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In the supplementary material, we include additional details and results of
our approach. We provide technical details in Section 1. We show additional
auxiliary results which further ablate and explain our method in Section 2. We
discuss limitations and broader impact in Section 3.

1 Implementation Details

1.1 Sky Modeling Architecture

The primary goal of the sky modeling neural network is to learn a low-dimensional
feature space for the sky dome. The resulting network can also predict HDR
information given input LDR panorama. The model architecture is illustrated in
Figure A.

A 2D CNN encoder takes as input an LDR panorama with a positional
encoding, and predicts the sky vector f̂ in the feature space. As each pixel in the
panorama corresponds to a direction through equi-rectangular projection, the
positional encoding (R3×H×W ) encodes the directional information, where each
pixel contains a unit vector indicating the direction of that pixel location. The
decoder is a 2D UNet [15] decoding the sky vector into an HDR sky panorama.
We carefully design its architecture to facilitate the reconstruction of the HDR
sun peak. The input to the 2D UNet is a 7-channel panorama, including a 4-
channel peak encoding and a 3-channel positional encoding, as shown in Figure A.
Specifically, we embed the peak direction f̂dir information into a 1-channel peak
direction encoding R1×H×W with a spherical Gaussian lobe. For each pixel
location corresponding to the direction u, we compute the peak direction encoding
as:

PeakDirEncoding(u) = e100(u·f̂dir−1). (1)

We encode the peak intensity into a 3-channel panorama by assigning the peak
pixels to the predicted peak intensity f̂intensity,

PeakIntensityEncoding(u) =

{
f̂intensity, if PeakDirEncoding(u) ≥ 0.98

0, Otherwise
(2)

This results in 7-channel input to the 2D UNet by concatenating the 1-channel
peak direction encoding, 3-channel peak intensity encoding, and the 3-channel
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Fig.A: Architecture of our sky modeling network. The encoder takes as input
an additional positional encoding, concatenated with the input LDR panorama. We
compute a panorama image encoding peak and positional information, and feed it into
a 2D UNet [15] decoder. The sky latent code is fused in the latent space of the decoder.
During training, we alternate between end-to-end training and teacher forcing.
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Fig. B: Architecture of our hybrid lighting prediction network. For HDR sky
dome prediction (top), we directly predict the sky feature vector from the ResNet
backbone. For lighting volume prediction (bottom), inspired by [20], we unproject the
2D input image into a 3D volume and process it with a 3D UNet. The global lighting
feature is converted to a feature volume with an MLP and later fused into the 3D UNet.

positional encoding used in the sky encoder. The sky latent code f̂latent is con-
catenated with the latent vector output by the 2D UNet to jointly decode the
HDR sky dome.

The sky encoder contains two separate 2D CNNs with one predicting the peak
information and the other predicting the latent code, where each CNN contains
5 downsampling conv-blocks with intermediate output channel dimensions of:
(64, 128, 256, 256, 256). For the sky decoder, the 2D UNet contains 5 downsampling
conv-blocks and 5 upsampling conv-blocks, connected with residual links [8]. The
intermediate output channel dimensions are (64, 128, 256, 256, 256, 256, 128, 64, 32, 16).
Each conv-block contains two 2D convolution layers followed by batch normaliza-
tion and ReLU activation.



Supplementary Material: Neural Light Field Estimation for Street Scenes 3

1.2 Hybrid Lighting Prediction Architecture

The 2D CNN backbone for the Hybrid Lighting Joint Prediction module (depicted
in Figure B and main paper Figure 2(a)) is ResNet50 [8], with two separate
branches predicting the sky feature vector and the scene lighting feature.

For the sky prediction branch, the sky feature vector (R64) is then passed
into the pre-trained sky decoder, with frozen weights, to decode the HDR sky
dome (R3×64×256).

We adapt the architecture used in [20] for the lighting volume prediction
branch. To encode the visible field-of-view (FoV) information, we unproject the
input image into the initial visible surface volume (R4×64×256×256) [20]. The
scene lighting feature (R128) extracted with the ResNet backbone is passed
into a coordinate MLP [16], and decoded into a global scene feature volume
(R32×16×64×64). Here, the coordinate network [16] contains three residual MLP
blocks and the hidden size is 64. We use 3D UNet [15] to process the visible surface
volume (R4×64×256×256), which contains five downsampling and upsampling
conv-blocks with residual connections [8], and each conv-block contains two 3D
convolution layers. The global scene feature volume (R32×16×64×64) is fused into
the 3D UNet after 2 downsampling conv-blocks. The intermediate output channels
of each conv-block have dimensions of (12, 16, 32, 128, 256, 256, 128, 64, 32, 16).
The final conv-layer produces the lighting volume prediction (R8×64×256×256).

Pre-trained depth estimation. In this work, we rely on the existing state-of-
the-art off-the-shelf monocular depth estimator PackNet [7] to obtain the 2.5D
geometry of the scene. We empirically find that the depth perception is robust
with reasonable performance, and provide analysis on the influence of depth
prediction error below.

The predicted depth is first used in lighting volume prediction, where the scene
pixel values are unprojected into 3D with the depth prediction. More accurate
depth prediction informs more precise geometric information of the scene, and
will improve the performance of lighting estimation, e.g . the quantitative metric
in main paper Table 2.

Then, during differentiable object insertion, we use depth to decide on the
3D placement of the object we want to insert. Since the location of the inserted
object is computed from the depth map, the scale error of the depth prediction
leads to error in the size of the inserted objects. To address this, we use the
projected sparse LiDAR points as ground-truth depth to rescale the estimated
depth by minimizing the L2 error between them.

When rendering shadows of the inserted object, we rely on the pre-computed
depth to compute the 3D location of each scene pixel, which is needed to perform
the ray-mesh queries. Thus, errors in the estimated depth may result in incorrect
shadows. We empirically find that this error is usually negligible as we insert
mostly on flat surfaces.

Prior works that contain submodules with depth prediction [14,20] typically
do not focus on improving depth perception, but simply use synthetic data with
paired ground-truth to train the depth estimation branch, which may easily suffer
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(a) Input image

(d) Object mask (e) Scene shadow map

(b) Composited result

(c) Foreground object

Fig. C: Visualization of object insertion composition. Given an input image (a),
we estimate our hybrid lighting representation. We render the foreground inserted object
with standard deferred rendering [3] and obtain the rendering result (c) and object mask
(d). We render the shadow cast by the inserted object into a ratio map (e) as described
in main paper Section 3.3. The final editing result (b) is produced by compositing (c-e).

from the domain gap. With a focus on lighting estimation and realistic object
insertion, we believe that using the existing mature depth prediction models as a
building block is a plausible design choice and does not decrease our technical
contribution.

1.3 Differentiable Object Insertion

We visualize the object insertion composition process in Figure C. We composite
the input image I, foreground object Iobject, alpha mask M , scene shadow map
Ishadow into the final editing result Iedit by

Iedit =M � Iobject + (1−M)� I � Ishadow. (3)

We include the implementation details below.

Rendering details. For rendering the foreground object, we use the BRDF
used by Unreal Engine 4, which is a simplified version of Disney BRDF [1,12].
Specifically, we use the base color cbase ∈ R3, metallic m ∈ [0, 1], roughness
r ∈ [0, 1] and specular s ∈ [0, 1] to describe material properties of object surfaces.
The BRDF is defined as

f(l,v) =
cdiffuse
π

+
DFG

4(n · l)(n · v)
, (4)
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where

cdiffuse = (1−m) cbase (5)
cspecular = (1−m) 0.08s+mcbase (6)

D =
α2

π((n · h)2(α2 − 1) + 1)2
(7)

G =
(n · l)(n · v)

((n · l)(1− k) + k)((n · v)(1− k) + k)
(8)

F = cspecular + (1− cspecular)2(−5.55473(v·h)−6.98316)(v·h) (9)

α = r2, k =
(r + 1)2

8
,h =

l+ v

||l+ v||
. (10)

The rendered raw pixel values is HDR in linear RGB space. To convert to
LDR sRGB images, we apply gamma correction (γ = 2.2), and do soft clipping
following [20]

ϕ(x) =

{
x if x ≤ τ

1− (1− τ)e−
x−τ
1−τ if x > τ

(11)

where we set τ = 0.95.
During training, to save on the computational cost and GPU memory, we

uniformly sample 5000 rays for object center alone, and render the foreground
object on a 320x180 image canvas. For background shadows, we render a 160x90
resolution shadow map. We sample 50 rays for each scene pixel, and aggregate
the 8-neighbors of each pixel to obtain 450 rays in total. The average rendering
time for foreground objects and background shadows are 0.2s and 2s respectively.
The current efficiency bottleneck in the renderer is the ray-mesh query function,
which is a CPU implementation using trimesh1 with the potential to further
speedups. It consumes 12G GPU memory during training, including both the
forward and the backward pass. During inference, we sample rays for each object
pixel using per-pixel importance sampling following [3] to achieve high quality
rendering, where we sample 1024 rays for the diffuse component and 256 rays for
the specular component.

Ray sampling scheme. A larger number of ray samples may lead to higher
quality rendering, but usually limited by the affordable memory and computation,
especially for a differentiable rendering module in end-to-end learning tasks. To
improve the efficiency of ray sampling especially for the process of shadow
rendering, we select equi-spaced rays for each pixel on the upper-hemisphere
with Fibonacci lattice [6] to render the spatially-varying shadows. As shown in
Figure D, the Fibonacci lattice ray selection strategy better utilizes the rays
compared to naive uniform sampling.

1 trimsh.org

trimsh.org
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(a) Uniform sampling (b) Fibonacci lattice ray selection (Ours)

Fig.D: Visualization of ray directions. Instead of using naive uniform ray sampling
(a), we select equi-spaced rays with Fibonacci lattice (b). This scheme better utilizes
the rays and can ensure the sun light is properly sampled.

Object insertion details. During training, we use the task of object insertion
to provide additional supervision. Specifically, we differentiably insert a virtual
object into the photograph and encourage the photorealism of the final image
editing results. We adopt a relatively conservative scheme to avoid unrealistic
editing results due to asset quality and object placement. For assets, we collect a
set of 283 high quality 3D car models from Turbosquid2. To place the cars into
plausible locations, we use the dense depth map prediction [7], lidar semantic
segmentation and 3D bounding box annotation in nuScenes [2]. The location
candidates for insertion should satisfy the following conditions: (1) Semantics:
belong to the semantic class “driveable surface”, (2) Distance: within the range
of 10 to 40 meters, (3) Collision: candidate location is 1 meter away from the
static background classes (such as “sidewalk”) and 3 meters away from dynamic
classes (such as “vehicles”), and (4) Occlusion: the 3D bounding box corners of
the inserted object do not get occluded by other objects. The car orientation
is randomly set to the same or opposite direction as the ego camera, with a
Gaussian random perturbation in the yaw angle (sigma value set to 3◦).

Object insertion for data augmentation. For downstream tasks, we use
object insertion as a data augmentation approach, to enhance the data with
additional diversity. We use the 283 car CAD models and randomize the car paint
with 60 diverse colors. For diversity, we also include 30 high quality construction
vehicle CAD models that are rarely observed on the street. We remove the
occlusion check mentioned above, and naively handle the occlusion by comparing
the depth map of the scene and inserted object. For orientation, we increase the
Gaussian perturbation with sigma value set to 15◦.

Rendering object insertion with commercial renderer. While we adopt
our proposed custom differentiable object insertion module during training to
provide valuable supervision signal, our rendering is fully physics-based with
standard PBR material definition. Thus, our estimated lighting can also be
made useable in commercial rendering engines such as the Cycles renderer in

2 www.turbosquid.com

www.turbosquid.com
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Fig. E: Rendering object insertion with Blender. Our lighting representation can
be converted to the standard environment map to be compatible with commercial
renderers (thus gaining the benefits of richer material support and speed of commercial
renderers). Given the input image (a) and the 3D location shown in green to insert
object, we first convert our hybrid lighting into a local environment map with volume
rendering (c). We place a virtual plane under the inserted object (d), and render three
images – Object-only (e), plane-only (f) and plane with object occlusion (g). The shadow
map can be computed by the ratio of (f) and (g). The final editing result is shown in
(b).

Blender [5]. This allows us to utilize faster rendering as well as richer material
support available in the commercial renderers.

Commercial renderers usually only support standard environment map light-
ing and do not support spatially-varying lighting such as our hybrid lighting
representation. In addition, the radiance-level API is not available for shadow
rendering. We modify our object insertion pipeline to be compatible with Blender
Cycles renderer in Figure E. Given the 3D location to insert the virtual object,
we first render our lighting representation into a standard HDR environment map
by doing radiance query at the specified 3D location (main paper Eq. 1), and load
into Blender as lighting. To render cast shadows, we insert a virtual plane beneath
the inserted object, and render three images: (1) render only inserted object
Iobject, (2) render only virtual plane Iplane, (3) render the virtual plane but take
into account of the inserted object when doing ray-tracing Ishadowed. The shadow
map can be computed as Ishadow = Ishadowed

Iplane
, followed by the image composition

in Figure C. Note that this maximally preserves scene-level spatially-varying
effects, but still ignores the local geometry of object and virtual plane, and thus
cannot render localized shadow effects as shown in main paper Figure 6.

We show qualitative results from Blender in Figure N. In most cases, with the
Cycles renderer at inference time, we can benefit from more bounces of ray-tracing
and complex materials such as transparency and sub-surface scattering.
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1.4 Training Details

Sky modeling network. We use a multi-task loss to train the sky encoder-
decoder network:

Lskym = λdirLskymdir + λintensityLskymintensity + λhdrLskymhdr (12)

where the weights are all set to 1. During training, we introduce “teacher forcing”
on HDR reconstruction loss Lhdr by alternating the input to sky decoder between
(f̂dir, f̂intensity, f̂latent) and (fdir, fintensity, f̂latent). This is because the prediction of
the peak direction f̂dir and peak intensity f̂intensity are usually inaccurate in the
early stages of training. This also helps to efficiently disentangle the peak and
the background (Figure I), encouraging the network to accurately reconstruct
HDR peak when given groundtruth peak information fdir, fintensity. We use the
Adam optimizer [13] and train for 4000 epochs, with the learning rate set to 1e-3
and decaying by 0.3 every 1000 epochs.

Lighting prediction network. We use a weighted sum of loss terms introduced
in the main paper in Section 3.4, including the sky regression loss Lsky, radiance
and depth reconstruction loss Lrecon, sky separation loss Ltransmit, and adversarial
supervision Ladv. To address the ambiguity of depth rendering, we also follow [20]
and use a regularization loss Lreg to encourage the alpha channel of the volume
to be either 0 or 1. The final loss function

Lhybrid = λskyLsky+λreconLrecon+λregLreg+λtransmitLtransmit+λadvLadv (13)

where we set λsky, λrecon, λtransmit to 1, λreg to 1e-4, and λadv to 3e-3. For the sky
regression loss Lsky, we linearly fade out the L1 loss for latent code in the first
50 epochs. For the adversarial supervision Ladv, the discriminator D is a 5-layer
PatchGAN with spectral norm [11,18]. We use hinge loss for the discriminator

LD =max(0, 1−D(Ireal)) + max(0, 1 +D(Îedit)). (14)

where we use the training set of real world images {Ireal} from nuScenes [2] and
perspective image crops from HoliCity street views [22] as positive examples. We
set the batch size to 1. The full model takes 20G GPU memory during training
(8G for network inference and 12G for rendering). We first pre-train without Ladv
for 50 epochs and then jointly train another 50 epochs. We train with the Adam
optimizer [13] with learning rate of 3e-4, decaying by 0.3 every 30 epochs.

1.5 Experimental Settings

Data processing. We train our model on nuScenes [2], HoliCity [22], and a set
of 724 outdoor HDR panoramas collected from three data sources: HDRIHaven3,

3 polyhaven.com/hdris (License: CC0)

polyhaven.com/hdris
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Fig. F: User Study Interface (AMT): We insert two cars, which are rendered with
different lighting approaches, into the same background image, and ask a human
participant to select the more realistic one. We conduct 3 comparisons, where we first
compare our full model with the baseline lighting methods [20,9], then ablate against
our method without adversarial supervision. We randomize their order in each HIT.

DoschDesign4 and HDRMaps5. For HDRI data, we use 90% and 10% for training
and evaluation. During training, we apply random flipping and random azimuth
shifting as data augmentation. For nuScenes, we use the official split containing
700 scenes for training and 150 scenes for evaluation. For each key frame, we
take the front camera as the input image and use the captured views at a novel
viewpoint (1.5 seconds after the input frame) to supervise lighting. For HoliCity
dataset, we follow [10] and detect the sun location as the centriod of largest
connected region after thresholding with the 98-th percentile. For evaluation,
we manually annotated the sun location for the test set. Considering that the
peak direction is ambiguous for an almost uniform sky dome, we only use a
subset of the HoliCity data with a strong peak to train and evaluate the peak
direction prediction. Specifically, we pass the LDR panoramas to the pre-trained
sky encoder and get the intensity prediction f̃intensity. Loss is only used when the
peak intensity is greater than 10. This results in 1897 panoramas for training
and 183 panoramas for evaluation.

Human perception study details. In this section, we provide additional
details of our user study. We perform the user study on Amazon Mechanical
Turk (AMT) and visualize the interface in Figure F. In each HIT, we provide two
images and ask the user to select the more realistic one. Among the two images,
one is relighted by our approach and the other is either one of the baselines [20,9]

4 doschdesign.com (License: doschdesign.com/information.php?p=2)
5 hdrmaps.com (License: Royalty-Free)

doschdesign.com
doschdesign.com/information.php?p=2
hdrmaps.com
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or the ablation setting (Ours w/o adversarial supervision). To avoid bias in order,
we always randomize which of the methods is shown on the left vs right. We
provide instructions as follows:

An artificial intelligence agent is trying to insert a new car into an image in
a natural way. It wants to make the car look like it was part of the scene after
insertion. It made two trials, presented under trial 1 and trial 2. Please zoom in
to inspect the two images, e.g. look at the shadows cast by the inserted car are
pointing to the correct direction, and that the sun reflects on the car in the right
way, and pick the more realistic trial image.

We synthesize 23 insertion examples. For each example, we ask 15 users to
judge the realism of the inserted object and adopt a majority vote to compute
the final preference. In summary, it results in 3 comparisons × 23 examples ×
15 selections× 3 repeat experiments = 3105 HITs. We provide results in Table
3 in the main paper, demonstrating that users prefer our approach over the
baselines [20,9], and adding adversarial supervision further improves the realism
of object insertion.

2 Additional Results

2.1 Sky modeling

The sky encoder-decoder takes as input an LDR sky panorama, and produces a
low-dimensional vector representation of the sky f̂ and a reconstructed HDR sky
dome. The qualitative results are shown in Figure I. Our model can accurately
reconstruct HDR sky, especially the peaks with extreme intensity values. As
the sky vector f̂ = (f̂intensity, f̂dir, f̂latent) contains explicit peak information, it
enables peak editing by feeding into edited sky vector (f̂ editintensity, f̂

edit
dir , f̂latent). As

the results shown, our sky decoder can efficiently disentangle the HDR peak
from the background, and enables precise peak editing. The controllable property
allows for potential post-editing of inaccurate predictions.

We quantitatively ablate our architecture design and show the results in
Table A. We evaluate by comparing the MSE of reconstructed HDR sky dome
and the ground truth, and the median angular error between the reconstructed
peak and the ground-truth peak direction. For the ablated version, “ours w/o
encoding” removes the positional encoding and peak encoding concatenated to
the Sky Encoder and Sky Decoder, and “ours w/o peak information” removes the
peak direction and peak intensity and only relies on the latent code to reconstruct
HDR sky. The quantitative results validated the effectiveness of our design choices
to achieve the best performance. We also compare under the same experiment
setting with the sky representation used in [9], where the HDR sky is represented
with a latent vector and explicit azimuth of the sun. Our method outperforms
[9], which shows the benefits from the explicit representation and supervision of
peak direction and intensity.
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Method HDR reconstruction MSE (×10−2) ↓ Peak direction median angular error ↓
Latent code w/ explicit azimuth [9] 10.56 5.67◦

Ours 7.49 3.38◦

Ours (w/o encoding) 8.31 4.09◦

Ours (w/o peak information) 11.01 7.93◦

Table A: Quantitative results of sky modeling. We compare the HDR reconstruc-
tion MSE and the median angular error of the reconstructed peak direction.

2.2 Auxiliary Quantitative Evalutation of Lighting Estimation

Prior works [21] that ignore spatially-varying effects may also enforce that a
known rendered virtual scene Oscene (e.g . a sphere) appears consistent when
using the predicted envenvironment map and groundtruth envenvironment map,
i.e., ||Render(Lpred,Osphere) − Render(Lgt,Osphere)||. Compared to the direct
envenvironment map regression loss ||Lpred − Lgt||, this is still regression but
smartly weighted. This can be used as both training loss and evaluation metric,
when prior works simplify the lighting to only one environment map.

However, for spatially-varying lighting estimation which is the focus of our
work, there is no groundtruth lighting provided for the specific 3D location of
the inserted object, and thus we cannot directly utilize this as a training loss.

Despite not a precise metric, we show the quantitative evaluation of this
metric as an auxiliary result. Specifically, we take a cropped perspective image
of groundtruth HDR panorama as input, and insert a diffuse or specular sphere
with the estimated lighting. We report MSE between insertion results generated
with predicted lighting and groundtruth HDR panorama, as shown in Table. B.
Hold-Geoffroy et al . [9] ignores spatially-varying effects and usually cannot recover
the high-frequency details, and thus lead to inferior performance on specular
sphere insertion. Wang et al . [20] cannot reconstruct the HDR component well
and especially suffers when inserting a diffuse sphere. Our method outperforms
baselines with better quantitative performance.

Rendering MSE (×10−3) ↓ Diffuse Sphere Specular Sphere
Hold-Geoffroy et al . [9] 2.30 4.44
Wang et al . [20] 3.36 3.13
Ours 1.79 2.41

Table B: Rendering error of inserted objects. Note that this evaluation ignores
spatially-varying effects.

2.3 Quantitative Ablation of Multi-view Input

While we focus on monocular estimation, our model is extendable to multi-view
input, such as the six surrounding perspective cameras in nuScenes sensor rig [17].
For extremely challenging cases such as predicting precise shadow boundaries,
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multi-view input images can provide more field-of-view information and predict
more accurate lighting, as shown in main paper Figure 6. We additionally provide
quantitative result in Table C, following the experiment settings in main paper
Table 1, 2. Although the six surrounding views still only cover a subset of the
panorama, it can significantly improve upon monocular lighting prediction.

Method HoliCity [22] sun location
Median angular error ↓

nuScenes [2]
PSNR ↑

nuScenes [2]
si-PSNR ↑

Ours 22.43◦ 14.49 15.35
Ours (6 views) 19.91◦ 17.96 18.45

Table C: Quantitative ablation study of multi-view input.

2.4 Analysis of the Adversarial Supervision

The adversarial supervision (main paper Section 3.4, Training Lighting via Object
Insertion) uses a discriminator to encourage the photorealism of the lighting-aware
image editing results, where this signal is backpropagated to the predicted lighting
through the Differentiable Object Insertion module (main paper Section 3.3).

To understand the “photorealism” implicitly perceived by the discriminator
during the training process, we perform test-time optimization on the object
insertion results and visualize the optimization process (main paper Figure 7).
Specifically, we take the network weights of the lighting prediction network Θ
and the discriminator D in the middle of the training process (10-th epoch), and
optimize the lighting prediction network weights Θ to minimize the discriminator
loss Ladv = −D(Îedit). Note that the discriminator and the pre-trained sky
decoder are kept frozen.

We use Adam optimizer [13] with learning rate 1e-4, and show the optimized
results after 5 and 10 iterations in Figure O. We refer to the accompanied video
for animated results.

In high-level, the scene appearance (encoded by image pixel values) is an
interaction between scene geometry, material and lighting, where this process
can be approximated by the rendering equation. With known groundtruth image
distribution implicitly learned with a discriminator, we utilize groundtruth mate-
rial and geometry to supervise lighting prediction, by inserting artist-designed
virtual objects into the scene images. This objective matches the end goal of our
predicted lighting – the photorealism of image editing results. Both quantita-
tive results and qualitative visualization indicate its value as a complementary
supervision signal to existing datasets.

2.5 Improving Downstream Perception with Data Augmentation

Qualitative results of data augmentation. We show the augmented data
using our AR pipeline in Figure J, K, L, M. The 3D assets are provided courtesy
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of TurboSquid and their artists Hum3D, be fast, rabser, FirelightCGStudio,
amaranthus, 3DTree_LLC, 3dferomon and Pipon3D. Note that the 3D bounding
box and orientation of the inserted objects are known and become free labels to
train a 3D object detector.

As shown in Figure J, our data augmentation inserts a diverse set of car
assets into captured images from the nuScenes dataset [2] based on the estimated
lighting. The data generation process is fully automatic. Our editing results can
produce realistic lighting effects, such as cast shadows, which requires accurate
HDR prediction, and “clear coat” reflection on the car body, which requires
high-frequency lighting prediction and HDR highlights.

While many existing image manipulation methods [4,17] have underlying
assumptions about object categories, our method predicts physics-based scene
lighting information, and thus is agnostic to the category of the virtual object
to insert. This enables editing with object classes rarely observed in real world
– a critical use case for data augmentation. Figure K shows insertion results of
construction vehicles, where our method demonstrates consistent performance.

In Figure L, we show results of occlusion handling. We adopt a simple strategy
by comparing the depth of the inserted object (cached in G-buffer) with the
scene depth map, and take the closer pixel to display.

While we primarily focus on daytime outdoor scenes, our method can also
predict reasonable results for night-time scenes, as shown in Figure M. Note that
our model has no HDR data supervision for this domain, due to the scarcity of
ground truth lighting for night time street scenes, and only relies on limited FoV
LDR data and the adversarial supervision to learn.

Quantitative results. We compare against the baseline that uses real-world
data only, and a strong baseline that augments virtual objects with a fixed
dome lighting. In Table D, we can observe that the performance of the detector
improves by 2% comparing to the same detector when trained on real data
alone. Moreover, we can also see that while naively adding objects leads to a
1% improvement, another 1% is a result of having better light estimation. We
believe that further improvements are possible with more sophisticated placement
strategies as well as using more assets (both for each class, and more classes).
Interestingly, notice that the performance of the object detector also improves
in other object categories even though we do not directly augment those. We
attribute this to various factors, including providing the detector with more
challenging negatives for other classes, improving the detector’s confidence in
classes that may get confused with construction vehicles (e.g. bus vs construction
vehicles and trailer vs construction vehicles), as well as the way certain objects
are annotated. For example, we notice that cranes and extremities of construction
vehicles are only included in nuScenes annotations if they interfere with traffic
(see Figure H), therefore what constitutes a 3D bounding box for that object
category is not uniquely defined. We additionally notice that in nuScenes trucks
used to hauling rocks or building materials are considered as truck rather than
construction vehicles. These factors might also explain why we do not see a
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big improvement in the class of construction vehicles even though we directly
augment it.

Method mAP car truck bus trailer const.veh. pedestrian motorcycle bicycle traffic cone barrier
Real Data 0.190 0.356 0.112 0.124 0.011 0.016 0.327 0.127 0.116 0.389 0.317
+ Aug No Light 0.201 0.363 0.149 0.163 0.029 0.021 0.311 0.146 0.120 0.394 0.309
+ Aug Light 0.211 0.369 0.146 0.182 0.036 0.020 0.317 0.161 0.146 0.400 0.332

Table D: Performance of a SoTA 3D object detector on the nuScenes 3D object detection
task. mAP represents the mean for the 10 object categories. We additionally report
the average precision (AP) for all categories. Real Data corresponds to a subset of
the nuScenes training set (10%). Performance of the detector improves by 2% when
comparing to Real Data, and 1% is due to better lighting estimation.

(a) Model Trained on Real Data (b) Model Trained on Real Data + Lighting Aug

Fig.G: Downstream 3D Detection. (a) Results of a 3D object detector trained on
Real Data. (b) Results of the same detector trained on Real Data + Aug Lighting. We
obtain improved detections after training on data generated with our method.

3 Discussion

Failure cases and future works. We show failure cases of our method in
Figure P and describe below.

In our current object insertion pipeline, the inserted object pixels will not
pass exactly the same image capturing process as the background scene pixels,
and thus cannot simulate the sun halo effects and blurry rain-drop effects. In
addition, a better modeling of the camera image signal processor (ISP) pipeline,
such as tone-mapping, could potentially lead to more realistic object insertion.
We believe it is an interesting future work to learn camera sensor parameters,
and handle the diverse weather such as rainy, snowy and foggy effects.

With unknown scene material properties, our current shadow map rendering
(main paper Eq. 4) assumes a Lambertian scene surface. This assumption enables
measuring the residual effects caused by the inserted object with a ratio image.
Although the Lambertian assumption is usually a good approximation and widely
adopted in prior works [19,20], the shadow map quality will decrease when this
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Fig. H: Example of nuScenes annotations of construction vehicles. Extremities
of construction vehicles are only included in nuScenes annotations if they interfere with
traffic. Therefore, 3D bounding boxes for that object category are not uniquely defined.

assumption no longer holds. For example, the wet road surfaces in rainy days
become quite specular and should reflect the appearance of the inserted object,
as shown in the second column of Figure P. It is an interesting direction to jointly
estimate scene material properties to address such complex effects. In the third
column of Figure P, our editing results exhibit occlusion artifacts when the scene
depth map is inaccurate. While predicting more accurate depth is out of the
scope of our paper, we believe an additional geometry refinement adopted in
prior works [4] could be beneficial to address this issue.

Broader impact. Our paper focuses on a neural Augmented Reality (AR)
pipeline for outdoor scenes, which first estimates the lighting information and
insert virtual objects into the input image. We show that our carefully designed
hybrid lighting representation handles both the spatially-varying effects and the
extreme HDR intensity of outdoor scenes. The differentiable object insertion
formulation with an adversarial discriminator serves as a valuable supervision
signal, which for the first time enables lighting supervision by jointly leveraging
ground truth material, geometry and real world images. We show the benefits of
our AR approach on a downstream 3D object detector, indicating its potential
as a valuable data augmentation technique for safety-critical applications such as
autonomous driving.

Our method falls into the category of works that enable image editing. While
we believe that there are many positive implications, however – just like with the
deep fake technology, we can also foresee nefarious use cases, such as rendering
offensive content into photographs. Technology targeting detecting offensive
content could help alleviate such use cases.



16 Z. Wang et al.

Example 1 Example 2
Input LDR & GT HDR

Reconstructed HDR sky

Peak direction editing

Input LDR & GT HDR

Reconstructed HDR sky

Peak direction editing

Input LDR & GT HDR

Reconstructed HDR sky

Peak direction editing

Fig. I: Qualitative results of the sky modeling network. We show two examples
each row, and visualize with two exposure values to show LDR and HDR. Given an
LDR sky panorama as input, our sky modeling network can reconstruct HDR peaks
with extreme intensity values. We also provide peak editing results by changing the
peak direction of the sky feature vector, where we change fdir but fix fintensity, flatent.
As a result, we successfully generate HDR sky map with the same content but different
sun directions. This allows for potential post-editing.
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Fig. J: Qualitative results of automatic data augmentation on nuScenes
dataset [2]. Each image contains one inserted virtual car rendered with our neu-
ral AR approach.
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Fig.K: Construction vehicle insertion results of automatic data augmenta-
tion on nuScenes dataset [2]. Our neural AR approach is agnostic to the category
of 3D assets and can realistically insert virtual objects belonging to rare classes.

Fig. L: Occlusion results of automatic data augmentation on nuScenes [2].We
naively handle occlusion by comparing the scene depth map and object Z buffer. Scene
depth map is predicted with a pre-trained state-of-the-art monocular depth estimation
model PackNet [7].

Fig.M: Night time results of automatic data augmentation on the nuScenes
dataset [2]. Our method can produce reasonable results without any HDR data
supervision for the night time outdoor scenes.
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Fig. N: Qualitative results of object insertion rendered by Blender. Our light-
ing representation can be rendered into location-specific environment map, which is
compatible with commercial renderers. Integrated with powerful rendering engines,
our method can leverage complex materials such as transparency and multi-bounce
ray-tracing.

Initial editing results 5 iterations 10 iterations

Fig.O: Qualitative visualization of the test-time optimization. To understand
the behaviour of the discriminator, we perform test-time optimization for the network
parameters, where the only objective is to minimize the discriminator loss Ladv. On
the first column, we display the 320x180 resolution image editing results, which are
consumed by the discriminator. The second and the third column shows the image
editing results after 5 and 10 iterations. Note how the discriminator corrects the shadow
direction in the first row, and removes obvious erroneous highlight in the second row.
(Best viewed zooming in. We refer to additional animated result in the accompanied
video.)
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(a) Sensor effects (b) Non-Lambertian shadows (c) Occlusion

Fig. P: Qualitative results – failure cases. (a) The virtually inserted object may
not pass exactly the same environment and signal processing pipeline as the real-world
captured scene pixels, e.g . the virtual object cannot reconstruct the halo effects of the
sun and blurry regions caused by rain drops on the camera. (b) We assume a Lambertian
scene surface when rendering the shadows, and thus the quality of editing results may
decrease for wet specular road surfaces on rainy days. (c) Our occlusion handling relies
on depth ordering, and may generate artifacts when the scene depth map prediction is
inaccurate.
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