
Neurally Integrated Finite Elements for Differentiable Elasticity on
Evolving Domains

GILLES DAVIET, NVIDIA, Annecy, France

TIANCHANG SHEN, NVIDIA, Toronto, Canada

NICHOLAS SHARP, NVIDIA, Seattle, United States

DAVID I.W. LEVIN, NVIDIA, Toronto, Canada

Embedded FEM Image-Guided Topology Optimization

Material Optimization via Differentiable Rendering

Fig. 1. Our neurally integrated, high-order mixed finite element solver (left) can accurately simulate evolving implicit geometry (including sub-grid features).

It is end-to-end differentiable and can be easily combined with other differentiable tools to enable new applications such as image-guided material, shape

and topology optimization (top, bottom).

We present an elastic simulator for domains defined as evolving implicit

functions, which is efficient, robust, and differentiable with respect to both

shape and material. This simulator is motivated by applications in 3D re-

construction: it is increasingly effective to recover geometry from observed

images as implicit functions, but physical applications require accurately

simulating and optimizing-for the behavior of such shapes under deforma-

tion, which has remained challenging. Our key technical innovation is to

train a small neural network to fit quadrature points for robust numeri-

cal integration on implicit grid cells. When coupled with a Mixed Finite

Element formulation, this yields a smooth, fully differentiable simulation

model connecting the evolution of the underlying implicit surface to its

elastic response. We demonstrate the efficacy of our approach on forward

simulation of implicits, direct simulation of 3D shapes during editing, and

novel physics-based shape and topology optimizations in conjunction with

differentiable rendering.
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1 Introduction

For more than a decade, computer vision has been making strides

in improving the output fidelity of reconstruction algorithms.

With the advent of differential rendering, it is now possible

to create highly complex, three-dimensional geometry from

two-dimensional images. The robustness and ease-of-use of these

modern methods means that almost any complex real world shape

can now be cast as a convincing geometric digital twin.

Increasingly, there is a demand to use this geometry in appli-

cation spaces where beyond its shape, its physical responses and

robustness are critically important. For instance, engineers may

wish to ensure that a captured 3D bracket can support a certain

load if fabricated, and roboticists want to ensure that a captured

chair won’t collapse under the weight of their robot in a simulated

training environment.
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To meet such physical constraints requires not just a geometric

reconstruction solution, but one that is physically-aware. While

shape optimization and system identification methods have been

explored in the past, systems that can optimize over geometry,

topology and material properties simultaneously are relatively un-

explored. In engineering, most shape optimization methods are

strongly model-driven often requiring an initial parametric shape

model (something that existing reconstruction methods do not pro-

duce) while system identification approaches assume the input ge-

ometry is fixed and optimize only for physical parameters. There is

a great need for algorithms that can optimize shape, topology, and

material properties holistically, to maximize physical performance

or improve response to physical inputs such as forces.

One approach to this problem is to use a differentiable elasticity

simulator as a physical prior in conjunction with a more standard

geometry reconstruction method. But state-of-the-art reconstruc-

tion approaches generate geometry that is rapidly evolving and

can degenerate during the reconstruction process. This, combined

with material stiffness parameters that can vary by up-to-four or-

ders of magnitude (at times during optimization) across the object

means that robust, in-the-loop simulation for reconstruction is a

non-trivial task.

We propose an algorithm that directly attacks these difficulties

for elastically deformable objects. Our simulator is built around a

regular grid discretization and represents geometry as an implicit

function on that same grid. We perform dynamic and quasi-static

simulation using a mixed finite-element method (FEM) which

supports high-order basis functions if necessary, and prevents per-

formance degradation even when material properties are wildly

varying. Crucially, we introduce a neural-network approach to per-

element quadrature which allows for smooth, differentiable inte-

gration of field quantities across the implicitly-defined domain —

even as it evolves during the reconstruction procedure.

We combine our novel simulator with the FlexiCubes [Shen et al.

2023] reconstruction algorithm and demonstrate its ability to di-

rectly produce geometry that is physically reinforced as to avoid

excessive deformation under load. We show that the method re-

quires no strong shape prior, predicts the geometry and topology

of the output as part of the reconstruction process, and can simu-

late the effect of thin, sub-grid features (Figure 1). Finally, we show

how each part of our method (mixed FEM, neural quadrature) is re-

quired to achieve stable and robust results.

2 Related Work

Geometry reconstruction algorithms focus on producing a consis-

tent 3D representation of a shape from a variety of scanned or

synthetic inputs. These inputs include but are not limited to pho-

tographs, rendered images, or scan data [Choy et al. 2016]. These

include algorithms for producing triangle meshes [Gkioxari et al.

2019; Liu et al. 2018b, 2024], implicit surfaces [Mittal et al. 2022;

Park et al. 2019], point clouds [Fan et al. 2017; Wu et al. 2020],

Gaussian splats [Charatan et al. 2024; Zhang et al. 2024], and NeRFs

[Hong et al. 2023; Mildenhall et al. 2020; Yu et al. 2021]. Our work

focuses on providing a compatible, elastodynamics simulator that

seamlessly augments geometric reconstruction algorithms to en-

able the production of physically-sound reconstructed geometry.

Shape and Topology Optimization [Allaire et al. 2004; Bendsøe

and Sigmund 2009; Zehnder et al. 2021] are related problems from

the engineering literature. While they still optimize for output ge-

ometry, they seek to optimize the shape (resp. topology) of an

object with respect to some physical properties (e.g., compliance)

[Wang et al. 2003] rather than purely seeking geometric or visual

agreement with input. The boundary between these methods is

somewhat indistinct since most topology optimization schemes

can alter shape, via adding or removing material, hence shape op-

timization more often relies on a parameterized shape template to

constrain results to a design space (e.g., Panetta et al. [2017]).

Finally, systems identification problems endeavour to identify

material parameters that match observed motion and/or defor-

mation. Typically an existing, parameterized material model

is assumed and differentiable simulation is used to ascertain

the parameters that harmonize simulated and observed object

behavior [Huang et al. 2024; Li et al. 2023a]. Other methods avoid

differentiable simulation via techniques such as modal analysis

[Chen et al. 2017] but in all cases the geometry is known prior

to the physics parameter optimization. For instance, methods

such as PAC-NeRF [Li et al. 2023a] first estimate geometry from

images then perform system identification on that fixed geometry.

Practically, this means that changing geometry cannot be used to

optimize physical behavior by construction. In contrast, our novel,

neurally-integrated, differentiable elasticity solver is fully differen-

tiable with respect to geometry and material parameters enabling

both image-driven and mechanically optimized reconstruction

seamlessly and simultaneously.

Differentiable simulations are well-studied and exist for opti-

mizing the trajectory of rigid objects [Popović et al. 2000], fluids

[McNamara et al. 2004], coupled rigid and fluid motion [Li et al.

2023b], and deformable objects [Du et al. 2021; Geilinger et al.

2020; Hu et al. 2020; Jatavallabhula et al. 2021], but less frequently

support shape derivatives. Topology optimization schemes rely

on meshless methods [Li et al. 2020] or finite elements [Gain et al.

2015; Schumacher et al. 2015] to compute necessary physical

responses. Crucially, these previous approaches all suffer from

one or more issues that make them less than ideal for general

geometric optimization tasks. Standard, conforming mesh FEM

(typically applied on tetrahedral or hexahedral elements) requires

high mesh resolutions [Liu et al. 2018a] to capture the correct

behavior of the complex geometries generated by the optimiza-

tion process. Simulation methods which rely on evolving meshes

can require difficult and time-consuming remeshing operations

[Huang et al. 2024; Misztal and Bærentzen 2012; Wicke et al. 2010]

to keep elements well-conditioned, while density-based meshless

methods yield a fuzzy interface [Li et al. 2020].

Implicit functions and their neural counterparts have become

the de facto geometry representation for shape optimization

due to their ability to compactly represent complex evolving

geometries [Gao et al. 2020; Shen et al. 2023]. We observe that

trying to directly and exactly represent these functions using an

evolving, high-resolution mesh is the main source of algorithmic

complexity as well as memory and computational pressure.

Rather, we are influenced by the success of high-order embedded

methods in predicting complex deformations of intricate shapes

using simple regular grids [Longva et al. 2020]. When coupled
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with appropriately accurate quadrature schemes [Kim and Pollard

2011; Patterson et al. 2012], excellent accuracy can be obtained.

However, these methods need the underlying simulated geom-

etry a priori, meaning it is not obvious how to apply them to

applications where the geometry may evolve.

Fixed quadrature points and weights introduce non-smoothness

and ill-conditioning [Van Dijk et al. 2013] as the surface evolves

past them. Inspired by recent applications of machine-learning

techniques in other areas of simulation [Li et al. 2023; Tymms

et al. 2020; Wang et al. 2022; Zesch et al. 2023], our solution is to

build a novel finite element method around a neural integration

scheme, which uses a small, per-element neural network to learn

the quadrature point locations and weights as a function of the un-

derlying implicit shape. This allows points and weights to evolve

smoothly, along with the shape itself, yielding higher quality re-

sults. Learning functions within grid cells is oft-used in geometry

processing (e.g., for mesh extraction [Chen et al. 2022]) however

we believe this is the first time it has been applied to this particular

problem.

Our differentiable simulator is built around a mixed-variational

approach to elasticity [Reissner 1985; Simo and Rifai 1990]. In

particular, we modify the rotation-aware extension proposed by

Trusty et al. [2022] which allows for simulation performance inde-

pendent of material stiffness — an important property for system

identification where material parameters can range over several

orders-of-magnitude. We use a novel, performant variant of the

scheme that avoids a per-element singular-value-decomposition at

each simulation sub-step and supports high-order elements.

Our major contribution is a differentiable simulator that enables

simultaneous optimization of object shape, topology and material

properties via drop-in combination with existing geometry

reconstruction algorithms. In service of this we develop a novel

neural quadrature scheme suitable for finite element algorithms

on evolving surfaces, a fast mixed finite-element method to enable

robust simulation across wide ranges of material parameters, and

a gradient preconditioner to improve convergence.

3 Neurally Integrated FEM

We first recall a few preliminaries about FEM and numerical inte-

gration. We consider a material domain Ω ⊂ R3 equipped with a

displacement field u defined over a space1 VΩ , and write F (u) :=

I3 + ∇u the deformation gradient.

3.1 Weak-form Elasticity

The kinetic and potential energies of the system are defined as

Ek :=

∫
Ω
ρ �u2, Ep := ψ (F (u)) −

∫
Ω

u.g, ψ (F ) :=

∫
Ω

Ψ(F ),

with Ψ : R3×3 → R the local elasticity potential, and g an external

force density. Using an implicit Euler integrator with timestep

Δt (possibly infinite in the quasistatic limit), such that �u ∼ u−ut

Δt
,

with ut the begin-of-step velocity, the conservation of momentum

over the timestep can be expressed as the minimization of the

1typically a subspace of the Sobolev space H 1(Ω)3.

Ω Ω Ω

Fig. 2. Illustration in 2D of order-2 quadrature points for a boundary voxel

for, from left to right, Full, Clip, and Neural quadrature formulae. The neu-

ral quadrature points and weights are updated smoothly when the bound-

ary moves, while other formulas experience jumps.

incremental potential [Kane et al. 2000]

min
u∈VΩ

Et (u), Et (u) := ψ (F (u)) +
1

2
a(u, u) − b(u),

a(u, v) :=

∫
Ω

ρ

Δ2
t

u.v, b(v) :=

∫
Ω

(
g +

ρ

Δ2
t

un

)
.v.

(1)

Writing the optimality condition ∂uEt = 0 as directional (Gâteaux)

derivatives over all of VΩ yields the weak-form FEM formulation,

a(u, v) +

∫
Ω

∂Ψ

∂F
(F (u)) : ∇v = b(v) ∀v ∈ VΩ . (2)

We can then choose a finite subspace forVΩ , typically polynomi-

als defined over the elements of a mesh M, and write Equation (2)

for each function vi of our discrete basis. This yields as many

nonlinear scalar equations, that can be solved for instance using a

quasi-Newton method [e.g., Smith et al. 2018]. Doing so assumes

being able to evaluate integrals over Ω, or in practice over any

element K of the mesh M. As analytical expressions may not be

available, we resort to approximate quadrature rules, that is, sets

of points and weights (wK
p ), (yK

p ) such that for any polynomial P

of degree less than or equal to d ,
∫
K
P =

∑
p w

K
p P(yK

p ). The integer

d is called the order of the formula. Quadrature rules have been

derived and tabulated for common elements (such as tetrahedra

and hexahedra) at all practical polynomial orders [Cools 2003].

However, standard quadrature rules are only applicable when the

mesh M coincides with the material domain Ω, and generating

good-quality conforming volumetric meshes from a surface is both

expensive and not easily differentiable. In the next paragraphs

we show how we can avoid building such a mesh altogether

and cheaply generate good non-conforming quadrature formulas

for surfaces that are implicitly defined by a signed-distance

function (SDF) discretized over a hexahedral mesh — such as in

marching cubes [Lorensen and Cline 1998], OpenVDB [Museth

et al. 2013], or FlexiCubes [Shen et al. 2023] grids.

3.2 Optimized Quadrature Rules

A first observation is that for the weak-form FEM described in

Equation (2), we do not need the exact domain geometry; we only

need the capacity to numerically integrate functions over elements

with good accuracy. Let us consider a mesh element K and a do-

main Ω such that K � Ω; we want to compute integrals over the

part of K where there is material, i.e., K ∩ Ω. One first possibility,

which we will refer to as the Clip quadrature – see Figure 2, would

be to multiply the integrand, or equivalently the quadrature point
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weights, with the domain indicator function χΩ ,∫
K∩Ω

f =

∫
K
f χΩ ∼

∑
p

wp χΩ(yp )f (yp ), χΩ :=

{
1 on Ω,

0 elsewhere.

However, the indicator function χΩ is highly nonlinear and

the quadrature quality will quickly degrade, leading to unstable

simulations. Moreover, χΩ is non-differentiable with zero gradi-

ent almost everywhere, hindering the computation of meaningful

derivatives of the integration result with respect to the domain. In-

stead, following Patterson et al. [e.g., 2012], we opt to derive new

quadrature points and weights that can accurately integrate poly-

nomials at a chosen order d on the actual material domain. Using

an optimization point of view, we express this quest as

min
wp,yp

QK , QK :=

√√√√√ ∑
P ∈Bd

P

(∫
K∩Ω

P −
∑

p

wpP(yp )

)2

, (3)

with Bd
P

a basis for polynomials of degree d . Monomials may be

used to define Bd
P

, in which case minimization (3) is known as

moment fitting [Bremer et al. 2010]. For symmetry reasons, we

prefer to use Lagrange polynomials defined on the Lobatto–Gauss–

Legendre nodes as our basis.

3.3 Neural Quadrature Rule Prediction

In our settings of interest, the material domain Ω ∩K is implicitly

defined as the region of K where the SDF φK is negative. More-

over, the function φK is itself discretized as a finite set of nodal

values (φK
j ), φK (x) =

∑
j φ

K
j N

φ
j (x),with the shape functions (N

φ
j )

assumed identical for all nodes — trilinear in our case.2 Our prob-

lem thus reduces to finding, from a set of input SDF values (φK
j ),

quadrature points (yK
p ) and weights (wK

p ) that are an approximate

solution to the minimization problem (3).

In principle, one could use direct numerical optimization tech-

niques. However, we want the following desirable properties for

our quadrature rule generation scheme:

(a) it should be extremely cheap, as it will need to be performed

for every partially filled element of the mesh, each time the

boundary is evolved within a shape optimization loop;

(b) the resulting (yK
p ,w

K
p ) should be continuous with respect to

φK
j , with easily-accessible and well-behaved gradients;

(c) the number of quadrature points should be fixed, both for

controlling the cost of the simulation and, in Mixed FEM

settings, for satisfying an element-compatibility condition;

(d) for numerical conditioning the ratio of weights between the

different quadrature points should be limited.

On the other hand, our applications do not require

(e) the quadrature rule to be extremely accurate,

as our object reconstruction objective implies uncertainty about

the exact location of the domain boundary anyway.

Most moment-fitting approaches [Bremer et al. 2010; Longva

et al. 2020; Patterson et al. 2012] aim to minimize the nonlinear

problem (3) to high accuracy, i.e., achieve (e) at the detriment of (a)

2As we are only concerned with the 0-isosurface, the discretization does not need to
preserve the eikonal property of the SDF.

Fig. 3. Learned quadrature points (yellow) for integrating over the part of

the unit voxel defined by trilinear interpolation of the corner SDF values

(visualized by the green isosurface). Left and middle depict 8-point order-2

quadrature, right is 27 point order-4. Size is proportional to the quadrature

point weight.

and often (c). Moreover, (b) is usually out of reach for non-convex

optimization problems with local minima. Müller et al. [2013] keep

the number and position of the quadrature points fixed and opti-

mize for the weights only, yielding a linear problem that achieves

both (b) and (c). However, the resulting weights may be null or

negative, contradicting (d), and this restricted optimization space

limits accuracy for a given number of quadrature points — see also

Appendix A.

Instead, we propose to train a small neural network to learn the

mapping (φ j ) 	→ (yp ,wp ). Precisely, we fit a network which takes

as input a stacked vector of implicit SDF values at a single cell’s

corners, and outputs the quadrature point locations and weights

within the cell. At simulation time we simply need to run inference

for all current voxels, stacked as a single tensor; this is extremely

cheap, achieving (a). Criteria (b) and (c) are satisfied by construc-

tion, and conditioning (d) can be controlled as an additional train-

ing loss term. We train this network once for integration order 2

and 4, and use it for all experiments.

Architecture, Losses, and Training. We choose the network archi-

tecture to be a simple multilayer perceptron with NMLP = 5 fully-

connected layers of sizeWMLP = 64 for order 2 andWMLP = 128

for order 4, and ReLU activations on hidden layers. Network in-

puts are normalized such that the gradient of φ is unit at the cell

center, and network outputs are parameterized as offsets from and

multipliers for the usual Gauss–Legendre points and weights. We

define the loss function as the sum

LQuadNet := QK + 101Q� + γ�Q� (4)

where QK is from Equation (3), with target integrals
∫

Ω∩K
Bd

P
computed using brute force uniform integration at high resolution,

Q� is quadratic barrier enforcing quadrature coordinates to stay

in [0, 1]3, and Q� is a conditioning term penalizing the log ratio

of the maximum to minimum quadrature weight. We generate a

training set of 224 voxels, each consisting of 8 random corner SDF

values, and train for 64k iterations with the AdamW optimizer

with batch size 218 chosen to fit our specific GPU memory.

Training the order-2 network takes about 1.5 hours on an NVIDIA

GeForce RTX 3080Ti GPU — which was also used to generate all

of the examples in the remainder of this article — while training

the order-4 network takes about 30 hours on an NVIDIA A40 GPU.

Figure 3 shows the inferred quadrature points for selected voxel

configurations, and Appendix A provides more evaluations and

training details.
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4 Neurally Integrated Mixed FEM

Mixed FEM consists in discretizing the elasticity equations over

multiple fields, rather than just the displacement u, which can sig-

nificantly improve numerical convergence properties [Brezzi and

Fortin 1991; Frâncu et al. 2021; Ko et al. 2017; Simo and Rifai 1990].

This is of particular interest to us as we want to embed our solver

in a shape reconstruction loop, and as such, desire to obtain a good

approximation of the final result even when truncating the solve

to a few Newton iterations and regardless of the material stiffness.

The rotation-aware Mixed FEM formulation described by Trusty

et al. [2022] boasts this property, however as presented it is lim-

ited to linear displacements and piecewise-constant strains and

stresses. Below we propose a four-field extension of this mixed

formulation to arbitrary finite elements, and show how it can be

used in conjunction with our Neural Quadrature integration strat-

egy. Unless otherwise mentioned, this formulation will serve as the

basis for our differentiable elasticity simulations.

4.1 Generalized Four-field Mixed FEM

We denote byTΩ the space of square-integrable 3× 3 tensor fields,

and define SOΩ , SymΩ and SkewΩ , the subspaces ofTΩ whose val-

ues are rotations, symmetric tensors, and skew-symmetric tensors,

respectively. We introduce two additional primal fields, the sym-

metric strain S ∈ SymΩ and rotation R ∈ SOΩ , related to the defor-

mation gradient through the constraintC(u,R, S) := F (u)−RS = 0.

Being rotation-independent, the local elastic potential Ψ can now

be measured directly on S rather than F . Minimization of the incre-

mental potential (1) can be expressed as the constrained optimiza-

tion

min
u ∈ VΩ, S ∈ SymΩ,R ∈ SOΩ

C(u,R, S) = 0

1

2
a(u, u) − b(u) +ψ (S)

or equivalently as a saddle point of the associated Lagrangian,

min
u∈VΩ,S ∈SymΩ,R ∈SOΩ

max
σ ∈TΩ

L(u, S,R,σ ),

L(u,S,R,σ ) :=
1

2
a(u, u) − b(u) + Ψ(S) + c(u, S,R,σ ),

c(u,S,R,σ ) :=

∫
Ω
C(u,R, S) : σ .

Solutions of problem (1) must thus satisfy ∂L = 0, that is,

a(u, v) + c,u(v,σ ) − b(v) = 0 ∀v ∈ VΩ, (5)

ψ,S (S ;τ ) + c,S (R;τ ,σ ) = 0 ∀τ ∈ SymΩ, (6)

c,R (S ;Q,σ ) = 0 ∀Q ∈ SOΩ, (7)

c(u,R, S,λ) = 0 ∀λ ∈ TΩ, (8)

where the formsψ,S and c,q are directional derivatives, i.e.,

ψ,S (S ;τ ) :=

∫
Ω

∂Ψ

∂S
(S) : τ , c,u(u,λ) :=

∫
Ω
∇u : λ,

c,R (S ;R,λ) :=

∫
Ω
RS : λ, c,S (R; S,λ) :=

∫
Ω
RS : λ.

Note that at equilibrium the Lagrange multiplier σ coincides with

the first Piolat–Kirchhoff stress tensor, ∂Ψ
∂F [Bonet and Wood 2008].

Unfortunately, directly applying Newton iterations to Equa-

tions (5)–(8) would lead to numerical difficulties. Indeed, the elas-

ticity Hessian may be indefinite, and there is no coercive potential

for the rotation variable; see Appendix B for details. To remedy

this problem, we re-inject the constraint C into Equations (6)–(7)

using an Augmented–Lagrangian-like penalization term ϵ ,

a(u, v) + c,u(v,σ ) − b(v) = 0 ∀v ∈ VΩ (9)

ψ,S (S ;τ ) + c,S (R;τ ,σ + εC (u,R, S)) = 0 ∀τ ∈ SymΩ (10)

c,R (S ;Q,σ + εC (u,R, S)) = 0 ∀Q ∈ SOΩ (11)

c(u,R, S,λ) = 0 ∀λ ∈ TΩ . (12)

The penalization parameter ε has the dimension of an elastic mod-

ulus, and in practice we set it equal to the typical stress σ̂ := ρд̂L̂,

with L̂ and д̂ typical length and acceleration, respectively. We

proceed to solve system (9–12) using projected Newton iterations;

we describe how to do so efficiently in Appendix B. Differences

with the original approach from Trusty et al. [2022] are outlined

in Section B.4.

4.2 Combination with Neural Quadrature

Our Mixed FEM solver does not overly restrict the choice of quad-

rature formulas, as long as they are of sufficient accuracy. As out-

lined in Appendix B.2, it mandates for efficiency that the quadra-

ture points used to integrate Equations (10)–(12) coincide with the

degrees of freedom of the strain spaces; but we can freely pick the

location of those Lagrange polynomial nodes. We can thus com-

bine the Mixed FEM formulation with our Neural Quadrature from

Section 3.3. For hexahedral elements we use polynomials of simi-

lar degree k for the displacement and tensor spaces, meaning that

we can use the same formula of order d = 2k for all of our inte-

grals. While the displacement space VΩ is continuous with nodes

positioned according to the mesh, the strain, rotation and stress

spaces use a discontinuous Lagrange polynomial basis with nodes

collocated to the quadrature points (yK
p ) inferred in each element.

Note that in practice the tensor fields will only be evaluated at said

nodes, so we do not need to consider general interpolation.

5 Forward Simulation Results

We have implemented our FEM and Mixed FEM solvers using

the warp.fem module from the NVIDIA Warp [Macklin 2022] li-

brary, which allows us to conveniently express the linear and bi-

linear forms described in Sections 3.1 and B.1 and provides auto-

differentiated numerical integration code with respect to all of the

domain and material parameters. Below we assess the efficiency of

neural quadrature and Mixed FEM solver, first on a simple dumb-

bell geometry then on more complex topologies.

5.1 Dumbbell

We define a continuous dumbbell SDF as the union of three analyti-

cal cylinders, the middle one being of smaller radius than the other

two. We then discretize this SDF on regular grids at resolutions

varying from 83 to 643. We generate quadrature formulas of order

2 (8 points) and 4 (27 points) from this discrete SDF using the Full

(regular Gauss–Legendre points and weights), Clip (filtering-out

points in the SDF exterior), and our Neural approaches to perform
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Fig. 4. Visualization of quadrature points generated for an SDF discretized

on a grid at resolution 163, using order-2 Full (top left) and Clip (bottom

left) quadratures, and our Neural quadrature at order 2 (top right) and 4

(bottom right). The non-empty voxels are shown in blue, and the SDF iso-

surface (extracted at resolution 643) is shown in purple. For clarity, only

one octant is shown.

tetrahedral mesh

linear
elements

implicit grid

full

quadratic
elements

neural
(ours)

clip neural
+ tri-quadratic

(ours)
83 163
323 643

Fig. 5. Comparison of equilibrium behavior for the dumbbell across several

SDF grid resolutions and discretizations. Left, a tetrahedral mesh is first

extracted from the grid via the FlexiCubes algorithm, and simulated with

linear and quadratic elements. Right, our grid-based simulations are per-

formed with full and clipped quadrature on tri-linear elements, as well as

our neural quadrature on both tri-linear and tri-quadratic elements. Color

denotes the grid resolution at which the mesh is extracted or the simu-

lation is performed, respectively. The grid simulation is interpolated to a

high-resolution surface for visualization.

both displacement-only and Mixed FEM simulations. The defor-

mation is visualized by embedding the isosurface extracted using

dual marching-cubes at 643 resolution within the simulation grid,

as illustrated in Figure 4. We use the Stable Neo–Hookean elastic

model from Smith et al. [2018] with Poisson ratio ν = 0.4.

Cantilever. The first experiment consists in clamping one end

and letting the (soft) dumbbell sag under gravity, studying the

impact of the grid resolution on the achieved equilibrium shape

for different quadrature formulae. We also compare our non-

conforming approach with the simulation of a tetrahedral mesh

generated from the discrete grid using the algorithm from Shen

et al. [2023]. Figure 5 shows the equilibrium shapes obtained us-

ing our Mixed FEM formulation — we also performed this exper-

iment with displacement-only FEM and obtained visually identi-

cal results. At the fine 643 resolution, all experiments converge to

the same shape. At coarse resolutions however, the Full quadrature

and the linear tetrahedral mesh underestimate the deformation the

most, while the Clip quadrature suffers from instabilities. The qua-

dratic tetrahedral mesh and the tri-quadratic embedded simulation

input Mixed FEM
                (ours)

displacement-only FEM

stiffened
region

1x stiffness

103x stiffness

106x stiffness

109x stiffness

Fig. 6. At high stiffness ratio, displacement-only FEM suffers from slow

convergence, while Mixed FEM does not. Here, the center region of the

dumbbell is stiffened by an increasing factor, and in each case the Newton

loop is truncated after 250 iterations.

83 full quadrature83 full quadrature

643

neural quadrature (ours)

tri-linear tri-quadratic

Fig. 7. Comparison of buckling shapes across resolution (by row), element

types (by color), and quadrature strategies (by column).

(using order-4 neural quadrature) perform best, followed by the

order-2 neural quadrature with trilinear displacements.

Large stiffness ratios. We now increase the elastic modulus of the

middle region of the dumbbell (Figure 6) with stiffness ratios up to

109×. At lower ratios, displacement-only and Mixed FEM perform

identically, but for the higher ratios classic FEM suffers from high

damping of the rotational mode in the stiff regions, and remains far

from the converged shape even after 250 Newton iterations. This

is consistent with the results from Trusty et al. [2022].

Buckling. Finally, Figure 7 looks at the impact of changing the

polynomial degree of the displacement field for the Full and Neu-

ral quadrature formulae, at 83 and 643 resolution. We observe lit-

tle impact for the coarse Full and fine Neural buckling simulations;

the former fails to take into account the thinner part for both de-

grees, while the latter results in identical converged shapes. The

tri-quadratric displacement is most interesting for the coarse Neu-

ral simulation, with an equilibrium shape much closer to the high-

resolution solution than with tri-linear displacements.

5.2 Complex Geometries

Heterogeneous material. We simulate a slab of material with het-

erogeneities roughly the size of one voxel, so that the embedding

grid is effectively dense (top left). As shown in Figure 8, using the

regular Full quadrature, the material behaves as if it was homo-

geneous, with globally uniform strain. The Clip quadrature also

yields incorrect behavior, as the strain is no longer transmitted

away from the dense clamped regions. Our neural quadrature suc-

cessfully captures the intricacies of the material at no additional

cost.

Interactive editing. As our framework allows simulation of arbi-

trarily complex and evolving material topology without the need
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Embedded Rest Shape

Simulated (Clip) Simulated (Ours)Si l t d (O )

E b dd d R t Sh Simulated (Full)

Fig. 8. A slab with sub voxel-sized features simulated with Full, Clip, and

Neural quadrature formulas. Shading denotes the norm of the strain tensor

S relative to the current configuration.

Fig. 9. Interactive sculpting and simulation of physics-enabled clay.

for expensive remeshing, a natural application is a physics-ready

virtual playground where the user may interactively add or sub-

tract material and immediately see how it responds to applied

forces (Figure 9 and video).

6 Physics-aware Reconstruction

Not only can our neural quadrature handle evolving material do-

mains, it does so in a differentiable way. We exploit this ability

to demonstrate physics-aware mesh reconstruction from multiple

views. But first we describe how we can efficiently compute the

adjoint of our simulations.

6.1 Simulation Adjoint

We consider a loss function L(p, q) to be minimized, with p the

vector of material and/or shape parameters that we want to opti-

mize, and with q the simulation state; q := u for displacement-only

FEM, and q := (u,S,R,σ ) for our Mixed FEM formulation from

Section 4. As q is the result of a forward simulation, it depends in

turn on the parameters p. Performing gradient-based optimization

therefore requires evaluating

dL

dp
=
∂L

∂p
+
∂L

∂q

∂q

∂p
.

One may choose to use full auto-differentiation of the simulator

code for all of the above terms. However, evaluating
∂q
∂p

requires

backtracking through the whole simulation loop — potentially

comprising many solver iterations — which is costly both in wall

time and memory usage. We avoid this overhead by combining

auto-differentiated and analytical adjoint computations: by defini-

tion, q must satisfy an equilibrium condition, either Equation (2)

for displacement-only FEM or Equations (9)–(12) for Mixed FEM.

For brevity of notation, let us write this equilibrium condition as

f(p, q) = 0; the implicit function theorem allows us to express the

loss gradient as

dL

dp
=
∂L

∂p
+
∂L

∂q

(
∂f

∂q

)−1

︸���������︷︷���������︸
∂L
∂f

∂f

∂p
.

As ∂f
∂q

can be recognized as the Hessian of the incremental energy

potential, computing ∂L
∂f

amounts to solving one linear system

similar similar to one Newton iteration from the forward pass.3

The right-multiplication of ∂L
∂f

by ∂f
∂p

is then achieved through

auto-differentiation of the linear form assembly code, which is

directly provided by the warp.fem library [Macklin 2022] with

which our solver is implemented.

Note that in our framework, we do not have to give special treat-

ment to shape derivatives versus material parameter derivatives.

The simulator is aware of the material domain through quadrature

points and weights, for which the adjoint computation does not

require particular considerations. We can then get the derivatives

with respect to the implicit surface by backpropagating through

the MLP network from Section 3.3.

6.2 Physics-aware Reconstruction Framework

We leverage the FlexiCubes [Shen et al. 2023] discrete implicit sur-

face representation, which consists of SDF values and displace-

ments at nodes of a regular grid, plus per-cell parameters adjust-

ing the isosurface — effectively, per-cell, per-vertex SDF values

with variable vertex positions. This representation has been shown

to perform well in conjunction with differentiable rasterization

[Laine et al. 2020], with stronger ability at capturing sharp features

than tet-based alternatives [Shen et al. 2021].

Previously Shen et al. [2023] showed decoupled shape and ma-

terial optimization, first recovering geometry via FlexiCubes and

next optimizing for material properties using a differentiable sim-

ulator. In stark contrast we now describe a fully-coupled single

stage pipeline wherein gradients from our simulator directly af-

fect reconstructed geometry. We adjust the physical behavior of

the reconstructed object by varying not only material parameters,

but also its rest shape; all the while ensuring that renderings of

said rest shape remain close to the target.

Loss functions and preconditioning. On top of the geometric and

rendering-based reconstruction losses described by Shen et al.

[2023], which we regroup concisely as LFC, we add a new physics

loss function Lphys based on the displacement u and stressσ fields

3To compute the exact gradient, we should not perform SPD projection of the elas-
ticity Hessian. However in practice, this allows for a simpler and more efficient solve
with little impact on the descent direction, so we use it in the backwards pass as well.
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resulting from the simulation over a timestep Δt ,

Lphys(Δt , �u, �σ ) := p

√∫
Ω

1

|det dΩ |

(
�u ‖u‖p + �σ ‖σ ‖p )

,

where �u and �σ are constant scaling factors for the displacement

and stress terms, and the loss power p allows us to skew the global

loss towards either the average or the maximum local loss (in prac-

tice we always use p = 8). The 1
|det dΩ |

term scales the local loss in-

versely to the infinitesimal domain measure to prevent the empty

domain from being a trivial optimum.

We emphasize that the LFC and Lphys losses both affect the

shape of the reconstructed model and will oppose each other; tun-

ing the �u and �σ coefficient allow biasing the result towards better

reconstruction fidelity or physical performance. Moreover, acti-

vating Lphys right from the beginning of the optimization is not

productive; the initial guess of the FlexiCubes reconstruction con-

sists in random SDF values, leading to many disconnected material

pieces, so that running the physical simulation at such early stage

is not meaningful. Instead, we run the first 30% of the optimizer

iterations with LFC only, then add Lphys. To ensure a smooth tran-

sition, we also increase the simulation timestep Δt progressively.

In practice, performing gradient descent on Lphys tends to pro-

duces bumpy or fractured surfaces that, while yielding low values

of the physics loss, are not visually pleasing. We overcome this

issue by preconditioning the grid parameters that are being opti-

mized for (vertex displacement and SDF value) with a smoothing

function. To this effect, we apply a convolution with a Gaussian

blur kernel before passing those parameters to the FlexiCubes re-

construction and Mixed FEM simulation. In a similar fashion, we

can optionally enforce symmetry of the optimized shape by apply-

ing a symmetric preconditioner to the raw grid parameters.

Finally, adding a loss term L|e | penalizing the total sum of edge

lengths of the extracted triangular mesh is helpful for reducing the

appearance of unwanted geometry like floaters or protruding de-

tails — under the condition that this term remains small compared

to the reconstruction and physics losses.

6.3 Physics-aware Reconstruction Results

For the following examples, we render synthetic views of a tar-

get mesh and use the physics-aware reconstruction framework

described above to reconstruct an implicit surface with desirable

physical characteristics. We emphasize that during this process,

the optimizer has no knowledge of the target mesh topology or

3d positions, i.e., has no strong prior.

Stress minimization. We first apply our method to optimize the

shape of an aluminum hook so that stress under some predefined

load is minimized (i.e., we use Lphys with �u = 0 and �σ = 1). We

use the Stable Neo–Hookean material from Smith et al. [2018] with

Young Modulus EY = 10GPa, Poisson ratio ν = 0.33, and volumet-

ric mass ρ = 2700kg.m−3, and a FlexiCubes grid with resolution 64.

A force of 6kN is applied to the curved portion of the hook while

clamping the top of the slit; see Figure 10. Over the course of the

optimization the physics loss Lphys is reduced by more than an or-

der of magnitude, with the maximum stress on the surface being

similarly reduced.

xed
zone

applied force

target physics loss activation

Lphys activation

Lphys

Ltot

Fig. 10. Bracket topology optimized to minimize stress given a predefined

load. Top: target model (leftmost), then timeline of combined shape recon-

struction and stress minimization. The physics-aware loss and prescribed

force get activated on the fourth image from the left; shading indicates

surface stress intensity. Bottom: evolution of the physics and total losses

over iterations.

Soft chairs. To evaluate our method on more challenging ma-

terial topology and nonlinear effects, we select 18 representa-

tive chair models from the Pix3D dataset [Sun et al. 2018] and

equip them with a rubber-like material, with volumetric mass

ρ = 1000kg.m−3, Young modulus EY = 10MPa and Poisson ratio

ν = 0.47. Emulating the effect of one person sitting on the chair, we

apply a downward force of 2.5kN on the seat and a backward force

of 0.5kN on the backrest, with a random perturbation of 10% of the

force direction and point of application at each iteration. Since we

do not know in advance the 3d location of those features, we de-

fine our forces in a volumetric fashion over a predefined region of

the reconstruction bounding box and scale them according to the

actual amount of material in the region. The bottom 5% of each

object is kept fixed. We use a timestep Δt = 3s, loss scaling pa-

rameters �u = 1 and �σ = 0.25, and a FlexiCubes resolution of 64.

We run the optimization for 1,000 gradient descent iterations, and

for each of those run five Newton steps of Mixed FEM simulation,

which in total takes about 15 to 25 minutes per model (depending

on the number of active voxels) on a pair of NVIDIA GeForce RTX

3080Ti GPUs.

The results are depicted in Figure 11. While applying the forces

to the chairs reconstructed without the physics-aware loss usually

leads to a complete collapse, the chairs reconstructed with Lphys

demonstrate much stronger resistance and are easily able to

recover their original shape once the perturbations cease being

applied. The optimization generally reinforces the chair legs and

the seat–backrest junction, but with variations depending on the

actual topology, such as the presence (or not) of armrests. Since

we perform reconstruction from images without any strong shape

prior — starting from random SDF values, topological changes

are mandatory in the first stages of the optimization. Even once

the reconstructed geometry has started to resemble the target, we

keep observing emerging topological changes compared to the

mesh used as source; some of which are highlighted in Figure 12.

We emphasize that even in the rare cases where the genus is

not modified by the physics loss, the changes to the surface are

drastic enough that shape-differentiable simulators working on
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naive
target reconstructed shape simulated shape

ours naive ours naive
target reconstructed shape simulated shape

ours naive ours

Fig. 11. Physics-aware image-based reconstruction of chair models from the Pix3d dataset such that they can sustain prescribed forces despite being made

of a very soft material. For each model, from left to right, target shape, reconstructed shape without (naive) then with (ours) physics-aware loss, simulation

of the reconstructed shape without (naive) then with (ours) physics-aware loss. We assume a homogeneous material with density ρ = 1000kд .m−3, Young

modulus EY = 10MPa and Poisson ratio ν = 0.47, and apply a downward force of 2.5kN on the seat and a backward force of 0.5kN on the backrest. On

simulation pictures, hue indicates relative stress intensity.

conforming meshes would require frequent volumetric remeshing

[Huang et al. 2024; Tozoni et al. 2021], which our implicit approach

avoids entirely.

Stability. Previously we kept the bottom of the chairs fixed,

which is justified given the strong downward applied force. Here,

inspired by similar experiments in Guo et al. [2024] and Ni et al.

[2024], we show that our technique can also be leveraged to in-

crease the stability envelope of the reconstructed models. We re-

place the bilateral clamping with an unilateral constraint model-

ing the ground–chair contact, and update our Newton loop with

an active-set formulation. We use a much stiffer material so that

the chair behaves rigidly (E = 100GPa), apply a downward-and-

backward-pointing force on the backrest, and pick a model that
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Fig. 12. Details of some topology changes in our soft chairs example. Top: Additional backrest support being grown then carved out. Bottom, left: Additional

feet being grown for support on an office chair. Right: Repairing of a damaged target shape.

naive
reconstructed shape simulated shape

ours naive ours

Fig. 13. Optimizing the stability such that the chair remains stable to a

force applied on the backrest. From left to right, reconstructed shape with-

out (naive) then with (ours) physics-aware loss, simulated reconstruction

without (naive) then with (ours) physics-aware loss. The yellow ball on the

rest geometries indicates the position of the center of mass.

target simulated shape
naive ours

Fig. 14. Concurrent optimization of the shape and Young modulus of the

chair. From left to right, target shape, simulated reconstructions without

(naive) and with (ours) physics-aware loss. Shading indicates regions that

are made stiffer.

looks propitious to toppling. Figure 13 shows that the physics-

aware loss will add material to the front of the chair such that the

center of mass moves forward and resists the applied push.

Material optimization. Up until now we only allowed the

optimizer to modify the shape of the model, keeping the material

homogeneous; here we also allow modification of the Young Mod-

ulus. This makes the problem somewhat easier, as now the physics

loss and reconstruction loss can act on orthogonal parameters. In

our framework, we can just set �u and �σ to small values so that

the optimizer will favor LFC over Lphys for the shape parameters.

Figure 14 shows the result of this process under the constraint

that the Young modulus should not be increased more than 104×

and with additional L1 regularization of the stiffening parameter.

Unsurprisingly, the legs of the chair and the junction between legs

and seat are the regions that the optimizer prioritize for stiffening.

EY = 100GPa EY = 1GPa

target simulated shapes (no mixed FEM)

optimizing shape optimizing material

Fig. 15. Results using displacement-only FEM instead of our Mixed FEM.

Top: from left to right: target shape, simulation of shape reconstructed

with topology optimization, simulation of shape reconstructed with mate-

rial stiffness optimization. Bottom: stability optimization, from left to right:

target shape, simulation of shape reconstructed with EY = 100GPa, then

with EY = 1GPa.

no material
optimization

no mfem ours

Fig. 16. Simulation of the reconstructed elastic dumbbell from Section 5.1

without material optimization (left), with material optimization and

displacement-only FEM (middle), with material optimization and our

mixed FEM (right). Hue shows material stiffness scaling, from 1× (pur-

ple) to 250× (yellow). Slower convergence of displacement-only FEM with

high stiffness ratios causes the optimizer to underestimate the physics

loss Lphys, leading to insufficient stiffening and more sagging when re-

simulating the reconstructed object.

Ablation studies. Having demonstrated the physics-aware

reconstruction capabilities of our framework, we proceed to study

the importance of its individual components, and show results in
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no neural quadrature no smoothing

no edge-length loss no FlexiCubes 

Fig. 17. Simulation of reconstructed shapes with various parts of our

framework removed: top left: no Neural quadrature; top right: no smooth-

ing preconditioner; bottom left: no edge-length loss; bottom-right: using

dual marching-cube instead of FlexiCubes (cropped details).

Figure 17. First, replacing the neural quadrature with Full or Clip

quadrature formulas hinder convergence entirely. Indeed, the gra-

dient of Lphys with respect to the vertex SDF values becomes zero,

so that the optimizer will only move the vertex positions, whose

motion is constrained by the FlexiCubes parameterization to stay

under one voxel-size. Next, when removing the smoothing pre-

conditioner, the optimizer does manage to reduce the physics loss,

but the reconstructed surface is hardly usable. Removing the edge

length loss L|e | makes the reconstructed surfaces bumpier, and

tend to produce floaters. Finally, sharp features are no longer well

captured when limiting the optimized parameters to the vertex

SDF values, i.e., falling back to a standard dual marching-cube.

We also show in Figure 15 that our method keeps working when

using displacement-only FEM rather than Mixed FEM, and thus,

should be compatible with other differentiable simulators that

support hexahedral elements [e.g., Huang et al. 2024]; but with

degraded robustness. For our initial soft chair optimization prob-

lem, classic FEM yields a reconstruction similar to the Mixed FEM

case from Figure 11. For the material optimization experiment the

results are still reasonable, but, due to the slower convergence

of displacement-only FEM with high stiffness ratios, the physics

loss is underestimated and the reconstructed model is subject to

more sagging than in the Mixed FEM version from Figure 14; see

also Figure 16 for a simpler variant of this experiment. Results

are worst for the stability optimization example; here, we need to

reduce the stiffness by two orders of magnitude to obtain a stable

reconstruction.

Quadratic elements. We verify that our method also works with

higher-order elements. Figure 18 demonstrates optimization of an

elastic bridge model under prescribed load on a 483 grid, using

tri-quadratic displacements and the order-4 27-points learned

quadrature. As the resolution of the FlexiCubes grid is already high

enough to resolve thin features of the target shape, the higher-

order result remains qualitatively similar to the trilinear version.

Physics-aware photogrammetry. Our physics-aware shape

reconstruction formulation may also be integrated into more com-

plex photogrammetry pipelines to allow for the joint optimization

of shape, lighting, and both physical and rendering materials. We

leverage nvdiffrec from Munkberg et al. [2022], which supports

FlexiCubes as its geometry representation. For this example we use

again the setup described in Section 6.2; this time, instead of defin-

target simulated shape
naive ours

Fig. 18. From left to right: target shape and simulation of the shapes re-

constructed without (naive) and with (ours) physics-aware loss. Top: using

with tri-quadratic elements and the order-4 “neural” quadrature; bottom:

using trilinear elements and the order-2 “neural” quadrature.

naive ours
(optimizing shape)

ours
(optimizing material)

Fig. 19. Physics-aware multiview reconstruction of the Bulldozer scene

from NeRF synthetic dataset. Simulation results from left to right: initial

shape before Lphys is applied, optimizing geometry, optimizing material

parameters. Shading indicates regions that are made stiffer.

ing our rendering target as random synthetic views of a known

mesh, we use a fixed list of 100 images and corresponding camera

transforms from the NeRF dataset [Mildenhall et al. 2020]. We first

optimize the rendering loss Lrender from the nvdiffrec pipeline

without modification. After the shape starts converging, we begin

blending in the physics loss function Lphys. We can again optimize

both the shape and material parameters of our reconstructed

object to minimize sagging under a prescribed force (Figure 19).

7 Limitations and Future Work

While our neural quadrature rule can compute integrals over

the possibly complex material domain induced by the SDF, the

displacement degrees of freedom are still those of the underlying

continuous shape functions. As such, even if the SDF defines two

disconnected material regions within a given voxel, the simulation

won’t allow them to separate arbitrarily. This is detrimental for

our application as this means that small disconnected pieces of

material (“floaters“) adjacent to the bulk of the object will tend

to stick to the surface instead of falling down — meaning that

they will have a low displacement loss and the optimizer won’t

be eager to prune them. While our edge-length loss helps reduce

this phenomenon, other formulations such as the perimeter reg-

ularizer from Maestre et al. [2023] would be worth investigating.

A possibly more satisfying solution that we intend to explore in
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future work is the of addition of new degrees of freedom to the

disconnected voxel configurations, in the vein of XFEM [Koschier

et al. 2017; Moës et al. 1999] or CPIC [Hu et al. 2018]. Additionally,

we do not consider evaluation of integrals over the boundary of

the domain, as these are not needed for the presented tasks. If de-

sired, isosurface meshes can easily be extracted and embedded for

integration.

Another limitation of our physics-aware reconstruction algo-

rithm is the lack of global convergence, meaning that differences

in the initial random SDF values lead to variations in the final op-

timized shape. The end result is also very sensitive to the choice

of loss function; exploring the definition of more perceptual losses

would be an interesting area of research. Our current reconstruc-

tion speed is also not yet suitable for interactive applications; we

would like to bridge this gap in the future.

In future work, we also want to explore whether other archi-

tectures could improve the accuracy and efficiency of our tech-

nique. While we have focused on solid elasticity in this work,

we also want to take advantage of the analogy between quadra-

ture points and Particle-in-Cell integration to investigate differ-

entiable initialization of MPM simulations from implicit surfaces.

Combined with particle-based techniques like PAC-NeRF [Li et al.

2023a], this would allow computing derivatives of the simulation

end-state with respect to the material occupancy function, with ap-

plications to single-pass reconstruction, identification and shape

optimization of plastic materials.

8 Conclusion

We have presented a neural integration technique that improves

the quality of voxel-based implicit volume simulations at negligi-

ble additional runtime cost, and shown how to combine it with

a Mixed FEM solver to efficiently perform elasticity simulation

on continuously evolving domains. Our technique allows straight-

forward differentiation of the simulation results with respect to

the implicit volume parameters, making itself particularly suitable

for topology optimization tasks, and providing a first foray into

physics-enabled shape reconstruction.
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Appendices

A Neural Quadrature Training and Evaluation

For a quadrature of target order d , we use nQ := (d/2+ 1)3 quadra-

ture points per voxel and a test polynomial basis Bd
P

of cardinality

nP := (d + 1)3, chosen as the 3D tensor product of 1D Lagrange

polynomials with Lobatto–Gauss–Legendre nodes (xLGL
i ),

Bd
P :=

{
Pi jk , 0 ≤ i, j,k ≤ d

}
,

Pi jk (x ,y, z) := PLGL
i (x)PLGL

j (y)PLGL
k

(z),

PLGL
i (x) :=

∏
l�i (x − xLGL

l
)∏

l�i (x
LGL
i − xLGL

l
)
.

We note nφ := 23 the number of input SDF values per voxel, and

(N
φ
j ) the nφ corresponding trilinear interpolation functions.
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Fig. 20. Convergence of MLP training over iterations.

ALGORITHM 1: Ground truth integrals generation

Input: φ : Tensor of voxel corner SDF values, size nB × nφ ;

Output: ϒGT: ground-truth integral values, size nB × nP .

Parameters: nGT : resolution of brute-force integration

ϒGT = 0;

h := 1/nGT;

foreach voxel b in batch do

for 0 ≤ i, j, k < nGT do

// Interpolate at uniformly sampled locations

x, y, z := (i + 0.5)h, (j + 0.5)h, (k + 0.5)h ;

φxyz :=
∑

l<nφ
φl N

φ

l
(x, y, z) ;

if φxyz < 0.0 then // In SDF interior

foreach polynomial Pl in Bd
P

do

ϒGT
b,l
= ϒGT

b,l
+ Pl (x, y, z)h3

end

end

end

end

ALGORITHM 2: MLP input normalization layer

Input: φ : Tensor of voxel corner SDF values, size nB × nφ ;

Output: φ : MLP output tensor, size nB × nφ .

foreach voxel b in batch do

// Normalize SDF gradient at voxel center

gb :=
∑

j<nφ
φb, j ∇N

φ
j (0.5, 0.5, 0.5) ;

φb = φb/
(
‖gb ‖ + 10−8

)
// Shift full and empty voxels closer to origin

if minj φb, j > 1 then

φb = φb − minj φb, j + 1;

if maxj φb, j < −1 then

φb = φb − maxj φb, j − 1;

end

Finally, we denote bynB the batch size, i.e., the number of voxels

being simultaneously evaluated.

We reiterate that as our network works independently for each

voxel, we do not need to construct a dataset containing macro-

scopic shapes: for our training data, we simply generate a set of

224 × 8 random values sampled from a normal distribution.

For each voxel, the nφ = 8 corner values do not need to rep-

resent a proper SDF satisfying the eikonal equation; we actually

want the network to be robust to improper SDFs, and the first Nor-

malization layer of our network (Algorithm 2) will remap the in-

put such that the gradient at the voxel center is unitary. This Nor-

malization layer is followed by a standard 5-layers-deep MLP with

ALGORITHM 3: MLP output remapping layer

Input: x: MLP output tensor, size nB × nQ × 4;

Output: y, w: tensors of quadrature point coordinates and weights,

size nB × nQ × 3 and nB × nQ .

Data: yGL, wGL: 3D Tensor product of 1D Gauss–Legendre points

and weights of order d , size nQ × 3, nQ

y· = yGL + tanh
(
x·, ·,0. . .2

)
;

w· = wGL exp
(
x·, ·,3

)
;

ALGORITHM 4: Quadrature evaluation layer

Input: y: tensor of quadrature point coordinates, size nB × nQ × 3;

w : tensor of quadrature point weights, size nB × nQ .

Output: Tensor ϒ of integral values for all Lagrange polynomials in

the test basis Bd
P

, size nB × nP .

foreach polynomial Pl in Bd
P

do
ϒ·,l =

∑
q<nQ

w·,q Pl (y·,q )

end

ALGORITHM 5: Loss layer

Input: y: tensor of quadrature point coordinates, size nB × nQ × 3;

w : tensor of quadrature point weights, size nB × nQ ; ϒGT:

ground-truth integral values, size nB × nP .

Output: LQuadNet: scalar loss.

Parameters: γ�: scaling factor for quadrature point interior loss; γ�:

scalar factor for the conditioning loss

ϒ := EvalQuadrature(y, w) ; // Algorithm 4

QK := ‖ϒ − ϒGT ‖2
2 ;

Q� := ‖y − clamp(y, min = 0, max = 1)‖2 ;

Q� :=
���log(maxq<nQ

w·,q ) − log(minq<nQ
w·,q )

���
1

;

LQuadNet := QK + γ�Q� + γ�Q� ;

ReLu activations, then a final Remapping layer (Algorithm 3) yield-

ing the final quadrature points and weights for each voxel.

For each randomly generated voxel, we generate the ground

truth data through brute-force integration at resolution 323 of all

Lagrange polynomials of our chosen basis Bd
P

multiplied by the

indicator function of the SDF interior φ < 0 (Algorithm 1). This

ground truth is compared to the integrals computed using the in-

ferred quadrature points (Algorithm 4) as part of our overall train-

ing loss (Algorithm 5), which also incorporates penalties for points

drifting outside the voxel and large weight ratios.

We additionally generate at test set of 210 distinct random vox-

els and associated ground truth integral values, and periodically

evaluate the loss function and those as the network is training; re-

sulting curves are shown in Figure 20.

We choose the training batch size for the AdamW optimizer as

the highest that can fit in our GPU memory; in our case, nB = 218.

Once training is finished, we evaluate the quality of our network

using yet another validation set of random voxels and ground truth

integrals pair — this time, with random values sampled accord-

ing to a uniform distribution. We visualize separately the integra-

tion error and conditioning loss for different order and values of

the conditioning penalty coefficient γ� in Figure 21. Generally, we

want to pick γ� such that it yields a reasonable conditioning but

not at the detriment of integration accuracy; in our examples, we

ACM Trans. Graph., Vol. 44, No. 2, Article 20. Publication date: April 2025.
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Fig. 21. Statistics of integration error and conditioning max w j /min w j

over 1,000 random voxels for networks trained with order d and condition-

ing loss scaling factor γ�.

Quadrature 

Change isosurface  

Fig. 22. Using a linear program to select a sparse subset of quadrature

points can lead to large jumps in quadrature point position for small

changes in isovalues.

use networks trained with γ� = 10−5 for order-2 and γ� = 10−6

for order-4 network.

An advantage of our neural quadrature scheme is that it pro-

duces, by construction, smooth, differentiable output. Sparse sub-

set selection methods via linear programming [Longva et al. 2020]

produce accurate, efficient quadrature schemes but the under con-

strained nature of the subset selection problem, and the lack of

additional regularizers, lead to large jumps in quadrature point lo-

cation as a function of isosurface value (Figure 22), making them

unsuitable for gradient-based optimization.

Figure 23 shows that our neural integration rule is also sig-

nificantly more accurate than the Clip quadrature of the same

degree, and more accurate than the weight-only moment-fitting

approach from Müller et al. [2013] when using the same number of
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Fig. 23. Statistics of integration error over 1,000 random voxels for our

neural quadrature, the weight-only moment-fitting technique from Müller

et al. [2013], and the Clip quadrature at order d .

quadrature points, though the gap reduces with integration order.

Note that the conditioning number of the Clip a quadrature will

be infinite for any partially filled voxel, and that the method from

Müller et al. [2013] may produce null or negative weights, while

our neural approach ensures positivity and reasonable weight

ratios. On an NVIDIA GeForce RTX 3080Ti GPU, computing the

order-4 quadrature points for 218 voxels takes 6ms for the Clip

quadrature; 16ms for our neural quadrature; and more than 1s for

the technique from Müller et al. [2013], which requires evaluating

the target moments using high-resolution integration, here with

212 samples per voxel.

B Four-field Mixed FEM Implementation

B.1 Newton Optimizer

We proceed to solve system (9–12) using projected Newton iter-

ations to compute the step direction (δu,δS,δR,δσ ), with δR ∈

SkewΩ such that Rk+1 = Rk + RkδR. Linearizing the residual

around the current iterate (uk , Sk ,Rk ,σk ) yields the linear forms

ψk
,S := ψ,S

(
Sk ; ·

)
, ck := c

(
uk , Sk ,Rk , ·

)
,

and the bilinear forms

ck
,S := c,S

(
Rk ; ·, ·

)
,

ck
,R (δR,λ) :=

∫
Ω
RkδRSk : λT ,

hk (δS,τ ) :=

∫
Ω
δS : Π

(
∂2Ψ

∂S2

(
Sk

))
: τ + ε

∫
Ω
δS : τ , and

ϵk (δR,ω) := ε

∫
Ω
(δRSk ) : (ωSk ),

where the Π operator removes negative eigenvalues from the Hes-

sian of Ψ. At each Newton iteration, we thus solve

a(uk + δu, v) + c,u(v,σ
k + δσ ) = b(v) ∀v ∈ VΩ,

hk (δS,τ ) + ck
,S (τ ,σ

k + δσ + εCk ) = −ψk
,S (τ ) ∀τ ∈ SymΩ,

ϵ(δR,ω) + ck
,R (ω,σ

k + δσ + εCk ) = 0 ∀ω ∈ SkewΩ,

c,u(δu,λ) + ck
,S (δS,λ) + c

k
,R (δR,λ) = −ck (λ) ∀λ ∈ TΩ,

(13)

with Ck the current constraint residual, Ck := C(uk , Sk ,Rk ).
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We equip our Newton loop with a backtracking line-search;

however, as we are optimizing under equality constraints, iterates

will not remain perfectly feasible and thus we can’t directly use

the incremental potential (1) as our objective function. Instead we

adopt the merit function

ϕ(u,S,R) :=
1

2
a(u, u) − b(u) +ψ (S) +

∫
Ω
EY ‖C(u,R, S)‖,

combined with Armijo’s acceptance rule [Nocedal and Wright

2006].

Rotation regularization. In practice, we find that the robustness

of convergence can be increased by augmenting the penalization

term ε in the bilinear form ϵk with an additional rotation regu-

larization coefficient ϑ > 0. Indeed, we want the skew-symmetric

update δR to remain small enough that it still represents a valid

rotation increment. In our examples we choose ϑ equal to the

residual rotational stress norm, ϑ = ‖RT σ − σTR‖. Note that

this additional regularization term does not change the problem

solution. We do not add the ϑ regularization term when assem-

bling the linear system corresponding to the backward step in the

simulation adjoint computation.

B.2 Discrete Mixed Elements

After choosing discrete basis for our element spaces and perform-

ing numerical integration for all the terms of Equation (13), com-

puting the Newton step direction amounts to solving the linear

system

⎡⎢⎢⎢⎢⎢⎢⎢⎣
A CT

,u

H k Ck,T
,S

E Ck,T
,R

C,u Ck
,S

Ck
,R

⎤⎥⎥⎥⎥⎥⎥⎥⎦
!""#

δ u
δ S
δ R
δ σ

$%%& =
!"""""#

b − Auk −CT
,uσ k

−ψk −Ck,T
,S

(
σ k + εck

)
−Ck,T

,R

(
σ k + εck

)
−ck

$%%%%%&
.

(14)

While the linear system will always have this general shape

whatever our choice of discrete spaces, the latter will impact the

sparsity pattern of the matrices and our options for solving it. As is

standard in finite-element elasticity, we assume that our basis func-

tions (Ni )K over each mesh element K are Lagrange polynomials

defined over a set of nodes (xi )K , meaning that Ni (xj ) = δ i
j . Due to

different continuity requirements, we use distinct basis functions

and nodes for the displacement spaceVΩ and the tensor spacesTΩ ,

SOΩ , SymΩ and SkewΩ , as explained below.

For the displacement spaceVΩ we needH1-compatible elements,

i.e., continuity of the basis functions across neighboring elements.

We restrict our choice to usual Pd Lagrange elements or so-called

“serendipity” Sd elements that do not contain interior nodes. For

P1 and S1 this means usual trilinear shape functions with one node

at each grid vertex; for S2, one node at each vertex and one node

at the middle of each edge; and so on.

For the TΩ , SOΩ , SymΩ and SkewΩ spaces however, we only

need to discretize L2
Ω (our mixed formulation does not require

evaluating the derivatives of the stress or strain fields). Continu-

ity across elements is not required and we get the liberty to locate

the tensor field nodes (xi )K anywhere within K . To get an insight

about how to pick their positions, we look once again at numerical

integration. To integrate a function f on element K we resort to

a discrete quadrature formula with weights (wp )K and evaluation

points (yp )K , that is, ∫
K
f ∼

∑
p

wp f (yp ).

As discussed in Section 3.2, the weights and points are typically

picked such that the formula is exact for polynomials up to a given

order. Now when evaluating the matrix A for a bilinear form de-

fined from two sets of basis functions (Ni )K and (Nj )K , we get

Ai, j :=

∫
K
NiNj f ∼

∑
p

wpNi (yp )Nj (yp )f (yP ),

meaning that if we pick our nodes and quadrature points such that

(xi )K = (xj )K = (yp ), then Ai, j =
∑

p wpδ
j
i f (yp ), i.e., the matrix

A becomes block diagonal. For a discontinuous Lagrange polyno-

mial basis of chosen degree d , we thus pick the nodes (xi )K to cor-

respond to the points of a quadrature formula that maximizes the

order of accuracy for this number of points. In particular for quadri-

lateral or hexahedral elements, this is the usual Gauss–Legendre

points, which yield a quadrature formula that is exact for polyno-

mials up to order 2d . For triangle and tetrahedral elements, we get

quadrature formulas of order 2d for d ≤ 1, while for higher degree

polynomials we rely on numerical optimization.

By using this choice of quadrature points to define the Lagrange

nodes for the discrete subspaces TΩ , SOΩ , SymΩ and SkewΩ , we

thus render the matrices Hk , E,Ck
,S

andCk
,R

block-diagonal, while

keeping a good order of accuracy for the numerical integration.

To finalize the Mixed FEM discretization, it remains to relate

the displacement and tensor spaces. For hexahedral elements, we

use serendipity elements Sd of degree d for the displacement and

tensor products of element-wise discontinuous Lagrange polyno-

mials (with Gauss–Legendre nodes) of the same degree d for ten-

sors. For tetrahedral elements, we use continuous Lagrange poly-

nomials Pd of degree d for the displacements and discontinuous

Lagrange polynomials of degree d − 1 for the tensor spaces. This

means that for hexahedral elements, the quadrature formula de-

fined by the tensor nodes will be enough to integrate accurately all

bilinear forms, while for tetrahedral elements we will need to use

a distinct, higher-order quadrature formula for the displacement

forms.

B.3 Solving the Linear System

While it is possible to directly solve Equation (14) using a saddle-

point solver, in practice we find it more efficient to follow Trusty

et al. [2022] and perform double condensation. Here for the sake

of clarity we focus on the current Newton iteration and drop the

k index for matrices and vectors.

First, thanks to the non-zero Augmented–Lagrangian penaliza-

tion coefficient ε and the semi-definite projection of the elasticity

Hessian,H and E are positive definite (as long as S in non-singular).

As they are also block-diagonal, they are easily invertible, and we

can eliminate the δS and δR unknowns to obtain[
A CT

,u
C,u −Λ

] (
δu

δσ

)
=

(
b −Au − cT

,uσ
λ

)
,
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Fig. 24. Mean displacement of the dumbbell from Figure 6 as a function

of the Newton iteration number (left) and wall time (right) for three FEM

variants, using a homogeneous material (black) or with a 106 stiffer center

region (red).

Λ := C,SH
−1CT

,S +C,RE
−1CT

,R ,

λ := −c +C,SH
−1

(
ψ +CT

,Sσ
)
+C,RE

−1CT
,Rσ .

Finally, Λ is also block diagonal and positive definite; it can thus

also be efficiently inverted, allowing to eliminate δσ and assemble

the Schur complement system[
A +CT

,uΛ−1C,u]
]
δu = b −Au +CT

,uΛ−1λ. (15)

We proceed to solve the symmetric positive semi-definite sys-

tem (15) using a Jacobi-preconditioned Conjugate Gradient solver.

B.4 Performance Considerations

Overall, we find the per-iteration cost of displacement-only and

Mixed FEM to be roughly similar. For most of our examples, the

cost is dominated by the linear system solve, where both methods

share similar unknowns (the per-node displacements) and sparsity

stencil after the double condensation step. The assembly of the lin-

ear system of Mixed FEM requires multiple sparse matrix–matrix

products, but most of those are block–diagonal and cheap to

assemble: thanks to our choice of quadrature formula the tensor

shape functions are only evaluated at their nodes, where they

are Kronecker–delta valued. Conversely, integrating the elasticity

Hessian bilinear form for classic FEM requires general interpola-

tion and couples all displacement nodes over a 23 voxels stencil.

One particularity of our method, in contrast to the Mixed FEM

technique from Trusty et al. [2022], is that we explicitly track the

rotation R in a separate field. As such we do not need to perform a

polar decomposition to extract the symmetric part S of the defor-

mation gradient when evaluating the constraint residual. While as

noted by Smith et al. [2018], this decomposition also gives access

to the principal strain basis, which is required to perform the ana-

lytical positive semi-definite projection of the elasticity Hessian, in

our case the symmetric strain tensor S is already known, so a 3× 3

symmetric eigen-decomposition is sufficient – and only needs to

be done once per Newton iteration rather that for each tentative

state in the linesearch as in the approach of Trusty et al. [2022].

Moreover, we observe in practice that the convergence of our

Mixed FEM solver is not significantly affected by more conserva-

tive semi-definite approximations; the eigenvalues are going to be

shifted by the constraint penalization term ε anyway. In particu-

lar, we find that simply ensuring positivity by scaling the volume

Hessian term from Neo-Hookean elasticity models according to its

minimum eigenvalue, estimated without building the strain basis

as per [Smith et al. 2018, Equation (30)], works well.

Another difference is that Trusty et al. [2022] express the con-

straint by placing the nonlinearity on the other side, i.e., as RT F =
S rather than F = RS . This leads to the derivative form c,u being

dependent on R and thus C,u needing to be re-assembled at each

iteration, which can be costly for high-order polynomials; we only

need to do this assembly once in our approach. Conversely, we

need to reassemble CS and CR at each iteration, but those, being

block-diagonal, are much cheaper to compute.

While the technique described by Trusty et al. [2022] is limited

to linear stresses with piecewise-constant rotations and strains, for

comparison purposes we have implemented a direct generalization

of their method to hexahedral elements using the same choice of

basis functions described in Appendix B.2, and report results in

Figure 24. For the high-resolution homogeneous dumbbell exam-

ple, we see that classic FEM is slightly faster than our Mixed FEM,

both in terms of iteration count and wall time. In turn, on this ex-

ample our Mixed FEM is slighly faster than our adaption of the

variant from Trusty et al. [2022]. Note we have implemented the

three variants in our GPU-based framework, without specific opti-

mizations; results are close enough that different orderings could

be observed with other implementations. For the dumbbell with

highly stiff center however, we clearly see the displacement-only

FEM lagging behind the mixed techniques.

Finally, in contrast with displacement-only and the technique

from Trusty et al. [2022], our approach is not fully parameter–free;

we need at least the penalization parameter ε to construct the

reduced linear system (15). Indeed, developing a penalization-free

double-condensation step for our approach is hindered by the

fact that for a non-isotropic strain S , the matrices C,S and C,R
are not orthogonal, so that Λ−1 cannot be easily constructed from

their pseudo-inverses. A potential solution would be to derive an

analytical eigensystem for Λ, but we reserve this investigation for

future work. While a too strong regularization would slow down

convergence, we did not observe this behavior when using our

suggested heuristic and setting ε equal to the typical stress; we

see in Figure 24 that the convergence curves for our Mixed FEM

approach match the non-penalized techniques. Empirically we

also obverse that the additional regularization terms help stabilize

simulations when the Newton loop is aggressively truncated, as

for the interactive clay example depicted in Figure 9.
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