a given input coordinate x ∈ R𝑑 (far left), we find its enclosing integer grid vertices v ∈ Z𝑑 and apply our indexing
function 𝑓 (v) to each one. The most significant bits of the index are computed by a spatial hash (hash) and the least significant bits by looking up a row of
𝑁𝑝 confidence values from an indexing codebook 𝐷𝑐 that is in turn indexed by an auxiliary spatial hash (hash2), and then picking the index with maximal
confidence (green arrow). Bitwise concatenation of the two indices yields an index for looking up from the feature codebook 𝐷𝑓 , which is subsequently
𝑑-linearly interpolated per x and fed into an MLP. For optimization, we propagate gradients as if the indexing codebook used a softmax instead of a hard
maximum, i.e. we use a “straight-through” estimator [Bengio et al. 2013]. In practice, after each training step, we bake this log2 𝑁𝑝 -bit indices of the maximal
values in each row of 𝐷𝑐 into an auxiliary indexing codebook 𝐷𝑐 that is both compact and allows for more efficient forward evaluation of the model.

the advantage that it can be cheaply queried without in-memory
decompression to a larger representation.

Combining methods. Using the framework of lookup functions
we can relate our method to previous work: we combine learned
indexing with spatial hashing by arithmetically combining their
indices. The most significant bits of our index come from Instant
NGP’s hash encoding [Müller et al. 2022] and the least significant
bits are learned by a variation of VQAD [Takikawa et al. 2022a].
Thus, our method performs learned probing for collision resolution
and information reuse in analogy to classic hash table probing meth-
ods [Knuth 1963]. This will be motivated and explained in the next
section.

3 METHOD
Our goal is to minimize the number of parameters 𝜃 and Φ of a
multi-layer perceptron𝑚(𝑦;Φ) and its corresponding input encod-
ing 𝑦 = 𝜓 (𝑥 ;𝜃) without incurring a significant speed penalty. Fur-
thermore, we want to remain application agnostic and therefore
avoid structural modifications such as tree subdivision and trans-
form codings that may depend on application-specific heuristics.
Hence, we base our method on Instant NGP’s multi-resolution

hash encoding [Müller et al. 2022] and generalize its indexing func-
tion, Eq. (3), by introducing learned probing. In our lookup function,
the spatial hash produces the most significant bits of the index, while
the remaining user-configurable log2 𝑁𝑝 least significant bits are
learnedwithin an auxiliary index codebook𝐷𝑐 ∈ {0, 1, . . . , 𝑁𝑝 − 1}𝑁𝑐

that is in turn indexed by a second spatial hash (one that uses differ-
ent prime numbers from the first). The lookup function is illustrated
in Figure 4 and given for a single grid vertex by

𝑓 (v) = 𝐷 𝑓

[(
𝑁𝑝 · hash(v)

)
mod 𝑁𝑓 + 𝐷𝑐 [hash2(v)]

]
. (6)

Intuitively, the index codebook 𝐷𝑐 , sparsified by the second spa-
tial hash, learns to probe the feature codebook over 𝑁𝑝 values for
collision resolution and information re-use. The index codebook’s

Table 1. Hyperparameters of our method and recommended ranges. We
inherit most parameters from Instant NGP [Müller et al. 2022] and introduce
two additional ones pertaining to the index codebook. Gray parameters are
unaffected by our method and therefore set to the same values as in Instant
NGP; the choice of remaining parameters is explained in Section 3.

Source Parameter Symbol Value

new in
our method

Index probing range 𝑁𝑝 21 to 24
Index codebook size 𝑁𝑐 210 to 224

inherited from
Instant NGP

Feature codebook size 𝑁𝑓 26 to 212
Feature dimensionality 𝐹 2
Number of levels 𝐿 16
Coarsest resolution 𝑁min 16
Finest resolution 𝑁max 512 to 524288
Num. hidden neurons 𝑁neurons 64

size 𝑁𝑐 as well as its probing range 𝑁𝑝 are hyperparameters of our
method that extend those inherited from Instant NGP; see Table 1.
Following Takikawa et al. [2022a], we maintain two versions of

the index codebook: one for training 𝐷𝑐 ∈ R𝑁𝑐×𝑁𝑝 that holds con-
fidence values for each of the 𝑁𝑝 features in the probing range, and
one for inference 𝐷𝑐 ∈ {0, 1, . . . , 𝑁𝑝 − 1}𝑁𝑐 that holds log2 𝑁𝑝 -bit
integer indices corresponding to the probe offset with largest confi-
dence. Compared to Instant NGP, the only inference-time overhead
is the index lookup from 𝐷𝑐 . Furthermore, our smaller parameter
count leads to improved cache utilization; we hence achieve similar
and in some cases better inference performance as shown in Table 2.

Training. In the forward pass we use 𝐷𝑐 to look up the feature
with largest confidence and in the backward pass we distribute gradi-
ents into all features within the probing range, weighted by the soft-
max of their confidence values from 𝐷𝑐 (see Figure 4). This strategy
of combining a discrete decision in the forward pass with continuous
gradients in the backward pass is also known as a “straight-through”
estimator that helps to learn hard non-linearities [Bengio et al. 2013].

By keeping the learned number of bits log2 𝑁𝑝 small, we limit the
number of features and confidence values that need to be loaded

Compact Neural Graphics Primitives with Learned Hash Probing • 5

102 103

�
al

it
y

(P
SN

R
)

Size (kB)

Nf = 214

Nf = 212

Nf = 210

Nf = 28

Nf = 26
30

35

40

45 Np = 22

Np = 24

Np = 26

PNG File Size

Instant NGP

Curves for increasing Nc from 28 to 218

Relative gains are
lower as Nf increase
and collisions decrease

Np = 20

Fig. 5. PSNR vs. file size for varying hyperparameters in compressing the Kodak image dataset. We sweep three parameters: the feature codebook size 𝑁𝑓

(colors), the index codebook size 𝑁𝑐 (curves ranging from 212 to 220), and the probing range 𝑁𝑝 (dashing and dotting). A value of 𝑁𝑝 = 1 corresponds to
Instant NGP (shown as★) and has no curve because it is invariant under 𝑁𝑐 . We see that the optimal curve at a given file size 𝑁 has a feature codebook size
(same-colored★) of roughly 𝑁𝑓 = 1/3𝑁 and index codebook size 𝑁𝑐 = 2/3𝑁 . Small probing ranges (solid curves) are sufficient for good compression—in-fact
optimal for small values of 𝑁𝑐 (left side of curves)—but larger probing ranges (dashed and dotted curves) yield further small improvements for large values of
𝑁𝑐 (right side of curves) at the cost of increased training time.

�
al

it
y

(P
SN

R
)

Size (kB) 101 102 103 104

22.5

25.0

27.5

30.0

32.5

35.0

�� = 22

�� = 24

Nf = 214

Nf = 212

Nf = 210

Nf = 28

[Bird et al. 2021]

[Li et al. 2023]

[Rho et al. 2023]

[Gordon et al. 2023]

Ours

Np = 20
Instant NGP

69.67 kB, 26.25 dB 486.32 kB, 32.14 dB

Fig. 6. PSNR vs. file size for varying hyperparameters in compressing the
NeRF Lego digger. The layout is the same as Figure 5. We also show rendered
images of our compressed representation at two quality settings.

in the backward pass. And since the learned bits are the least sig-
nificant ones, their corresponding features lie adjacent in memory,
usually located in the same cache line and thereby incurring only a
moderate training overhead of 1.2–2.6× (see Table 2) while realiz-
ing compression rates on par with the orders of magnitude slower
VQAD [Takikawa et al. 2022a].

Selecting hyperparameters. Recall that our method inherits its
hyperparameters from Instant NGP and introduces two new ones:
the index codebook size 𝑁𝑐 and its probing range 𝑁𝑝 ; see Table 1 for
a complete list. To find quality-maximizing parameters, we recom-
mend the following scheme inspired by Figures 5 and 6, which we

Table 2. Training and inference time overheads of Compact NGP. Training
times are measured for an iteration of training on the NeRF Lego digger
dataset. Inference times are for 218 lookups on a single multiresolution level.
The relative training overhead (denoted with 𝑛×) is measured with respect
to Instant NGP (𝑁𝑓 = 216), ranging from 1.2–2.6×. The largest impact on
speed has the probing range 𝑁𝑝 , whereas 𝑁𝑐 (shown) and 𝑁𝑓 (see Müller
et al. [2022]) only have a weak effect.

Method 𝑁𝑓 𝑁𝑐 𝑁𝑝
Training time
per iteration

Inference time
for 218 lookups

Quality
(PSNR dB)

I NGP
216 n/a 20 5.4 ms 28.7𝜇s 33.60 dB
214 n/a 20 5.1 ms 13.7𝜇s 32.00 dB
28 n/a 20 4.5 ms 9.8𝜇s 19.04 dB

Ours

28 212 22 6.8ms (1.26×) 10.1𝜇s 26.25 dB
28 216 22 6.8 ms (1.26×) 10.1𝜇s 31.58 dB
28 212 23 8.3 ms (1.53×) 10.1𝜇s 27.13 dB
28 216 23 8.5 ms (1.57×) 10.2𝜇s 32.58 dB
28 212 24 12.7 ms (2.35×) 10.2𝜇s 27.67 dB
28 216 24 14.1 ms (2.61×) 10.2𝜇s 33.24 dB

use in all our following results. First, set 𝑁𝑐 = 1 and 𝑁𝑝 = 1, turning
the method into Instant NGP as indicated by★ in the figure. Second,
set the feature codebook size 𝑁𝑓 according to the desired lower
bound on the compressed size. Third, double 𝑁𝑐 until a reasonable
maximum value (usually 𝑁𝑐 = 216). Lastly, if even higher quality
is desired, double 𝑁𝑓 . The remaining parameter 𝑁𝑝 can be tuned
to taste, as this parameter governs how expensive the training is,
but a higher value tends to produce slightly better Pareto tradeoffs
between size and quality.

4 RESULTS
We have implemented our algorithm on top of the version of In-
stant NGP in the PyTorch-based Kaolin Wisp library [Takikawa
et al. 2022b]. Computationally expensive operations like sparse grid
ray tracing and feature grid lookups of both Instant NGP and our
method are accelerated by custom CUDA kernels called from Py-
Torch. All results are measured on an NVIDIA RTX 6000 Ada GPU.

6 • Takikawa et al.

Performance. Table 2 lists inference and training times of our
method on the NeRF Lego digger from Figure 6. Compared to In-
stant NGP, our 1.2–2.6× training overhead scales with the prob-
ing range 𝑁𝑝 , confirming the analysis in Section 3 and exposing a
trade-off between training speed and compression to the user. Since
the compression benefit of larger probing ranges quickly falls off,
we cap 𝑁𝑝 ≤ 24 in all our experiments, manifesting the worst-case
overhead of 2.6×. An important performance consideration for train-
ing is the accumulation of gradients into the feature codebook 𝐷 𝑓 .
Since our method uses very small codebooks 𝑁𝑓 ∈ [26, 212], special
care must be taken on massively parallel processors, such as GPUs,
to first accumulate gradients in threadblock-local memory before
broadcasting them into RAM. This avoids contention that would
otherwise make training ∼7× slower.

Table 2 also demonstrates that Compact NGP has faster inference
than Instant NGP at roughly equal quality settings. This is because
ourmethod has amuch smaller size (𝑁𝑓 = 216 vs.𝑁𝑓 = 28, 𝑁𝑐 = 216)
and thereby fits better into caches. The only inference overhead of
our method is the additional index lookup from 𝐷𝑐 , which we find
negligible (0.4𝜇s at 𝑁𝑓 = 28).

Image compression. Figure 7 shows the quality vs. size tradeoff of
our method on the Kodak image dataset, which consists of 24 images
of 768×512 pixels. The figure also shows JPEG as well as prior
coordinate MLP methods. On this dataset, our method performs
close to JPEG at small file sizes and worse at larger ones. At small file
sizes, our representation is dominated by floating point parameters
like the MLP and the feature codebook, causing competing methods
that apply quantization on top of pure MLPs [Dupont et al. 2021;
Strümpler et al. 2022] to compress better. However, thesemethods do
not scale to higher quality targets (∼35dB and above) as it is difficult
to train pure MLPs to such qualities. To demonstrate the better
scaling of our method, we investigate a much larger 8000×8000
image of Pluto in Figure 8 on which we outperform both JPEG
on most practical sizes (∼megabyte) and prior neural large-scale
methods (Instant NGP [Müller et al. 2022] and ACORN [Martel et al.
2021]) at high quality settings. Our method is also evaluated against
texture compression methods in Table 4.

NeRF compression. We evaluate NeRF compression on a real-world
scene in Figures 1 and 2 as well as synthetic scenes [Mildenhall et al.
2020] in Figure 6 (Lego) and Table 3 (full dataset). We compare with
several contemporary NeRF compression techniques that are mostly
based on TensoRF [Chen et al. 2022]. We report numbers from the
original papers where available. For the real world scene, we ran
masked wavelets [Rho et al. 2023] as a strong and recent baseline.
In both scenes, we outperform Instant NGP in terms of quality vs.
size. On the synthetic scene (Figure 6), our Pareto front lies slightly
below the specialized baselines that use scalar quantization and
coding, and in the real-world scene our Pareto front is competitive
(Figure 2) despite our work requiring neither.

The zoom-ins in Figure 1 reveal distinct visual artifacts of the
different methods, even though their PSNR is the same. Masked
wavelets [Rho et al. 2023] produce blurrier results whereas Com-
pact NGP yields a sharper reconstruction with high frequency noise
similar to that of Instant NGP.

�
al

it
y

(P
SN

R
)

Size (kB)101 102 103

25

30

35

40

Instant NGP

Ours

JPEG

[Strümpler et al. 2022]

COIN

Fig. 7. PSNR vs. file size on the Kodak image dataset using parameters
𝑁𝑓 = 26 and 𝑁𝑝 = 24 and varying 𝑁𝑐 (blue curve ranging from 212 to 220).
On this dataset, our method performs close to JPEG at small file sizes and
worse at larger ones. At small file sizes, our representation is dominated by
floating point parameters like the MLP and the feature codebook. Compet-
ing methods that quantize pure MLPs perform better in this regime [Dupont
et al. 2021; Strümpler et al. 2022], whereas we omit quantization for simplic-
ity and flexibility. At visually pleasant targets (∼35dB and above) these prior
works do not scale as it is difficult to train pure MLPs to such qualities.

�
al

it
y

(P
SN

R
)

Size (kB)

Reference

57098 kB

JPEG
35.34 PSNR

2740 kB (21×)

Ours
35.06 PSNR

1122 kB (51×)

102 103 104
25

30

35

40

45

Nf = 26 Nf = 212

Nf = 218

Nf = 224

ACORN
Np = 20

Np = 24

Ours

JPEG

PNG File Size

Instant NGP

Fig. 8. We fit Compact NGP to the 8000×8000px Pluto image using pa-
rameters 𝑁𝑓 = 26 and 𝑁𝑝 = 24 and varying 𝑁𝑐 (green curve ranging from
212 to 224). We show that we are able to outperform JPEG on a wide range
of quality levels. The qualitative comparisons at equal size (insets) show
the visual artifacts exhibited by different methods: while JPEG has color
quantization arfitacts, ours appears slightly blurred.

Additional hyperparameter ablations. Aside from the feature code-
book size𝑁𝑓 , we inherit the default hyperparameters of Instant NGP
for a apples-to-apples comparisons. To verify that these defaults
are reasonable, we sweep the number of multiresolution levels 𝐿 in
Figure 9 and the number of hidden neurons 𝑁neurons in Figure 10.
The default values 𝐿 = 16 and 𝑁neurons = 64 perform well for a large

Compact Neural Graphics Primitives with Learned Hash Probing • 7

102

30

35

40

L = 4

L = 8

L = 16

�
al

it
y

(P
SN

R
)

Size (kB)

Fig. 9. Impact of the number of multiresolution levels 𝐿 on PSNR vs. size. We
use the parameters 𝑁𝑓 = 26 and 𝑁𝑝 = 24 while varying 𝑁𝑐 (curve ranging
from 212 to 220) and 𝐿 on the image compression task from Figure 1. The
default value 𝐿 = 16 (inherited from Instant NGP) performs well for a large
range of sizes, particularly in the hundreds of kB range that is most practical.
Yet, a lower number of levels results in a better Pareto curve at smaller
sizes that could be used if one wanted to compete with MLP based image
compression techniques; cf. Figure 7.

�
al

it
y

(P
SN

R
)

Size (kB) 101 102

30

35

40

Nneurons= 16

Nneurons= 32

Nneurons= 64

Fig. 10. Impact of the MLP width 𝑁neurons on PSNR vs. size. The parameter
sweeps over 𝑁𝑓 , 𝑁𝑝 , and 𝑁𝑐 are the same as Figure 9. A similar conclusion
can be drawn: the default value 𝑁neurons = 64 (inherited from Instant NGP)
performswell at practical sizes, whereas a better Pareto front can be achieved
at smaller sizes.

range of sizes, particularly in the hundreds of kB range that is most
practical. Yet, lower values produce better Pareto frontiers at very
small file sizes that could be used if one wanted to compete with
MLP based image compression techniques; cf. Figure 7. However,
we believe that the hundreds of kB range is more relevant in practice
and we therefore stick to the default values for simplicity.

5 DISCUSSION AND FUTURE WORK
Compact NGP has been designed with content distribution in mind
where the compression overhead is amortized and decoding on user
equipment must be low cost, low power, and multi-scale for graceful
degradation in bandwidth-constrained environments. As an exam-
ple, NeRFs may be broadcasted and decoded on large numbers of
end-user devices, possibly in real-time to enable live streaming video
NeRFs. More generally, (learnable) compression codecs will enable
the next generation of immersive content of which live streaming of
NeRFs are just an example and other applications, like video game
texture compression and volumetric video, being right around the
corner.

Quality and compression artifacts. Beyond measuring PSNR, it is
worth studying the qualitative appearance of compression artifacts
with ourmethod. Compared to JPEG, ourmethod appears to produce
less ringing at the cost of a small amount of additional blur, whereas

in NeRF our methods looks similar to Instant NGP: sharp, but with
high-frequency noise. This is in contrast to Rho et al. [2023], who
produce a smoother yet blurry reconstruction; see Figure 1. Since
we measure error in terms of PSNR, which is based on the L2 error,
blurry results yield lower error than the human visual system might
expect [Zhao et al. 2016].

From float to int. Our method shifts the storage cost from being
float-dominated to int-dominated. In the settings we test in, we
see that this tradeoff is favorable, particularly because our integers
have only log2 𝑁𝑝 bits—many fewer than than even 16-bit half pre-
cision floats. We have additionally investigated several methods that
reduce the entropy of our learned indices (e.g. through additional
terms in the loss), coupled to entropy coding, but so far with little
success that does not warrant forfeiture of random access lookups.
Alternatively, data-adaptive quantization of floats may reduce the
bit count further than using an index codebook, but better training
strategies are required to this end. We believe that further research
into data-adaptive float quantization as well as int entropy mini-
mization will be fruitful.

Entropy coding. Our method was inspired by a method that has
spatial locality built-in [Takikawa et al. 2022a] (i.e. the index code-
book represented by a tree). Such spatial locality could be exploited
by an entropy coder much better than the spatial hash table that
we use. We chose spatial hashing for being agnostic of the appli-
cation [Müller et al. 2022]—and it performs competitively with
transform and entropy coded prior work nonetheless—but if fu-
ture research could devise local data structures that have the same
flexibility and performance as hash tables, it will likely be worth-
while to utilize those instead of hashing.

Alternatives to straight-through estimators. In our work we use
the softmax function along with the straight-through estimator to
learn indexing. While effective, this can be computationally expen-
sive for large indexing ranges as this requires backpropagation on
all possible indices. As such, it may be worthwhile to explore the
various sparse [Laha et al. 2018; Martins and Astudillo 2016; Peters
et al. 2019] and stochastic [Lee et al. 2018; Paulus et al. 2020] variants
have been proposed in the literature. Proximity-based indexing such
as locality-sensitive hashing and the nearest-neighbour queries used
in VQ-VAE [Van Den Oord et al. 2017] may be relevant as well.

6 CONCLUSION
We propose to view feature grids and their associated neural graph-
ics primitives through a common lens: a unifying framework of
lookup functions. Within this framework it becomes simple to mix
methods in novel ways, such as our Compact NGP that augments
efficient hash table lookups with low-overhead learned probing.
The result is a state-of-the-art combination of compression and
performance while remaining agnostic to the graphics application
in question. Compact NGP has been designed with real-world use
cases in mind where random access decompression, level of detail
streaming, and high performance are all crucial (both in training
and inference). As such, we are eager to investigate its future use
in streaming applications, video game texture compression, live-
training as in radiance caching, and many more.

8 • Takikawa et al.

ACKNOWLEDGMENTS
The Lego Bulldozer scene of Figure 6 was created by Blendswap
user Heinzelnisse. The Pluto image of Figure 8 was created by
NASA/JohnsHopkins University Applied Physics Laboratory/Southwest
Research Institute/Alex Parker. We thank David Luebke, Karthik
Vaidyanathan, and Marco Salvi for useful discussions throughout
the project.

REFERENCES
Nasir Ahmed, T. Natarajan, and Kamisetty R. Rao. 1974. Discrete cosine transform.

IEEE transactions on Computers 100, 1 (1974), 90–93.
Johannes Ballé, Philip A. Chou, David Minnen, Saurabh Singh, Nick Johnston, Eirikur

Agustsson, Sung Jin Hwang, and George Toderici. 2020. Nonlinear transform coding.
IEEE Journal of Selected Topics in Signal Processing 15, 2 (2020), 339–353.

Johannes Ballé, DavidMinnen, Saurabh Singh, Sung Jin Hwang, andNick Johnston. 2018.
Variational image compression with a scale hyperprior. In International Conference
on Learning Representations. https://openreview.net/forum?id=rkcQFMZRb

Marcos Balsa Rodríguez, Enrico Gobbetti, Jose Antonio Iglesias Guitian, Maxim
Makhinya, Fabio Marton, Renato Pajarola, and Susanne K. Suter. 2014. State-of-
the-art in compressed GPU-based direct volume rendering. In Computer Graphics
Forum, Vol. 33. Wiley Online Library, 77–100.

Andrew C. Beers, Maneesh Agrawala, and Navin Chaddha. 1996. Rendering from
compressed textures. In Proceedings of the 23rd Annual Conference on Computer
Graphics and Interactive Techniques. 373–378.

Yoshua Bengio, Nicholas Léonard, and Aaron Courville. 2013. Estimating or propagating
gradients through stochastic neurons for conditional computation. arXiv preprint
arXiv:1308.3432 (2013).

Thomas Bird, Johannes Ballé, Saurabh Singh, and Philip A. Chou. 2021. 3D Scene Com-
pression through Entropy Penalized Neural Representation Functions. In 2021 Picture
Coding Symposium (PCS). 1–5. https://doi.org/10.1109/PCS50896.2021.9477505

Rohan Chabra, Jan E. Lenssen, Eddy Ilg, Tanner Schmidt, Julian Straub, Steven Love-
grove, and Richard Newcombe. 2020. Deep local shapes: Learning local SDF priors
for detailed 3D reconstruction. In ECCV. Springer, 608–625.

Eric R. Chan, Connor Z. Lin, Matthew A. Chan, Koki Nagano, Boxiao Pan, Shalini De
Mello, Orazio Gallo, Leonidas Guibas, Jonathan Tremblay, Sameh Khamis, Tero
Karras, and Gordon Wetzstein. 2022. Efficient Geometry-aware 3D Generative
Adversarial Networks. In CVPR.

Anpei Chen, Zexiang Xu, Andreas Geiger, Jingyi Yu, and Hao Su. 2022. TensoRF:
Tensorial Radiance Fields. In European Conference on Computer Vision (ECCV).

Ricardo L. De Queiroz and Philip A. Chou. 2016. Compression of 3D point clouds using
a region-adaptive hierarchical transform. IEEE Transactions on Image Processing 25,
8 (2016), 3947–3956.

Emilien Dupont, Adam Goliński, Milad Alizadeh, Yee Whye Teh, and Arnaud Doucet.
2021. COIN: COmpression with Implicit Neural representations. ICLR 2021 Neural
Compression Workshop Spotlight, arXiv preprint arXiv:2103.03123 (2021).

Emilien Dupont, Hrushikesh Loya, Milad Alizadeh, Adam Golinski, Yee Whye Teh, and
Arnaud Doucet. 2022. COIN++: Neural compression across modalities. Transactions
on Machine Learning Research 2022, 11 (2022).

Sara Fridovich-Keil, Giacomo Meanti, Frederik Rahbæk Warburg, Benjamin Recht, and
Angjoo Kanazawa. 2023. K-Planes: Explicit Radiance Fields in Space, Time, and
Appearance. In CVPR.

Sara Fridovich-Keil, Alex Yu, Matthew Tancik, Qinhong Chen, Benjamin Recht, and
Angjoo Kanazawa. 2022. Plenoxels: Radiance Fields without Neural Networks. In
CVPR.

Cameron Gordon, Shin-Fang Chng, Lachlan MacDonald, and Simon Lucey. 2023. On
Quantizing Implicit Neural Representations. In Proceedings of the IEEE/CVF Winter
Conference on Applications of Computer Vision. 341–350.

Vivek K. Goyal. 2001. Theoretical foundations of transform coding. IEEE Signal
Processing Magazine 18, 5 (2001), 9–21.

Robert M. Gray. 1984. Vector quantization. IEEE ASSP Magazine 1, 2 (1984), 4–29.
Robert M. Gray and David L. Neuhoff. 1998. Quantization. IEEE Transactions on

Information Theory 44, 6 (1998), 2325–2383.
Alfred Haar. 1909. Zur Theorie der orthogonalen Funktionensysteme. Georg-August-

Universität, Göttingen.
David A. Huffman. 1952. A method for the construction of minimum-redundancy codes.

Proceedings of the IRE 40, 9 (1952), 1098–1101.
Berivan Isik, Philip A. Chou, Sung Jin Hwang, Nick Johnston, and George Toderici.

2022. LVAC: Learned Volumetric Attribute Compression for Point Clouds using
Coordinate Based Networks. Frontiers in Signal Processing 2 (2022). https://doi.org/
10.3389/frsip.2022.1008812

Doyub Kim, Minjae Lee, and Ken Museth. 2022. NeuralVDB: High-resolution Sparse
Volume Representation using Hierarchical Neural Networks. (2022). https://doi.org/
10.48550/arXiv.2208.04448

Donald Knuth. 1963. Notes on “Open” Addressing.
https://web.archive.org/web/20160303225949/http://algo.inria.fr/AofA/Research/11-
97.html.

Anirban Laha, Saneem Ahmed Chemmengath, Priyanka Agrawal, Mitesh Khapra,
Karthik Sankaranarayanan, and Harish G. Ramaswamy. 2018. On Controllable
Sparse Alternatives to Softmax. InAdvances in Neural Information Processing Systems,
S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett
(Eds.), Vol. 31. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/
paper/2018/file/6a4d5952d4c018a1c1af9fa590a10dda-Paper.pdf

Hae Beom Lee, Juho Lee, Saehoon Kim, Eunho Yang, and Sung Ju Hwang. 2018. Drop-
Max: Adaptive Variational Softmax. In Advances in Neural Information Processing
Systems, S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and
R. Garnett (Eds.), Vol. 31. Curran Associates, Inc. https://proceedings.neurips.cc/
paper_files/paper/2018/file/389bc7bb1e1c2a5e7e147703232a88f6-Paper.pdf

Lingzhi Li, Zhen Shen, Zhongshu Wang, Li Shen, and Liefeng Bo. 2023. Compressing
Volumetric Radiance Fields to 1 MB. (June 2023), 4222–4231.

Chen-Hsuan Lin, Jun Gao, Luming Tang, Towaki Takikawa, Xiaohui Zeng, Xun Huang,
Karsten Kreis, Sanja Fidler, Ming-Yu Liu, and Tsung-Yi Lin. 2023. Magic3D: High-
Resolution Text-to-3D Content Creation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR). 300–309.

David B. Lindell, Dave Van Veen, Jeong Joon Park, and Gordon Wetzstein. 2022. Bacon:
Band-limited Coordinate Networks for Multiscale Scene Representation. In 2022
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 16231–
16241. https://doi.org/10.1109/CVPR52688.2022.01577

Lingjie Liu, Jiatao Gu, Kyaw Zaw Lin, Tat-Seng Chua, and Christian Theobalt. 2020.
Neural Sparse Voxel Fields. In Advances in Neural Information Processing Systems,
H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (Eds.), Vol. 33. Curran
Associates, Inc., 15651–15663. https://proceedings.neurips.cc/paper_files/paper/
2020/file/b4b758962f17808746e9bb832a6fa4b8-Paper.pdf

Yuzhe Lu, Kairong Jiang, Joshua A. Levine, and Matthew Berger. 2021. Compressive
Neural Representations of Volumetric Scalar Fields. Computer Graphics Forum 40, 3
(2021), 135–146. https://doi.org/10.1111/cgf .14295

Julien N.P. Martel, David B. Lindell, Connor Z. Lin, Eric R. Chan, Marco Monteiro,
and Gordon Wetzstein. 2021. ACORN: Adaptive Coordinate Networks for Neural
Representation. ACM Trans. Graph. (SIGGRAPH) (2021).

André F. T. Martins and Ramón F. Astudillo. 2016. From Softmax to Sparsemax: A
Sparse Model of Attention and Multi-Label Classification. In Proceedings of the 33rd
International Conference on International Conference on Machine Learning - Volume
48 (New York, NY, USA) (ICML’16). JMLR.org, 1614–1623.

Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ra-
mamoorthi, and Ren Ng. 2020. NeRF: Representing scenes as neural radiance fields
for view synthesis. In European conference on computer vision. Springer, 405–421.

Thomas Müller, Alex Evans, Christoph Schied, and Alexander Keller. 2022. Instant Neu-
ral Graphics Primitives with a Multiresolution Hash Encoding. ACM Trans. Graph.
41, 4, Article 102 (July 2022), 15 pages. https://doi.org/10.1145/3528223.3530127

Thomas Müller, Fabrice Rousselle, Jan Novák, and Alexander Keller. 2021. Real-time
Neural Radiance Caching for Path Tracing. ACM Trans. Graph. 40, 4, Article 36 (Aug.
2021), 16 pages. https://doi.org/10.1145/3450626.3459812

Ken Museth. 2021. NanoVDB: A GPU-friendly and portable VDB data structure for
real-time rendering and simulation. In ACM SIGGRAPH 2021 Talks. 1–2.

Ken Museth, Nick Avramoussis, and Dan Bailey. 2019. OpenVDB. In ACM SIGGRAPH
2019 Courses. 1–56.

Max Paulus, Dami Choi, Daniel Tarlow, Andreas Krause, and Chris J. Maddison. 2020.
Gradient Estimation with Stochastic Softmax Tricks. In Advances in Neural Informa-
tion Processing Systems, H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin
(Eds.), Vol. 33. Curran Associates, Inc., 5691–5704. https://proceedings.neurips.cc/
paper_files/paper/2020/file/3df80af53dce8435cf9ad6c3e7a403fd-Paper.pdf

Songyou Peng, Michael Niemeyer, Lars Mescheder, Marc Pollefeys, and Andreas Geiger.
2020. Convolutional Occupancy Networks. In European Conference on Computer
Vision (ECCV).

Ben Peters, Vlad Niculae, and André F. T. Martins. 2019. Sparse Sequence-to-Sequence
Models. In Proceedings of the 57th AnnualMeeting of the Association for Computational
Linguistics. Association for Computational Linguistics, Florence, Italy, 1504–1519.
https://doi.org/10.18653/v1/P19-1146

Ben Poole, Ajay Jain, Jonathan T. Barron, and Ben Mildenhall. 2023. DreamFusion:
Text-to-3D using 2D Diffusion. In The Eleventh International Conference on Learning
Representations. https://openreview.net/forum?id=FjNys5c7VyY

Nathan Reed. 2012. Understanding BCn Texture Compression Formats.
https://www.reedbeta.com/blog/understanding-bcn-texture-compression-
formats/. Online; accessed 24 January 2023.

Daniel Rho, Byeonghyeon Lee, Seungtae Nam, Joo Chan Lee, Jong Hwan Ko, and
Eunbyung Park. 2023. MaskedWavelet Representation for Compact Neural Radiance
Fields. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR). 20680–20690.

RaduAlexandru Rosu and Sven Behnke. 2023. PermutoSDF: FastMulti-View Reconstruc-
tion with Implicit Surfaces using Permutohedral Lattices. In IEEE/CVF Conference

https://www.blendswap.com/blend/11490
https://www.blendswap.com/blend/11490
https://openreview.net/forum?id=rkcQFMZRb
https://doi.org/10.1109/PCS50896.2021.9477505
https://doi.org/10.3389/frsip.2022.1008812
https://doi.org/10.3389/frsip.2022.1008812
https://doi.org/10.48550/arXiv.2208.04448
https://doi.org/10.48550/arXiv.2208.04448
https://proceedings.neurips.cc/paper_files/paper/2018/file/6a4d5952d4c018a1c1af9fa590a10dda-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/6a4d5952d4c018a1c1af9fa590a10dda-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/389bc7bb1e1c2a5e7e147703232a88f6-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/389bc7bb1e1c2a5e7e147703232a88f6-Paper.pdf
https://doi.org/10.1109/CVPR52688.2022.01577
https://proceedings.neurips.cc/paper_files/paper/2020/file/b4b758962f17808746e9bb832a6fa4b8-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/b4b758962f17808746e9bb832a6fa4b8-Paper.pdf
https://doi.org/10.1111/cgf.14295
https://doi.org/10.1145/3528223.3530127
https://doi.org/10.1145/3450626.3459812
https://proceedings.neurips.cc/paper_files/paper/2020/file/3df80af53dce8435cf9ad6c3e7a403fd-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/3df80af53dce8435cf9ad6c3e7a403fd-Paper.pdf
https://doi.org/10.18653/v1/P19-1146
https://openreview.net/forum?id=FjNys5c7VyY

Compact Neural Graphics Primitives with Learned Hash Probing • 9

on Computer Vision and Pattern Recognition (CVPR).
Vishwanath Saragadam, Jasper Tan, Guha Balakrishnan, Richard G. Baraniuk, and

Ashok Veeraraghavan. 2022. MINER: Multiscale Implicit Neural Representation.
In Computer Vision – ECCV 2022, Shai Avidan, Gabriel Brostow, Moustapha Cissé,
Giovanni Maria Farinella, and Tal Hassner (Eds.). Springer Nature Switzerland,
Cham, 318–333.

Ying Song, Jiaping Wang, Li-Yi Wei, and Wencheng Wang. 2015. Vector regression
functions for texture compression. ACM Transactions on Graphics (TOG) 35, 1 (2015),
1–10.

Jacob Ström and Tomas Akenine-Möller. 2005. iPACKMAN: High-quality, low-
complexity texture compression for mobile phones. In Proceedings of the ACM
SIGGRAPH/EUROGRAPHICS Conference on Graphics Hardware. 63–70.

Yannick Strümpler, Janis Postels, Ren Yang, Luc Van Gool, and Federico Tombari. 2022.
Implicit neural representations for image compression. In Computer Vision–ECCV
2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part
XXVI. Springer, 74–91.

Towaki Takikawa, Alex Evans, Jonathan Tremblay, Thomas Müller, Morgan McGuire,
Alec Jacobson, and Sanja Fidler. 2022a. Variable bitrate neural fields. In ACM
SIGGRAPH 2022 Conference Proceedings. 1–9.

Towaki Takikawa, Joey Litalien, Kangxue Yin, Karsten Kreis, Charles Loop, Derek
Nowrouzezahrai, Alec Jacobson, Morgan McGuire, and Sanja Fidler. 2021. Neural
geometric level of detail: Real-time rendering with implicit 3D shapes. In CVPR.
11358–11367.

Towaki Takikawa, Or Perel, Clement Fuji Tsang, Charles Loop, Joey Litalien, Jonathan
Tremblay, Sanja Fidler, and Maria Shugrina. 2022b. Kaolin Wisp: A PyTorch library
and engine for neural fields research.

Danhang Tang, Mingsong Dou, Peter Lincoln, Philip Davidson, Kaiwen Guo, Jonathan
Taylor, Sean Fanello, Cem Keskin, Adarsh Kowdle, Sofien Bouaziz, et al. 2018. Real-
time compression and streaming of 4D performances. ACM Transactions on Graphics
(TOG) 37, 6 (2018), 1–11.

Danhang Tang, Saurabh Singh, Philip A. Chou, Christian Hane, Mingsong Dou, Sean
Fanello, Jonathan Taylor, Philip Davidson, Onur G. Guleryuz, Yinda Zhang, et al.

2020. Deep implicit volume compression. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. 1293–1303.

Matthias Teschner, Bruno Heidelberger, Matthias Müller, Danat Pomeranets, and
Markus Gross. 2003. Optimized Spatial Hashing for Collision Detection of De-
formable Objects. In Proceedings of VMV’03, Munich, Germany. 47–54.

Lucas Theis, Wenzhe Shi, Andrew Cunningham, and Ferenc Huszár. 2017. Lossy
Image Compression with Compressive Autoencoders. In International Conference
on Learning Representations. https://openreview.net/forum?id=rJiNwv9gg

Karthik Vaidyanathan, Marco Salvi, BartlomiejWronski, Tomas Akenine-Möller, Pontus
Ebelin, and Aaron Lefohn. 2023. Random-Access Neural Compression of Material
Textures. In Proceedings of SIGGRAPH.

Aaron Van Den Oord, Oriol Vinyals, et al. 2017. Neural discrete representation learning.
Advances in neural information processing systems 30 (2017).

Gregory K.Wallace. 1992. The JPEG still picture compression standard. IEEE transactions
on consumer electronics 38, 1 (1992), xviii–xxxiv.

Jianqiang Wang, Hao Zhu, Haojie Liu, and Zhan Ma. 2021. Lossy Point Cloud Ge-
ometry Compression via End-to-End Learning. IEEE Transactions on Circuits and
Systems for Video Technology 31, 12 (2021), 4909–4923. https://doi.org/10.1109/
TCSVT.2021.3051377

Li-Yi Wei and Marc Levoy. 2000. Fast texture synthesis using tree-structured vector
quantization. In Proceedings of the 27th annual conference on Computer graphics and
interactive techniques. 479–488.

Yiheng Xie, Towaki Takikawa, Shunsuke Saito, Or Litany, Shiqin Yan, Numair Khan,
Federico Tombari, James Tompkin, Vincent sitzmann, and Srinath Sridhar. 2022.
Neural Fields in Visual Computing and Beyond. Computer Graphics Forum 41, 2
(2022), 641–676. https://doi.org/10.1111/cgf .14505

Alex Yu, Ruilong Li, Matthew Tancik, Hao Li, Ren Ng, and Angjoo Kanazawa. 2021.
PlenOctrees for Real-time Rendering of Neural Radiance Fields. In ICCV.

Hang Zhao, Orazio Gallo, Iuri Frosio, and Jan Kautz. 2016. Loss Functions for Image
Restoration With Neural Networks. IEEE Transactions on Computational Imaging
PP (12 2016), 1–1. https://doi.org/10.1109/TCI.2016.2644865

https://openreview.net/forum?id=rJiNwv9gg
https://doi.org/10.1109/TCSVT.2021.3051377
https://doi.org/10.1109/TCSVT.2021.3051377
https://doi.org/10.1111/cgf.14505
https://doi.org/10.1109/TCI.2016.2644865

10 • Takikawa et al.

Table 3. Quantiative results on the full synthetic dataset from Mildenhall et al. [2020], showing a near-quality (PSNR) comparison between Instant NGP and
our work. We see that we are able to achieve similar quality across the entire dataset with a 2.8× more compact representation.

Method 𝑁𝑓 𝑁𝑐 𝑁𝑝 Mic Ficus Chair Hotdog Materials Drums Ship Lego avg. Size (kB)

I NGP 214 n/a 20 35.08 30.99 32.59 34.99 28.73 25.36 27.71 32.03 30.93 1000 kB

Ours 28 23 216 33.88 32.08 32.05 34.26 28.32 24.71 27.71 32.31 30.66 357 kB

Table 4. Quantiative results on texture compression on the Paving Stones texture set, retrieved from https://ambientcg.com, showing the tradeoff between
quality (PSNR) and size (kB) for different methods. We compare against traditional texture compression baselines (BC) as well as recent neural baselines
(NTC [Vaidyanathan et al. 2023]). We borrow the results from Vaidyanathan et al. [2023]. Although our work does not outperform NTC, which uses a
specialized architecture for textures with quantization, we are still able to outperform BC and Instant NGP at similar size. We only report average across all
channels for BC as that was the only data available, and compare against the NTC results without mipmaps (which increase quality) for fair comparison.

Method Quantization 𝑁𝑓 𝑁𝑐 𝑁𝑝 Diffuse Normal Roughness AO Displacement avg. Size (kB)

I NGP 216 n/a n/a 21.58 22.32 26.79 27.72 35.62 24.75 3761 kB
I NGP 214 n/a n/a 19.91 20.51 26.61 25.56 30.07 22.61 1049 kB

BC n/a n/a n/a n/a n/a n/a n/a n/a 23.25 3500 kB

NTC n/a n/a n/a 26.10 27.17 29.37 31.22 40.59 29.00 3360 kB

Ours 210 220 23 24.02 25.00 27.90 29.94 36.18 26.69 3494 kB
Ours 28 218 23 21.55 22.61 26.94 27.43 33.74 24.51 1173 kB

	Abstract
	1 Introduction
	2 Related Work and Preliminaries
	2.1 Compression
	2.2 Feature Grids in the Framework of Lookup Functions

	3 Method
	4 Results
	5 Discussion and Future Work
	6 Conclusion
	Acknowledgments
	References

