Spatial Intelligence Lab NVIDIA Research

Lyra: Generative 3D Scene Reconstruction via Video Diffusion Model Self-Distillation

1 NVIDIA
2 University of Toronto
3 Vector Institute
4 Simon Fraser University

* Equal Contribution

arXiv 2025

TL;DR: Feed-forward 3D and 4D scene generation from a single image/video trained with synthetic data generated by a camera-controlled video diffusion model.

Abstract


The ability to generate virtual environments is crucial for applications ranging from gaming to physical AI domains such as robotics, autonomous driving, and industrial AI. Current learning-based 3D reconstruction methods rely on the availability of captured real-world multi-view data, which is not always readily available. Recent advancements in video diffusion models have shown remarkable imagination capabilities, yet their 2D nature limits the applications to simulation where a robot needs to navigate and interact with the environment. In this paper, we propose a self-distillation framework that aims to distill the implicit 3D knowledge in the video diffusion models into an explicit 3D Gaussian Splatting (3DGS) representation, eliminating the need for multi-view training data. Specifically, we augment the typical RGB decoder with a 3DGS decoder, which is supervised by the output of the RGB decoder. In this approach, the 3DGS decoder can be purely trained with synthetic data generated by video diffusion models. At inference time, our model can synthesize 3D scenes from either a text prompt or a single image for real-time rendering. Our framework further extends to dynamic 3D scene generation from a monocular input video. Experimental results show that our framework achieves state-of-the-art performance in static and dynamic 3D scene generation.


Generative Image-to-3D


We first perform text-to-image generation and then image-to-3D Gaussians.


Real Image-to-3D


We use a single Waymo Dataset image for image-to-3D Gaussians.


Generative Video-to-4D


We first perform text-to-video generation and then video-to-4D represented as dynamic 3D Gaussians.


Humanoid Robot Simulation in Generated 3D Scenes


We generate 3D Gaussians from text and then export them into NVIDIA Isaac Sim to simulate humanoid robots in generated environments. This demo was part of the most recent SIGGRAPH 2025 NuRec demo.

Citation



    @article{bahmani2025lyra,
        title={Lyra: Generative 3D Scene Reconstruction via Video Diffusion Model Self-Distillation},
        author={Bahmani, Sherwin and Shen, Tianchang and Ren, Jiawei and Huang, Jiahui and Jiang, Yifeng and 
                Turki, Haithem and Tagliasacchi, Andrea and Lindell, David B. and Gojcic, Zan and
                Fidler, Sanja and Ling, Huan and Gao, Jun and Ren, Xuanchi},
        journal={arXiv preprint arXiv:2509.19296},
        year={2025}
    }