
– Appendix –

A Implementation Details

Additional Data Processing Details. For each data sample, we crop the point cloud obtained from
§ 4.1 into a local chunk of 102.4m × 102.4m. The point cloud is then voxelized into the fine-level
and coarse-level grids used in § 3.1 with 10243 and 2563 resolutions respectively (with voxel sizes of
0.1m and 0.4m). Our dataset contains 20243 chunks for training and 5380 chunks for evaluation, out
of the 798 training and 202 validation sequences.

Input and Evaluation Details. Waymo dataset provides 5 views for each camera frame, namely
front, front-left, front-right, side-left and side-right. However, not all of the baseline
methods we compared with in § 4.2 can handle the unconventional camera intrinsic in the side-left
and side-right views. We hence only use the first three views (with a resolution of 1920× 1280)
in § 4.2 for both the input and the evaluation metrics. However, in § 4.3 we opt to use all 5 views for
the input to both our method and the baseline due to compatibility and maximized performance.

For the baselines, the original PixelSplat [4] method does not have depth supervision. To make the
comparison fair, we attempt to add a depth supervision loss to it. However, the experimental result
shows that the additional loss hurts the performance as shown in Tab. 4. We thus report the results of
vanilla PixelSplat in the main paper.

T + 5 T + 10

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
PixelSplat [4] 20.11 0.70 0.60 18.77 0.66 0.62
PixelSplat [4] w/ Depth Supervision 19.91 0.58 0.66 18.87 0.56 0.67

Table 4: Comparison of PixelSplat and PixelSplat with Depth Supervision.

Training Details. The diffusion loss in Eq (2) is defined similar to [16, 39] with a v-parametrization
as:

LDiffusion = Et,X,ϵ∼N (0,I)

[∥∥v(√ᾱtX+
√
1− ᾱtϵ, t)− (

√
ᾱtϵ−

√
1− ᾱtX)

∥∥2
2

]
, (7)

where v(·) is the diffusion network, t is the randomly sampled diffusion timestamp, and ᾱt is the
scheduling factor for the diffusion process, whose details are referred to in [16].

We train all of our models using the Adam [23] optimizer with β1 = 0.9 and β1 = 0.999. We
use PyTorch Lightning [10] for building our distributed training framework. For the voxel grid
reconstruction stage, we train both coarse-level and fine-level voxel latent diffusion models with 64×
NVIDIA Tesla A100s for 2 days. For the appearance reconstruction model, we train it using 8×
NVIDIA Tesla A100s for 2 days. Empirically, we use λ = 1.0 for LDepth in Eq (2). Additionally, we
use λ1 = 0.9, λ2 = 1.0, λSSIM = 0.1 and λLPIPS = 0.6 in Eq (6). For image condition, we set the
feature channel C = 32, the number of depth bins D = 64, znear = 0.1 and zfar = 90.0. We linearly
increase the interval of depth bins.

B Network Architecture

Voxel Grid Reconstruction. We follow [39] to implement the Sparse Structure VAE and the
Diffusion UNet. Hyperparameters for training them are listed in Tab. 5 and Tab. 6. We pass the
images to distilled DINO-v2 [33] ViT-B/14. We use four 2D convolutional layers (channel dims:
[768, 256, 256, 32, 32], kernel size: 3, stride: 1) to further process the DINO-v2 output to predict the
image feature and the depth distribution.

Appearance Reconstruction. We process the original input images with three 2D convolutional
layers (channel dims: [3, 16, 32, 32], kernel size: 3, stride: [1, 1, 2]). For the last two convolutional

15



Waymo Waymo
643 → 2563 2563 → 10243

Model Size 14.9M 3.8M
Base Channels 64 32
Channels Multiple 1,2,4 1,2,4
Latent Dim 8 8
Batch Size 32 32
Epochs 50 50
Learning Rate 1e-4

Table 5: Hyperparameters for VAE.

Waymo - 643 Waymo - 2563

Diffusion Steps 1000
Noise Schedule linear
Model Size 728M 83.0M
Base Channels 192 64
Depth 2
Channels Multiple 1,2,4,4 1,2,2,4
Heads 8
Attention Resolution 16 32
Dropout 0.0 0.0
Batch Size 512 256
Iterations 40K 20K
Learning Rate 5e-5

Table 6: Hyperparameters for voxel latent diffusion models.

layers, we set the residual connections. We additionally positionally encode each voxel and then
concatenate the positional encoding [31] of each voxel with the corresponding voxel feature after ray
casting. We then apply a 3D sparse UNet to output per-Gaussian parameters. We use GT voxels in
appearance reconstruction training. Hyperparameters of this 3D sparse UNet are listed Tab. 7.

Model Size Base Channels Channels Multiple Batch Size Epochs Learning Rate

4.3M 32 [1, 2, 4] 32 15 1e-4

Table 7: Hyperparameters for 3D sparse UNet in appearance reconstruction stage.

Sky Panorama for Background. For the sky panorama model, we set Hp = 768,Wp = 1536 in
the training stage and increase Hp = 1024,Wp = 2048 in the inference time. To decode sampled
sky features into the RGB image, we utilize a 2D CNN network reducing the channel from 32 to 16
to 3 with stride 1, keeping the spatial resolution unchanged.

C SCube+ without Per-scene Training

In § 3.3 we introduce a GAN postprocessing module to refine the rendered images, which is finetuned
on each scene. To further improve the efficiency of our method, we hereby present a postprocessing
module that is jointly trained on the full dataset, without the need of per-scene finetuning. Specifically,
we replace the original GAN with a pix2pix-turbo model [34] (which we denote as SCube+*) and
train it with image pairs inferred from our model and the ground truths. The results are shown in
Fig. 9. This improved model not only reduces the voxel block artifacts, but also resolve the ISP
inconsistencies within the image. After enabling this module, the FPS drops from 138 to 20 but can
still be visualized interactively.

16



Reconstruction (T ) Prediction (T + 5) Prediction (T + 10)

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
SCube 25.90 0.77 0.45 19.90 0.72 0.47 18.78 0.70 0.49
SCube+ 28.01 0.81 0.25 22.32 0.74 0.34 21.09 0.72 0.38
SCube+* 22.59 0.68 0.38 20.37 0.66 0.41 19.65 0.65 0.42

Table 8: Quantitative Comparisons on 3D Reconstruction. The metrics are computed both at the
input frame T and future frames. ↑: higher is better, ↓: lower is better.

SCube SCube+* SCube SCube+*SCube SCube+*

Figure 9: SCube+*. Results from the postprocessing network without per-scene optimization. White-
balance inconsistencies from different views (marked in red box) can be fixed.

D Additional Results

In this section, we provide more qualitative results on all datasets. We additionally provide a
supplementary video in the accompanying files to better illustrate our results.

D.1 Geometry Quality

We note that the uncertainty of the scene geometry given our input images is large, and the problem
that the model tackles is indeed non-trivial and sometimes even ill-posed. To demonstrate this, we
compute the percentage of occluded voxels (that are invisible from the input images) w.r.t. all the
ground-truth voxels, and the number is around 80%. To quantitatively evaluate the geometry quality,
we compute an additional metric called ‘voxel Chamfer distance’ that measures the L2-Chamfer
distance between the predicted voxels and ground-truth voxels (that are pixel-aligned), divided by the
voxel size. This metric reflects the geometric accuracy of our prediction by measuring on average
how many voxels is the prediction apart from the ground truth. The results on Waymo Open Dataset
are shown in Tab. 9.

Quantile 0.5
(median) 0.6 0.7 0.8 0.9

Ours 0.26 0.28 0.32 0.37 0.51

Table 9: Geometry Quality Comparison. We show the voxel Chamfer distance comparison between
our two-stage model and a single-stage non-diffusion model.

Tab. 9 indicates that on 90% of the test samples, the predicted voxel grid is only half of a voxel off
from the ground truth. We note that during our data curation process, there could be errors in the
ground-truth voxels (e.g., due to COLMAP failures), accounting for the outliers in the above metric.
In the meantime, we visualize the sample with the worst voxel Chamfer distance in Fig. 10. The
predicted results are decent even though the ground truth is corrupted due to the lack of motion in the
ego car. This demonstrates the robustness of our method.

D.2 Visual Ablation Study

In addition to the quantitative ablation study in Tab. 3, we present a qualitative demonstration in
Fig. 11. For the single-stage model, we test the upper bound of it by feeding the ground-truth 10243

voxel grids because otherwise the fully-dense high-resolution condition will lead to out-of-memory.
The qualitative results match the numbers, showing the importance of using higher-resolution voxel
grids and the two-stage model.

17



Final Rendering

Predicted VoxelsDataset Ground-truth Voxels Reconstructed 3D Gaussians Scene

Figure 10: Result on the data sample with the worst voxel Chamfer distance. We show geometry
reconstruction and the image renderings.

(a) (b) (c) (d)

Figure 11: Visual Ablation Study. (a) SCube+ (b) SCube (c) SCube with a 2563 resolution input
grid (d) Single-stage model. Zoom in for a better view.

18



D.3 Additional Results on Text-2-Scene Generation

We provide additional text-2-scene generation results in Fig. 12 and Fig. 13.

A residential neighborhood features houses with well-maintained gardens, autumn-colored trees, lawns 
with scattered leaves, parked cars, driveways, and clear blue skies.

Reconstruct

Reconstruct

A residential area features multiple houses, some with specific decorations and vehicles parked outside, 
including a white pickup truck and a gray car, along with various greenery and utility elements.

Figure 12: More Text-2-Scene Generation. The generated multi-view images may contain flaws,
while SCube is still able to reconstruct the 3D scenes.

19



A suburban neighborhood features two-story houses with reddish-brown roofs and beige walls, marked 
roads, various parked vehicles, stop signs, and a mixture of gravel, rocks, and trees providing shade on 

a sunny day.

Reconstruct

A suburban neighborhood features a park with green trees, residential houses with red-tiled roofs, 
streets with bike lane signs and white markings, well-maintained lawns, and sidewalks.

Reconstruct

Figure 13: More Text-2-Scene Generation.

20



D.4 Additional Results on Large-scale Scene Reconstruction

We provide additional results on large-scale scene reconstruction from real-world captures in Fig. 14.

Render

N
ov
el

 V
ie

w
s

In
pu
t I

m
ag

es

Reconstruct

Render

Reconstruct

N
ov
el

 V
ie

w
s

In
pu
t I

m
ag

es

Figure 14: More Novel View Synthesis. Our method is able to synthesis extreme novel views.

21



D.5 Additional Results on LiDAR Simulation

We provide additional LiDAR Simulation results in Fig. 15. We also show the result on a long
sequence input in Fig. 16.

Input Front View Simulated LiDAR Sequence

Figure 15: More LiDAR Simulation results.

Figure 16: SCube with Long Sequence Input. Up: reconstructed scene with appearance. Down:
LiDAR simulation result. We chunk the long sequence into clips and apply out method iteratively.

22




