
TexFusion:

Synthesizing 3D Textures with Text-Guided Image Diffusion Models

Tianshi Cao 1,2,3 Karsten Kreis 1 Sanja Fidler1,2,3 Nicholas Sharp1,∗ Kangxue Yin1,∗

1 NVIDIA, 2 University of Toronto, 3 Vector Institute

{tianshic, kkreis, sfidler, nsharp, kangxuey}@nvidia.com

"White humanoid robot, movie poster, main

character of a science fiction movie"
"Crocodile skin handbag" "White Mercedes Benz SUV"

"Oil painting of a bald, middle aged

banker with pointed moustache" "Portrait photo of Abraham Lincoln, full color" "Railroad worker wearing high-vis vest"

fi

Figure 1: Text-conditioned 3D texturing results with TexFusion.

Abstract

We present TexFusion (Texture Diffusion), a new method

to synthesize textures for given 3D geometries, using large-

scale text-guided image diffusion models. In contrast to re-

cent works that leverage 2D text-to-image diffusion models

to distill 3D objects using a slow and fragile optimization

process, TexFusion introduces a new 3D-consistent gener-

ation technique specifically designed for texture synthesis

that employs regular diffusion model sampling on different

2D rendered views. Specifically, we leverage latent diffu-

sion models, apply the diffusion model’s denoiser on a set

of 2D renders of the 3D object, and aggregate the differ-

ent denoising predictions on a shared latent texture map.

Final output RGB textures are produced by optimizing an

intermediate neural color field on the decodings of 2D ren-

ders of the latent texture. We thoroughly validate TexFu-

sion and show that we can efficiently generate diverse, high

quality and globally coherent textures. We achieve state-of-

the-art text-guided texture synthesis performance using only

image diffusion models, while avoiding the pitfalls of previ-

ous distillation-based methods. The text-conditioning offers

detailed control and we also do not rely on any ground truth

3D textures for training. This makes our method versatile

∗ Equal contribution.

and applicable to a broad range of geometry and texture

types. We hope that TexFusion will advance AI-based tex-

turing of 3D assets for applications in virtual reality, game

design, simulation, and more. Videos and more results on

project webpage.

1. Introduction

In the past decade, deep learning-based 3D object gen-

eration has been studied extensively [1, 4, 18, 23, 25, 27,

32, 33, 37, 39, 44, 45, 50, 52, 53, 55, 58, 69, 71, 72, 78, 83,

86, 88, 90, 92–94, 96, 98, 101, 102], due to the demand for

high-quality 3D assets in 3D applications such as VR/AR,

simulation, digital twins, etc. While many prior works on

3D synthesis focus on the geometric components of the as-

sets, textures are studied much less, despite the fact that they

are important components of realistic 3D assets which as-

sign colors and materials to meshes to make the rendering

vivid. Recent advances in text-conditioned image diffusion

models trained on internet-scale data [2, 54, 61, 63, 66] have

unlocked the capability to generate images with stunning vi-

sual detail and practically unlimited diversity. These high-

performance diffusion models have also been used as image

priors to synthesize 3D objects with textures using textual

guidance [40, 48, 59, 85].

In this paper, we aim to perform text-driven high-quality

3D texture synthesis for given meshes, by leveraging the

1

https://research.nvidia.com/labs/toronto-ai/texfusion/

information about the appearance of textures carried by the

image prior of a pre-trained text-to-image diffusion model.

The main workhorse in current text-to-3D methods that

leverage 2D image diffusion models is Score Distillation

Sampling (SDS) [59]. SDS is used to distill, or optimize,

a 3D representation such that its renders are encouraged to

be high-likelihood under the image prior. Methods utilizing

SDS also share two common limitations in that: 1). a

high classifier-free guidance weight [22] is required for the

optimization to converge, resulting in high color saturation

and low generation diversity; 2). a lengthy optimization

process is needed for every sample.

To address the above issues, we present Texture Diffu-

sion, or TexFusion for short. TexFusion is a sampler for

sampling surface textures from image diffusion models.

Specifically, we use latent diffusion models that efficiently

autoencode images into a latent space and generate images

in that space [63, 82]. TexFusion leverages latent diffusion

trajectories in multiple object views, encoded by a shared

latent texture map. Renders of the shared latent texture

map are provided as input to the denoiser of the latent

diffusion model, and the output of every denoising step is

projected back to the shared texture map in a 3D-consistent

manner. To transform the generated latent textures into

RGB textures, we optimize a neural color field on the

outputs of the latent diffusion model’s decoder applied to

different views of the object. We use the publicly available

latent diffusion model Stable-Diffusion with depth con-

ditioning [63] (SD2-depth) as our diffusion backbone.

Compared to methods relying on SDS, TexFusion produces

textures with more natural tone, stronger view consistency,

and is significantly faster to sample (3 minutes vs. 30

minutes reported by previous works).

We qualitatively and quantitatively validate TexFusion

on various texture generation tasks. We find that TexFu-

sion generates high quality, globally coherent and detailed

textures that are well-aligned with the text prompts used

for conditioning (e.g. Fig. 1). Since we leverage powerful

text-to-image diffusion models for texture sampling, we can

generate highly diverse textures and are not limited to single

categories or restricted by explicit 3D textures as training

data, which are limitations of previous works [7, 11, 18, 57,

73]. In summary, our main contribution is a novel method

for 3D texture generation from 2D image diffusion models,

that is view-consistent, avoids over-saturation and achieves

state-of-the-art text-driven texture synthesis performance.

2. Related Work

Classic Computer Graphics Techniques Early work

on texture generation focused on tiling exemplar patterns

across a surface, often with an explicit direction field for lo-

cal orientation [34, 36, 81, 87]. See [89] for a survey. This

research established the value of texture image representa-

tions and the challenges of global coherence, both central

to this work. However, modern learning-based priors have

proven necessary to go beyond simple patterns and synthe-

size plausible shape-specific texture details.

Texture Synthesis with 3D Priors Textures are defined

on the meshed surface of 3D objects, which is an irregu-

lar representation. To enable 2D texture generation on 3D

meshes, AUV-Net [11] learns an aligned UV space for a set

of 3D shapes in a given class, mapping 3D texture synthesis

to a 2D domain. Texturify [73] trains a 3D StyleGAN in

the quad-parameterized surface domain on a set of textured

3D shapes in a given class. Different from AUV-NET or

Texturify, which embed the geometric prior into a UV map

or mesh parameterization, EG3D [7] and GET3D [18] di-

rectly train 3D StyleGANs to generate geometry and texture

jointly, where the textures are implicit texture fields [57].

Other works also represent 3D texture by vertex colors [49],

voxels [9], cube mapping [91], etc. In contrast to TexFu-

sion, these works mostly don’t offer text conditioning, often

work only on single object categories or require textured 3D

shapes for training, which limits their broad applicability.

Diffusion Models Our approach directly builds on dif-

fusion models [5, 12, 95], which have recently emerged as

new state-of-the-art generative models. In particular, they

have demonstrated outstanding performance in image gen-

eration [14–16, 21, 56, 82], outperforming GANs, and led to

breakthroughs in text-to-image synthesis [2, 54, 61, 63, 66].

They have also been successfully used for a variety of

image editing and processing tasks [17, 19, 30, 38, 43, 47,

64, 65, 67, 70, 77]. Moreover 3D object generation has

been addressed with diffusion models, too, for instance

leveraging point clouds [45, 55, 98, 102], meshes [27],

or neural fields [4, 52, 72, 86] as 3D representations.

However, these works focus on geometry generation and

do not specifically tackle 3D texture synthesis.

Distilling 3D Objects from 2D Image Diffusion Models

Recently, large-scale 2D text-to-image diffusion models

have been leveraged to distill individual 3D objects as

neural radiance fields using Score Distillation Sampling

(SDS) [13, 40, 48, 59, 85]. In SDS, the radiance field is

rendered from different directions into 2D images and it is

optimized such that each render has a high probability un-

der the text-to-image diffusion model while conditioning on

a text prompt. DreamFusion [59] pioneered the approach,

Magic3D [40] proposed a coarse-to-fine strategy improving

quality, and Latent-NeRF [48] performs distillation in

latent space leveraging a latent diffusion model [63]. These

approaches do not specifically target texture generation,

which is the focus of this work. More deeply, a crucial

drawback of this line of work is that SDS typically requires

strong guidance [22] to condition the diffusion model,

Input

Output

mesh
geometry

text prompt
“lamborghini urus”

Sequential Interlaced Multiview Sampler

generate cameras
& UV coordinates

project
to texture

x
y

z

r
g

b
-

100 optimization iters

final predicted
latent images

rendered neural
color field

decode
iNGP

net

sample latent
noise texture

image from
latent texture

depth
conditioning

diffusion
model

denoised

Texture Diffusion Sampler Step

Distill with Neural Color Field

latent
gradients

... ...

Figure 2: Overview of TexFusion. TexFusion takes a text prompt and mesh geometry as input and produces a UV parameterized texture

image matching the prompt and mesh. Key to TexFusion is the Sequential Interlaced Multiview Sampler (SIMS) - SIMS performs denoising

diffusion iterations in multiple camera views, yet the trajectories are aggregated through a latent texture map after every denoising step.

SIMS produces a set of 3D consistent latent images (TexFusion uses Stable Diffusion [63] as text-to-image diffusion backbone), which are

decoded and fused into a texture map via optimizing an intermediate neural color field.

which can hurt quality and diversity. Moreover, SDS’s

iterative optimzation process makes synthesis very slow. In

contrast, our approach avoids SDS entirely and leverages

regular diffusion model sampling in a new, 3D-consistent

manner. Earlier works also leverage CLIP [60] for 3D ob-

ject or texture distillation [10, 26, 31, 49], but this performs

usually worse than using diffusion models instead.

Concurrent Work Concurrently with this work, TEX-

Ture [62] proposes a related approach. Like this work,

TEXTure performs multiview denoising on a texture

map representation. However, TEXTure runs an entire

generative denoising process in each camera view in

sequence, conditioning on the previous views and pro-

jecting to the texture map only after full denoising. In

contrast, in TexFusion we propose to interleave texture

aggregation with denoising steps in different camera views,

simultaneously generating the entire output. This insight

significantly reduces view inconsistencies and improves

quality in TexFusion compared to TEXTure, as validated

in Sec. 5. MultiDiffusion [3] concurrently introduces a

method for panorama generation and other controlled im-

age generation tasks, leveraging relatively lower-resolution

image diffusion models. Algorithmically, this approach of

aggregating different denoising predictions from different

image crops is closely related to TexFusion’s aggregation

from different camera views. However, MultiDiffusion

only tackles image synthesis, and is not concerned with any

3D or texture generation at all.

3. Background

Diffusion Models Diffusion models [20, 74, 76] model

a data distribution pdata(x) via iterative denoising, and are

trained with denoising score matching [20, 24, 46, 74,

76, 84]. Given samples x ∼ pdata and ϵ ∼ N (0, I), a

denoiser model ϵθ parameterized with learnable parameters

θ receives diffused inputs xt(ϵ, t,x) and is optimized by

minimizing the denoising score matching objective

Ex∼pdata,t∼pt,ϵ∼N (0,I)

[

∥ϵ− ϵθ(xt; c, t)∥22
]

, (1)

where c is optional conditioning information, such as a text

prompt, and pt is a uniform distribution over the diffusion

time t. The model effectively learns to predict the noise

ϵ that was used to perturb the data (other formulations

are possible [28, 68]). Letting αt define a noise schedule,

parameterized via a diffusion-time t, we construct xt as

xt =
√
αtx +

√
1− αtϵ, ϵ ∼ N (0, I); this particular

formulation corresponds to a variance-preserving sched-

ule [76]. The forward diffusion as well as the reverse

generation process in diffusion models can be described in

a continuous-time framework [76], but in practice a fixed

discretization can be used [20]. The maximum diffusion

time is generally chosen such that the input data is entirely

perturbed into Gaussian random noise and an iterative

generative denoising process can be initialized from such

Gaussian noise to synthesize novel data.

Classifier-free guidance [22] can be used for improved

conditioning. By randomly dropping out the conditioning

c during training, we can learn both a conditional and an

unconditional model at the same time, and their predictions

can be combined to achieve stronger conditioning.

We perform iterative diffusion model sampling via the

Denoising Diffusion Implicit Models (DDIM) scheme [75]:

xi−1 =
√
αi−1

(

xi −
√
1− αiϵ

(ti)
θ (xi)√

αi

)

+
√

1− αi−1 − σ2
ti
· ϵ(ti)θ (xi) + σtiϵti

(2)

with ϵti ∼ N (0, I) and σti is a variance hyperparameter.

We express obtaining xi−1 via DDIM sampling as xi−1 ∼
f
(ti)
θ (xi−1|xi). See Supp. Material for more details.

Latent Diffusion Models (LDMs) and Stable Diffusion

Instead of directly operating on pixels, LDMs [63] utilize

an encoder E and a decoder D for translation between im-

ages ξ and latents x ∈ X of a lower spatial dimension. The

diffusion process is then defined over the distribution of

X . Stable Diffusion is an LDM trained on the LAION-5B

image-text dataset. In addition to text-conditioning, Stable

Diffusion 2.0 permits depth conditioning with a depth map

D (SD2-depth). This allows detailed control of the shape

and configuration of objects in its synthesized images.

Rendering and Geometry Representation In principle,

our method applies to any geometry representation for

which a textured surface can be rendered; in practice, our

experiments use a surface mesh M = (V,F), with ver-

tices V = {vi}, vi ∈ R
3 and triangular faces F = {fi}

where each fi is a triplet of vertices. Textures are defined in

2D image space in an injective UV parameterization of M,

UV : p ∈ M 7→ (u, v) ∈ [0, 1]2. If needed, this param-

eterization can be automatically constructed via tools such

as XATLAS [6, 97]. We encode textures as multi-channel

images discretized at pixels in UV space z ∈ R
(H×W,C),

notationally collapsing the spatial dimension for simplicity.

We denote the rendering function as R(z;M, C) : z 7→
x, x ∈ R

(h×w,C), which takes as input a mesh M, camera

C, and texture z, and produces as output a rendered image.

The inverse of this function R−1(x;M, C) : x 7→ z

projects values from camera image-space onto the UV

texture map. Notationally, we often omit the dependence

on M and C for brevity. In this work, we do not model any

lighting or shading effects, images are formed by directly

projecting textures into screen space (and then decoding,

for latent textures).

4. Texture Sampling with 2D Diffusion Models

Given a mesh geometry M, a text prompt y, and a ge-

ometry (depth) conditioned image diffusion model θ, how

could one sample a complete surface texture? Assuming

access to the rendering R and inverse rendering R−1 func-

tions defined above, perhaps the most naive approach is to

compute a set of {C1, .., CN} camera views that envelopes

the surface, render the depth map dn in each view, sam-

ple images from the image diffusion model with depth con-

ditioning, and then back-project these images to the mesh

surface (e.g. as done in [29]). However, image diffusion

models in each view have no information about the gener-

ated results in other views, thus there is no coherency in the

contents generated in each view. As an alternative, one may

define a canonical order of camera views, and autoregres-

sively condition image sampling in the subsequent views on

previously sampled regions (as done in [48, 62]). However,

for most geometries of interest (i.e. not a plane), a single

camera can not observe the entirety of the geometry. Con-

sequently, images synthesized early in the sequence could

produce errors that are not reconcilable with the geometry

that is observed later in the sequence (see Fig. 3). Thus, it

is desirable for the image sampling distribution p(·|di, y) in

each camera view to be conditioned on that of every other

camera view.

Figure 3: Illustration of irreconcilable mistakes in early views

impacting denoised results in later views (images sampled from

TEXTure). While the highlighted area appears natural in the first

view, it does not match the geometry when viewed from a different

angle, thereby creating poorly denoised results when the second

view is inpainted.

4.1. Sequential Interlaced Multiview Sampler

Leveraging the sequential nature of the denoising pro-

cess, we can interlace the synchronization of content across

views with the denoising steps within each view to achieve

coherency over the entire shape. Suppose that at step i of

the denoising process, we have a set of partially denoised

images {xi,n}Nn=1 = {xi,1...xi,N}. Our goal is to sample

{xi−1,n}Nn=1 = xi−1,1...xi−1,N that is 3D-consistent, i.e.,

two pixels in xi−1,a,xi−1,b that project to the same point

in 3D should have the same value. Taking inspiration from

the autoregressive modeling literature, we sample the joint

distribution via first decomposing it into a product of con-

ditionals, and approximating each term in the product by

using the diffusion model to denoise the renders of a dy-

namically updated latent texture map. Specifically, we first

initialize an initial latent texture map zT ∼ N (0, I), (T de-

marks the first step of the diffusion trajectory). Then, sup-

pose that we have a 3D consistent latent texture map zi, we

decompose the joint distribution as follows (conditioning on

depth and prompt omitted for space):

pθ({xi−1,j}Nj=1|zi) = pθ(xi−1,1|zi)×
N
∏

n=2

pθ(xi−1,n|{xi−1,j}n−1
j=1 , zi)

(3)

We can compute the first term by first rendering zi into

x
′
i,1 = R(zi;C1). Eqn. 2 can now be applied to x

′
i,1 to

draw a latent image at the next time step:

xi−1,1 ∼ f
(ti)
θ (xi−1,1|x′

i,1 = R(zi;C1)). (4)

Later terms in Eq. 3 additionally depend on the result of

previous denoising steps. We again model this dependency

through the latent texture map. For each view starting at

n = 1, we inverse render xi−1,n into texture space to obtain

z
′
i−1,n = R−1(xi−1,n), and update the pixels of zi−1,n−1

that are newly visible in z
′
i−1,n to obtain zi−1,n (See Sec.

4.2.2 for details). Then, in the n+ 1 iteration, since zi−1,n

contain regions at two noise scales (unseen regions are at

noise scale σi, while visited regions are at noise scale σi−1),

we add appropriate 3D consistent noise to the visited re-

gions of zi−1,n to match the noise scale of step i before

rendering it as input to fθ. Letting Mi,n represent the mask

for visited regions and ϵi ∼ N (0, I), we can write the sam-

pling procedure for xi−1,n as:

zi,n = Mi,n ⊙
(√

αi−1

αi

zi−1,n−1 + σiϵi

)

+ (1−Mi,n)⊙ zi

xi−1,n ∼ f
(ti)
θ (xi−1,n|x′

i,n = R(zi,n;Cn))

(5)

By iteratively applying Eqn. 5, we obtain a sequence of 3D

consistent images {xi−1,n}Nn=1 and a texture map zi−1,n

that has been aggregated from these images. We can then

decrement i and repeat this process in the next time step.

We name this approach Sequential Interlaced Multiview

Sampler (SIMS). SIMS communicates the denoising direc-

tion of previous views to the current view and resolves over-

laps between views by the order of aggregation. It amelio-

rates inconsistent predictions while circumventing perfor-

mance degradation due to the averaging of latent predictions

during parallel aggregation. In the single-view case, SIMS

is equivalent to standard DDIM sampling. A complete al-

gorithm for SIMS can be found in the appendix.

4.2. The TexFusion Algorithm

In Sec. 4.1, we have presented a generic algorithm

for sampling 3D consistent multi-view images and texture

maps using 2D diffusion models. We now present a con-

crete algorithm, TexFusion , that uses SIMS to texture 3D

meshes using SD2-depth [63] as the diffusion model. An

illustrative overview of TexFusion can be found in Fig. 2.

As SD2-depth is a latent diffusion model, we apply

SIMS in the latent space: x and z represent latent images

and latent texture maps respectively, and Section 4.2.3 will

describe a final distillation post-process to color space. In

this section, we address several challenges specific to using

LDMs with SIMS, and detail our design choices to tackle

these challenges. We find that a canonical set of cameras

works well for most objects, but cameras are tailored to

specific objects to improve resolution and ameliorate occlu-

sion. We further illustrate a technique for obtaining high-

quality results by operating SIMS in a cascade of increasing

resolutions.

4.2.1 (Inverse) Rendering of Latent Textures

We use NVDIFFRAST [35] to efficiently render textured

meshes via rasterization, as described in Sec. 3. Our im-

plementation sets the rendered image size h = w = 64 to

match Stable Diffusion’s UNet, with latent vectors of di-

mension D = 4. The texture image dimensions H and W
are chosen based on the surface area of the mesh relative to

its diameter (detailed in Sec. 4.2.4).

For each non-background pixel s in a rendered image

x
′
i,·, rasterization gives a corresponding location on the tex-

ture image via the UV map (u, v) = UV (p), and we re-

trieve the value at the nearest texture pixel. This texture

value is latent, and no shading or lighting is applied. In

other settings, texture data is often rendered with bilinear

filtering and mipmaps to improve image quality and reduce

aliasing, but in this setting, we found it essential to avoid

such techniques. We experimentally ablate texturing ap-

proaches in the supplementary. The issue is that early in the

diffusion process, i.e. when ti ≪ 0, zi and x
′
i,· are dom-

inated by noise, but interpolation and mipmapping change

the variance in the pixels xi,·, thereby moving x
′
i,· out of

the training distribution of ϵ
(ti)
θ . Instead, we retrieve only

the nearest texture pixels for diffusion, and resolve alias-

ing and interpolation via a simple distillation post-process

(Sec. 4.2.3). For each background pixel in rendered image

x
′
i,·, we apply a Gaussian noise of standard deviation σi,

such that the background matches the marginal distribution

at diffusion step ti. This ensures that the diffusion model

f
(ti)
θ focuses solely on the foreground pixels of x′

i,·.
Note that in this setting a rendered image is simply a se-

lection of pixels from the texture maps, and thus we can

leverage backpropagation to easily implement the inverse

rendering function R−1. Additionally, forward rasteriza-

tion yields a depth map of the scene, which we use as a

conditioning input to the diffusion model.

Figure 4: Left: Depth map for conditioning SD2-depth, and

quality image computed from screen space derivatives. Right:

Output of SD2 decoder in two views using renders of the latent

texture map as input. Note how the horizontal line across the doors

changes appearance from one view to another.

4.2.2 Aggregating Latent Textures.

Recall from Sec. 4.1, before iterating through cameras

{C1, ..., CN}, we first initialize a latent texture map

zi−1,0 = zi and render latent image x
′
i,1 = R(zi−1,0).

Then, in each step (iterating through cameras), we ob-

tain xi−1,n from f
(ti)
θ (x′

i,n), and inverse render it to get

z
′
i−1,n = R−1(xi−1,n). Finally, we need to aggregate the

partial texture map z
′
i−1,n with zi−1,n−1 to obtain a par-

tially updated texture map zi−1,n. We perform this aggre-

gation step based on a simple heuristic that the value of each

pixel (u, v) in z should be determined by the camera that

has the most “direct and up-close” view to its corresponding

point on the mesh. We measure view quality using image-

space derivatives - the amount of change in UV coordinates

per infinitesimal change in the image coordinate. This quan-

tity is commonly used for determining mipmapping resolu-

tion and anti-aliasing, and it can be efficiently computed by

nvdiffrast when rasterizing zi,n−1. For each pixel location

(p, q) in xi−1,n, we compute the negative Jacobian magni-

tude as −|∂u
∂p

· ∂v
∂q

− ∂u
∂q

· ∂v
∂p

|, and inverse render it to the

texture space, which we denote as Qi,n. Higher values of

Qi,n(u, v) means that camera n has a better view of (u, v)
(see Fig. 4). In addition, we compute Mi,n = R−1(I), such

that Mi,n(u, v) represents the number of pixels in x
′
i,n that

received value from zi(u, v).

While iterating through cameras 1 through N , we main-

tain mask Mi (initialized to 0), which is used to track which

pixels of zi,n have been seen by cameras up to n, and qual-

ity buffer Qi (initialized to − inf), which is used to track the

highest non-zero value of Qi,n at each (u, v). The value at

(u, v) of zi−1,n is determined as:

zi−1,n(u, v) =











z
′

i−1,n(u,v)

Mi,n(u,v)

Mi,n(u, v) > 0 , and

Qi,n(u, v) > Qi(u, v)

zi−1,n−1(u, v) otherwise.

(6)

Mi and Qi are then updated pixelwise as Mi = min(Mi,n+
Mi, 1) and Qi = max (Qi,n, Qi) (min and max are applied

element-wise). We use Eqn. 6 in conjunction with Eqn. 5

in SIMS to perform denoising of images in the sequence of

camera views.

We further note that a side effect of using nearest pixel

filtering during texture sampling in SIMS is aliasing. When

the image space derivative Jacobian is much higher than 1

(low quality), neighboring pixels in screen space will have

gaps when mapped to uv space. This results in incomplete

filling of the latent texture map. Conversely, when the im-

age space derivative Jacobian magnitude is much smaller

than 1 (high quality), multiple screen space pixels (p, q will

map to the same (u, v), creating uniform blocks in x. Simi-

lar to interpolated latents, these blocks are particularly detri-

mental early during the diffusion process, as they cannot

be correctly denoised by ϵθ which is expecting high spatial

variance. Our quality-based aggregation overwrites low-

quality regions in the latent texture when higher quality

views are available. Thus we can set the resolution of the

texture map such that the image space derivatives in each

view do not fall below 1 (i.e. maxQi,n < −1) to prevent

aliasing of the second type, and rely on cameras with better

views to fix aliasing of the first type.

4.2.3 From Latent to RGB Textures

So far, we have described how to use SIMS to produce a set

of 3D consistent latent images and latent texture maps, but

have yet to describe how to translate this into a RGB texture

map that can be rendered for viewing. Towards this, we ex-

perimented with multiple approaches and found performing

multi-view distillation of decoded latent images {x0,n}Nn=1

with a neural color field to be most performant. Specifi-

cally, we use the decoder D of Stable Diffusion to decode

latent multi-view images {x0,n}Nn=1 into RGB multi-view

images {ξn = D(x0,n)}Nn=1. Notably, decoding with D
introduce inconsistencies such that {ξn}Nn=1 is not 3D con-

sistent even when {x0,n}Nn=1 is 3D consistent (see Fig. 4

for example). In stable Diffusion, each latent vector (pixel

of x) needs to carry the information of a 8 × 8 patch of

RGB pixels. Thus, the value of the latent vector encodes

both color values and spatial patterns. We therefore cannot

expect their decoded results to be equivariant to perspec-

tive transformations. To address this problem, we leverage

a neural color field optimized with appearance-based losses

to smooth out inconsistencies. Since we know the ground-

truth camera poses, we can directly obtain the 3D spatial

coordinates {xyzn}Nn=1 of all pixels of {ξn}Nn=1 by project-

ing pixels to the mesh surface. Background pixels that do

not intersect any surface are discarded. Following [40], we

use a multi-resolution hash encoding based on instantNGP

[51] along with a shallow MLP fϕ to parameterize a func-

tion from 3D spatial coordinates to RGB values for each

sample rgb = fϕ(hash(xyz)). We then distill multi-view

images {ξn}Nn=1 into this parametric function via optimiza-

tion. Since our goal is to export ϕ into a texture map, we do

not use any view-dependent parameterization. To reconcile

inconsistencies, we use both a standard L2 loss and a VGG-

based perceptual loss, applied between fϕ and {ξn}Nn=1, to

train ϕ. We use Adam with a learning rate of 0.01, and op-

timization of ϕ converges within 100 iterations. After opti-

mization, we compute the spatial coordinate of the centers

of each pixel in a high-resolution texture map, and query fϕ
to predict RGB values for the texture map.

4.2.4 Geometry Processing, Camera, and Multi-

resolution Refinement

We normalize M such that it fits inside a cube of side length

1, and center it at the origin. Perspective cameras are placed

facing the origin, and their FOV is adjusted to fit the object.

Detailed parameters can be found in the appendix. As the

diffusion model relies on context captured in xi,· to per-

form denoising, camera views that are too small w.r.t the

size of the object often result in content drift - the texture

in distant areas of the mesh can have content that is seman-

tically inconsistent. This can be seen as our version of the

Janus face problem known to Dreamfusion and similar ap-

proaches [40, 59, 85]. Our solution is to perform two rounds

of TexFusion at different resolution scales to obtain high-

resolution textures while retaining semantic consistency.

Specifically, we first run TexFusion using cameras that

cover the entire object, and a low-resolution latent texture

map that is suitable for these cameras. We do not run view

distillation in this first round as we are only interested in the

latent texture map. We denote the denoised latent texture

map from this step as z0,lr. We then use a second set of

cameras with a narrower field of view; these cameras are

also more numerous to still cover the full object. We deter-

mine a new texture map resolution using the square of the

ratio of the tangent of the old FOV over the new FOV - cor-

responding to the relative change in surface area covered by

the camera before and after the change in FOV. We then up-

sample z0,lr with nearest neighbor filtering to this higher

resolution, and stochastically encode it to a partially noised

state (e.g. T = 500 in the diffusion model time schedule).

The second round of TexFusion uses these new cameras,

and initializes SIMS with the partially noised latent texture

map. The multi-view images produced by the second round

of SIMS is used to produce the final output texture map via

neural color field distillation.

5. Experiments

We apply TexFusion on various geometries and text

prompts to evaluate its ability to produce high quality, natu-

ral, and 3D consistent textures. We focus our experimental

comparisons on TEXTure [62], a text-driven texture gen-

eration method that also uses SD2-depth. We choose

TEXTure as the baseline because (1) it represents the cur-

rent state-of-the-art for language-conditioned texture gener-

ation, (2) it uses the same SD2-depth model, which can

be prompted for a wide variety of content, and (3) it is con-

current to our work. In the supplementary materials, we fur-

ther compare TexFusion to SDS-based text-driven texture

distillation [48, 59], leveraging the Stable Diffusion model

and show that TexFusion achieves superior results in terms

of quality and speed.

Dataset We collect 35 meshes of various content, and

write 2-4 prompts for each mesh. In total, we evaluate each

texture synthesis method on 86 mesh-text pairs. More de-

tails of this dataset are in the supplementary materials.

5.1. Qualitative Comparisons

We visualize textures produced by TexFusion on multi-

ple geometries and prompts, and compare to state-of-the-art

baselines in Figure 6. We render each object in 3 surround-

ing views to allow better examination of 3D consistency of

the produced texture. We use Blender’s Cycles renderer

with a studio light-setup. Textures are applied as base color

to a diffuse material. Additional visualizations, including

videos showing 360 pans of all objects presented in the pa-

per, and renders of our results using only texture color, can

be found in the supplementary materials.

In terms of local 3D consistency (consistency in neigh-

borhoods on the surface of the mesh), textures produced by

TexFusion are locally consistent - there are no visible seam

lines or stitching artifacts. In contrast, we often find severe

artifacts when viewing the top and back sides of TEXTure’s

outputs. These artifacts are most noticeable when a clean

color is expected, such as when texturing vehicles. In terms

of global consistency (semantic coherency of the entire tex-

ture, e.g. exactly 2 eyes and 1 nose to a face), TEXTure per-

forms poorly and suffers from problems similar to Dream-

Fusion’s Janus face problem [59]: as the 2D diffusion model

captures context of the object through its own camera view,

it is not aware of the appearance of the opposite side of the

object. This problem is ameliorated in TexFusion due to

frequent communication between views in SIMS.

There are noticeably more baked specular highlights and

shadows in textures generated by TEXTure. These effects

are physically inaccurate as they conflict with the light-

ing effects simulated by the renderer. In contrast, TexFu-

sion produces textures that are smoothly illuminated. We

hypothesize that this is due to interlacing aggregations in

SIMS, which removes view-dependent effects as they arise

in the sampling process. We provide additional visualiza-

tions of TexFusion in Fig. 5 to showcase how text prompting

is effective at controlling the generation of textures, thereby

producing varying appearances using the same mesh.

Runtime TexFusion takes approximately 3 minutes on

a machine with a single GPU to sample one texture. We

are slightly faster than TEXTure (5 min.) [62], since we

only need to optimize a color field once after sampling is

"Blue luggage box" “Black luggage with
a yellow smiley face”

“Comic book
superhero, red

bodysuit”

“White humanoid robot,
villain character of a

science fiction movie”

“Medieval celtic
house, stone bricks,

wooden roof”

“Minecraft house,
bricks, rock, grass,

stone”

“Person in red
sweater, blue jeans”

"Person in white
sweater with a red
logo, yoga pant"

Figure 5: More TexFusion text-conditioned texturing results.

“Black backpack with red accents” “Biker wearing red jacket and black pants” “Portrait of Provost, oil paint”

“minecraft house, bricks, rock, grass, stone” “Beautiful yellow sports car”

Figure 6: Visual comparison of textures generated by TEXTure [62] and TexFusion.

Method FID (↓)
User study (%)

Natural

Color (↑)

More

Detailed (↑)

Less

Artifacts (↑)

Align with

Prompt (↑)

TEXTure 79.47 24.42 65.12 31.40 43.02

TexFusion 59.78 75.58 34.88 68.60 56.98

Table 1: Quantitative and qualitative comparisons between TEX-

Ture and TexFusion . FID is computed w.r.t. a set of images syn-

thesized by SD2-depth.

complete. We are also an order of magnitude faster than

methods that rely on SDS loss which report upwards of 40

minutes [40, 48, 59]. Additional runtime comparisons are

in the appendix.

5.2. Quantitative Comparisons

It is inherently difficult to quantitatively evaluate the

quality of text and geometry-conditioned texture generation

as one must take alignment with the conditioning inputs into

account. We rely on both automated and human evaluation

to gauge the quality of the synthesized textures.

FID Since SD2-depth can produce high-quality images

that match the structure of the conditioning geometry, we

sample it to create a proxy ground truth set. Furthermore,

as both TEXTure and TexFusion use SD2-depth as 2D

prior, samples from it serve as an upper bound to the qual-

ity and diversity of the appearance of textures: We render

the depth map of all meshes in 8 canonical views, and con-

dition SD2-depth on both these depth maps and our text

prompts to generate a ground truth set. We also render tex-

tures generated by both methods in these same 8 views, and

compute the Fréchet Inception Distance (FID) between im-

ages rendered from the textures and the ground truth set.

FID measures the overlap between two sets of images based

on their similarity in a learned feature space. We white out

the background regions in rendered images and ground truth

images to focus the comparisons to the textured object. We

present the results in Tab. 1. FID scores indicate that tex-

tures synthesized by TexFusion are closer in appearance to

the ground truth set than those from TEXTure. The absolute

FID values are likely high due to the relatively small set of

images in each dataset.

User study We conducted a user study to measure the

overall quality of the generated textures. We use all mesh

and text prompts in our dataset, and render each textured

mesh into a video showing the results from a 360◦ rotating

view. We present videos from TEXTure and TexFusion side

by side in random left-right order, to avoid bias. The user

study was conducted on Amazon Mechanical Turk. Each

participant is asked to select the preferred result under four

criteria: natural color (non-saturation), details, cleanliness,

and alignment with the text prompt. To avoid randomness in

the answers, we let 3 participants answer the same question

and determine the choice by max-voting, a question screen-

shot is provided in the supplement. We provide the user

study results in Tab. 1. Although not deemed as detailed as

TEXTure, our results are overall preferred by the users in

terms of better aligning with the provided text prompt, and

"red backpack" “Brown rabbit”
“Portrait of a humanoid
robot, futuristic, science

fiction”

“Medieval celtic
House, stone bricks,

wooden roof”

“camper bag,
camouflage”

“Crocodile skin
handbag”

“Blonde girl with green
eyes, hair in tied a bun,
DSLR portrait photo”

"Leather lounge
chair"

Figure 7: TexFusion + non-stochastic DDIM sampling (σti
=

0). This setting emphasizes textural details, such as the leather

(bottom, left), roof shingles (top, right)

having more natural color, and fewer artifacts/flaws.

5.3. Improving Texture Details

Texfusion can produce more texture details with adjusted

hyperparameters and diffusion backbones. First, we find

that using the non-stochastic version of DDIM (η = 0) adds

more materialistic details to the textures on smooth/low-

poly geometries. We showcase some examples with partic-

ularly large improvements in Fig. 7. Second, we explore the

use of ControlNet[99], which can be easily substituted as

the LDM backbone for our method without any additional

changes. We find that its high-resolution depth conditioning

allows TexFusion to capture fine-grained geometric details

in the input mesh. In Fig. 8, we further compare TexFusion

+ ControlNet in “normal mode” (apply classifier-free guid-

ance to text prompt only) and ControlNet’s “guess mode”

(apply classifier-free guidance to both text and depth) on

meshes with fine geometric details. TexFusion produces

high-contrast textures with the appearance of strong light-

ing under “guess mode”, and realistic textures with smooth

lighting in “normal mode”. These modifications improve

details at a cost of reduced robustness. The non-stochastic

DDIM setting may create artifacts when a smooth and clean

texture is desired. On the other hand, the increase in depth

resolution makes TexFusion+ControlNet susceptible to cap-

turing face boundaries on low-poly meshes. We provide vi-

sualizations of these failure cases in Fig. 9. Nonetheless,

these modifications offer further dimensions of control that

can be explored by practitioners.

6. Conclusion and Limitations

We presented TexFusion, a novel approach to text-driven

texture synthesis for given 3D geometries, using only large-

scale text-guided image diffusion models. TexFusion lever-

TexFusion + ControlNet in "normal" mode TexFusion + ControlNet in "guess" mode

“Portrait of greek-egyptian deity hermanubis, lapis skin and gold clothing”

fi

Figure 8: Left: TexFusion + ControlNet in “normal mode”; right:

TexFusion + ControlNet in “guess mode”.

Deterministic DDIM: Artifacts
in smooth areas

TexFusion+ControlNet: Face boundaries
on low poly meshes

Figure 9: Failure modes exhibited by (left) TexFusion + non-

stochastic DDIM sampling and (right) TexFusion + ControlNet.

ages the latent diffusion model Stable Diffusion and relies

on a new 3D-consistent diffusion model sampling scheme

that runs a 2D denoiser network in different views of the

object and aggregates the predictions in a latent texture map

after each denoising iteration. We find that our method can

efficiently generate diverse, high-quality, and globally co-

herent textures and offers detailed control through text con-

ditioning. Limitations of our approach include a not-yet-

ideal sharpness and that texture generation is not real-time.

Future work can address these issues; for instance, it would

be interesting to leverage the recent literature on faster dif-

fusion model samplers [15, 41, 42, 100].

Concurrent Works Since Submission Since the time of

writing this paper, new works has appeared in the text to

texture space [8, 80]. They improve upon TEXTure in as-

pects such as adding a refinement procedure to automati-

cally fix low quality areas from the initial texturing process

[8], and using images sampled from a text-to-image model

and per-prompt finetuning to provide stronger condition-

ing [80]. TexFusion is methodologically distinct from these

methods which are based-on TEXTure. Improvements pro-

posed in these works could be combined with TexFusion in

future work.

Acknowledgements We would like to thank Jun Gao for

the helpful discussions during the project. Tianshi Cao ac-

knowledges additional income from Vector Scholarships in

Artificial Intelligence, which are not in direct support of this

work.

References

[1] Panos Achlioptas, Olga Diamanti, Ioannis Mitliagkas, and

Leonidas Guibas. Learning representations and generative

models for 3D point clouds. In ICML, 2018. 1
[2] Yogesh Balaji, Seungjun Nah, Xun Huang, Arash Vahdat,

Jiaming Song, Karsten Kreis, Miika Aittala, Timo Aila,

Samuli Laine, Bryan Catanzaro, Tero Karras, and Ming-Yu

Liu. ediff-i: Text-to-image diffusion models with ensem-

ble of expert denoisers. arXiv preprint arXiv:2211.01324,

2022. 1, 2
[3] Omer Bar-Tal, Lior Yariv, Yaron Lipman, and Tali Dekel.

Multidiffusion: Fusing diffusion paths for controlled image

generation. arXiv preprint arXiv:2302.08113, 2023. 3
[4] Miguel Angel Bautista, Pengsheng Guo, Samira Abnar,

Walter Talbott, Alexander Toshev, Zhuoyuan Chen, Lau-

rent Dinh, Shuangfei Zhai, Hanlin Goh, Daniel Ulbricht,

Afshin Dehghan, and Josh Susskind. Gaudi: A neural ar-

chitect for immersive 3d scene generation. arXiv preprint

arXiv:2207.13751, 2022. 1, 2
[5] Hanqun Cao, Cheng Tan, Zhangyang Gao, Guangyong

Chen, Pheng-Ann Heng, and Stan Z. Li. A survey on gen-

erative diffusion model. arXiv preprint arXiv:2209.02646,

2022. 2
[6] Ignacio Castaño. thekla atlas. In

github.com/Thekla/thekla atlas, 2015. 4
[7] Eric R Chan, Connor Z Lin, Matthew A Chan, Koki

Nagano, Boxiao Pan, Shalini De Mello, Orazio Gallo,

Leonidas J Guibas, Jonathan Tremblay, Sameh Khamis,

et al. Efficient geometry-aware 3d generative adversarial

networks. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, pages 16123–

16133, 2022. 2
[8] Dave Zhenyu Chen, Yawar Siddiqui, Hsin-Ying Lee,

Sergey Tulyakov, and Matthias Nießner. Text2tex: Text-

driven texture synthesis via diffusion models. arXiv

preprint arXiv:2303.11396, 2023. 9
[9] Kevin Chen, Christopher B Choy, Manolis Savva, An-

gel X Chang, Thomas Funkhouser, and Silvio Savarese.

Text2shape: Generating shapes from natural language by

learning joint embeddings. In Computer Vision–ACCV

2018: 14th Asian Conference on Computer Vision, Perth,

Australia, December 2–6, 2018, Revised Selected Papers,

Part III 14, pages 100–116. Springer, 2019. 2
[10] Yongwei Chen, Rui Chen, Jiabao Lei, Yabin Zhang, and

Kui Jia. Tango: Text-driven photorealistic and robust 3d

stylization via lighting decomposition. In Advances in Neu-

ral Information Processing Systems (NeurIPS), 2022. 3
[11] Zhiqin Chen, Kangxue Yin, and Sanja Fidler. Auv-net:

Learning aligned uv maps for texture transfer and synthe-

sis. In The Conference on Computer Vision and Pattern

Recognition (CVPR), 2022. 2
[12] Florinel-Alin Croitoru, Vlad Hondru, Radu Tudor Ionescu,

and Mubarak Shah. Diffusion models in vision: A survey.

arXiv preprint arXiv:2209.04747, 2022. 2
[13] Congyue Deng, Chiyu ”Max” Jiang, Charles R. Qi,

Xinchen Yan, Yin Zhou, Leonidas Guibas, and Dragomir

Anguelov. Nerdi: Single-view nerf synthesis with

language-guided diffusion as general image priors. arXiv

preprint arXiv:2212.03267, 2022. 2
[14] Prafulla Dhariwal and Alexander Quinn Nichol. Diffusion

models beat GANs on image synthesis. In Advances in Neu-

ral Information Processing Systems, 2021. 2
[15] Tim Dockhorn, Arash Vahdat, and Karsten Kreis. GENIE:

Higher-Order Denoising Diffusion Solvers. In Advances in

Neural Information Processing Systems, 2022. 9
[16] Tim Dockhorn, Arash Vahdat, and Karsten Kreis. Score-

based generative modeling with critically-damped langevin

diffusion. In International Conference on Learning Repre-

sentations (ICLR), 2022. 2
[17] Rinon Gal, Yuval Alaluf, Yuval Atzmon, Or Patash-

nik, Amit H. Bermano, Gal Chechik, and Daniel Cohen-

Or. An image is worth one word: Personalizing text-to-

image generation using textual inversion. arXiv preprint

arXiv:2208.01618, 2022. 2
[18] Jun Gao, Tianchang Shen, Zian Wang, Wenzheng Chen,

Kangxue Yin, Daiqing Li, Or Litany, Zan Gojcic, and Sanja

Fidler. Get3d: A generative model of high quality 3d tex-

tured shapes learned from images. In Advances In Neural

Information Processing Systems. 1, 2
[19] Amir Hertz, Ron Mokady, Jay Tenenbaum, Kfir Aberman,

Yael Pritch, and Daniel Cohen-Or. Prompt-to-prompt im-

age editing with cross attention control. arXiv preprint

arXiv:2208.01626, 2022. 2
[20] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising dif-

fusion probabilistic models. In Advances in Neural Infor-

mation Processing Systems, 2020. 3
[21] Jonathan Ho, Chitwan Saharia, William Chan, David J

Fleet, Mohammad Norouzi, and Tim Salimans. Cascaded

diffusion models for high fidelity image generation. arXiv

preprint arXiv:2106.15282, 2021. 2
[22] Jonathan Ho and Tim Salimans. Classifier-free diffusion

guidance. In NeurIPS 2021 Workshop on Deep Generative

Models and Downstream Applications, 2021. 2, 3
[23] Wenlong Huang, Brian Lai, Weijian Xu, and Zhuowen Tu.

3d volumetric modeling with introspective neural networks.

In Proceedings of the AAAI Conference on Artificial Intel-

ligence, volume 33(01), pages 8481–8488, 2019. 1
[24] Aapo Hyvärinen. Estimation of non-normalized statistical

models by score matching. Journal of Machine Learning

Research, 6:695–709, 2005. 3
[25] Moritz Ibing, Isaak Lim, and Leif P. Kobbelt. 3d shape

generation with grid-based implicit functions. In 2021

IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR), 2021. 1
[26] Ajay Jain, Ben Mildenhall, Jonathan T. Barron, Pieter

Abbeel, and Ben Poole. Zero-shot text-guided object gen-

eration with dream fields. 2022. 3
[27] Nikolai Kalischek, Torben Peters, Jan D Wegner, and Kon-

rad Schindler. Tetrahedral diffusion models for 3d shape

generation. arXiv preprint arXiv:2211.13220, 2022. 1, 2
[28] Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine.

Elucidating the design space of diffusion-based generative

models. In Advances in Neural Information Processing Sys-

tems, 2022. 3
[29] Carson Katri. Dream textures. In github.com/carson-

katri/dream-textures, 2022. 4
[30] Bahjat Kawar, Michael Elad, Stefano Ermon, and Jiaming

Song. Denoising diffusion restoration models. arXiv

preprint arXiv:2201.11793, 2022. 2
[31] Nasir Mohammad Khalid, Tianhao Xie, Eugene Belilovsky,

and Popa Tiberiu. Clip-mesh: Generating textured meshes

from text using pretrained image-text models. December

2022. 3
[32] Roman Klokov, Edmond Boyer, and Jakob Verbeek. Dis-

crete point flow networks for efficient point cloud genera-

tion. 2020. 1
[33] Wei-Jan Ko, Hui-Yu Huang, Yu-Liang Kuo, Chen-Yi

Chiu, Li-Heng Wang, and Wei-Chen Chiu. Rpg: Learn-

ing recursive point cloud generation. arXiv preprint

arXiv:2105.14322, 2021. 1
[34] Johannes Kopf, Chi-Wing Fu, Daniel Cohen-Or, Oliver

Deussen, Dani Lischinski, and Tien-Tsin Wong. Solid tex-

ture synthesis from 2d exemplars. ACM Trans. Graph.,

26(3):2–es, jul 2007. 2
[35] Samuli Laine, Janne Hellsten, Tero Karras, Yeongho Seol,

Jaakko Lehtinen, and Timo Aila. Modular primitives for

high-performance differentiable rendering. ACM Transac-

tions on Graphics, 39(6), 2020. 5
[36] Sylvain Lefebvre and Hugues Hoppe. Appearance-space

texture synthesis. ACM Trans. Graph., 25(3):541–548, jul

2006. 2
[37] Chun-Liang Li, Manzil Zaheer, Yang Zhang, Barnabas Poc-

zos, and Ruslan Salakhutdinov. Point cloud gan. arXiv

preprint arXiv:1810.05795, 2018. 1
[38] Haoying Li, Yifan Yang, Meng Chang, Shiqi Chen, Huajun

Feng, Zhihai Xu, Qi Li, and Yueting Chen. Srdiff: Single

image super-resolution with diffusion probabilistic models.

Neurocomputing, 479:47–59, 2022. 2
[39] Ruihui Li, Xianzhi Li, Ke-Hei Hui, and Chi-Wing Fu. SP-

GAN:sphere-guided 3d shape generation and manipulation.

ACM Transactions on Graphics (Proc. SIGGRAPH), 40(4),

2021. 1
[40] Chen-Hsuan Lin, Jun Gao, Luming Tang, Towaki

Takikawa, Xiaohui Zeng, Xun Huang, Karsten Kreis, Sanja

Fidler, Ming-Yu Liu, and Tsung-Yi Lin. Magic3d: High-

resolution text-to-3d content creation. arXiv preprint

arXiv:2211.10440, 2022. 1, 2, 6, 7, 8
[41] Luping Liu, Yi Ren, Zhijie Lin, and Zhou Zhao. Pseudo nu-

merical methods for diffusion models on manifolds. In In-

ternational Conference on Learning Representations, 2022.

9
[42] Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongx-

uan Li, and Jun Zhu. Dpm-solver: A fast ode solver for

diffusion probabilistic model sampling in around 10 steps.

arXiv:2206.00927, 2022. 9
[43] Andreas Lugmayr, Martin Danelljan, Andres Romero,

Fisher Yu, Radu Timofte, and Luc Van Gool. Repaint:

Inpainting using denoising diffusion probabilistic models.

arXiv preprint arXiv:2201.09865, 2022. 2
[44] A. Luo, T. Li, W. Zhang, and T. Lee. Surfgen: Adversar-

ial 3d shape synthesis with explicit surface discriminators.

In 2021 IEEE/CVF International Conference on Computer

Vision (ICCV), 2021. 1
[45] Shitong Luo and Wei Hu. Diffusion probabilistic mod-

els for 3d point cloud generation. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR), 2021. 1, 2
[46] Siwei Lyu. Interpretation and generalization of score

matching. In Proceedings of the Twenty-Fifth Conference

on Uncertainty in Artificial Intelligence, UAI ’09, page

359–366, Arlington, Virginia, USA, 2009. AUAI Press. 3
[47] Chenlin Meng, Yang Song, Jiaming Song, Jiajun Wu, Jun-

Yan Zhu, and Stefano Ermon. Sdedit: Image synthesis

and editing with stochastic differential equations. arXiv

preprint arXiv:2108.01073, 2021. 2
[48] Gal Metzer, Elad Richardson, Or Patashnik, Raja Giryes,

and Daniel Cohen-Or. Latent-nerf for shape-guided

generation of 3d shapes and textures. arXiv preprint

arXiv:2211.07600, 2022. 1, 2, 4, 7, 8, 15
[49] Oscar Michel, Roi Bar-On, Richard Liu, Sagie Benaim, and

Rana Hanocka. Text2mesh: Text-driven neural stylization

for meshes. In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, pages 13492–

13502, 2022. 2, 3
[50] Kaichun Mo, Paul Guerrero, Li Yi, Hao Su, Peter Wonka,

Niloy Mitra, and Leonidas J Guibas. Structurenet: Hier-

archical graph networks for 3d shape generation. arXiv

preprint arXiv:1908.00575, 2019. 1
[51] Thomas Müller, Alex Evans, Christoph Schied, and

Alexander Keller. Instant neural graphics primitives with

a multiresolution hash encoding. ACM Transactions on

Graphics (ToG), 41(4):1–15, 2022. 6
[52] Gimin Nam, Mariem Khlifi, Andrew Rodriguez, Alberto

Tono, Linqi Zhou, and Paul Guerrero. 3d-ldm: Neural

implicit 3d shape generation with latent diffusion models.

arXiv preprint arXiv:2212.00842, 2022. 1, 2
[53] Charlie Nash, Yaroslav Ganin, S. M. Ali Eslami, and Pe-

ter W. Battaglia. Polygen: An autoregressive generative

model of 3d meshes. ICML, 2020. 1
[54] Alex Nichol, Prafulla Dhariwal, Aditya Ramesh, Pranav

Shyam, Pamela Mishkin, Bob McGrew, Ilya Sutskever, and

Mark Chen. Glide: Towards photorealistic image genera-

tion and editing with text-guided diffusion models. arXiv

preprint arXiv:2112.10741, 2021. 1, 2
[55] Alex Nichol, Heewoo Jun, Prafulla Dhariwal, Pamela

Mishkin, and Mark Chen. Point-e: A system for generat-

ing 3d point clouds from complex prompts. arXiv preprint

arXiv:2212.08751, 2022. 1, 2
[56] Alexander Quinn Nichol and Prafulla Dhariwal. Improved

denoising diffusion probabilistic models. In International

Conference on Machine Learning, 2021. 2
[57] Michael Oechsle, Lars Mescheder, Michael Niemeyer,

Thilo Strauss, and Andreas Geiger. Texture fields: Learning

texture representations in function space. In Proceedings of

the IEEE/CVF International Conference on Computer Vi-

sion, pages 4531–4540, 2019. 2
[58] Jeong Joon Park, Peter Florence, Julian Straub, Richard

Newcombe, and Steven Lovegrove. Deepsdf: Learning

continuous signed distance functions for shape representa-

tion. In Proceedings of the IEEE/CVF conference on com-

puter vision and pattern recognition, pages 165–174, 2019.

1
[59] Ben Poole, Ajay Jain, Jonathan T. Barron, and Ben Milden-

hall. Dreamfusion: Text-to-3d using 2d diffusion. arXiv,

2022. 1, 2, 7, 8, 14, 15

[60] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya

Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,

Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen

Krueger, and Ilya Sutskever. Learning transferable visual

models from natural language supervision. In Marina Meila

and Tong Zhang, editors, Proceedings of the 38th Interna-

tional Conference on Machine Learning, ICML 2021, 18-

24 July 2021, Virtual Event, volume 139 of Proceedings

of Machine Learning Research, pages 8748–8763. PMLR,

2021. 3
[61] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey

Chu, and Mark Chen. Hierarchical text-conditional

image generation with clip latents. arXiv preprint

arXiv:2204.06125, 2022. 1, 2
[62] Elad Richardson, Gal Metzer, Yuval Alaluf, Raja Giryes,

and Daniel Cohen-Or. Texture: Text-guided texturing of 3d

shapes. arXiv preprint arXiv:2302.01721, 2023. 3, 4, 7, 8,

18
[63] Robin Rombach, Andreas Blattmann, Dominik Lorenz,

Patrick Esser, and Björn Ommer. High-resolution image

synthesis with latent diffusion models. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR), pages 10684–10695, June 2022. 1, 2,

3, 4, 5
[64] Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch,

Michael Rubinstein, and Kfir Aberman. Dreambooth: Fine

tuning text-to-image dissusion models for subject-driven

generation. arXiv preprint arXiv:2208.12242, 2022. 2
[65] Chitwan Saharia, William Chan, Huiwen Chang, Chris A.

Lee, Jonathan Ho, Tim Salimans, David J. Fleet, and Mo-

hammad Norouzi. Palette: Image-to-image diffusion mod-

els. arXiv preprint arXiv:2111.05826, 2021. 2
[66] Chitwan Saharia, William Chan, Saurabh Saxena, Lala

Li, Jay Whang, Emily Denton, Seyed Kamyar Seyed

Ghasemipour, Burcu Karagol Ayan, S. Sara Mahdavi,

Rapha Gontijo Lopes, Tim Salimans, Jonathan Ho, David J

Fleet, and Mohammad Norouzi. Photorealistic text-to-

image diffusion models with deep language understanding.

arXiv preprint arXiv:2205.11487, 2022. 1, 2
[67] Chitwan Saharia, Jonathan Ho, William Chan, Tim Sal-

imans, David J Fleet, and Mohammad Norouzi. Image

super-resolution via iterative refinement. arXiv preprint

arXiv:2104.07636, 2021. 2
[68] Tim Salimans and Jonathan Ho. Progressive distillation for

fast sampling of diffusion models. In International Confer-

ence on Learning Representations (ICLR), 2022. 3
[69] Aditya Sanghi, Hang Chu, Joseph G Lambourne, Ye Wang,

Chin-Yi Cheng, and Marco Fumero. Clip-forge: To-

wards zero-shot text-to-shape generation. arXiv preprint

arXiv:2110.02624, 2021. 1
[70] Hiroshi Sasaki, Chris G. Willcocks, and Toby P. Breckon.

UNIT-DDPM: Unpaired image translation with denois-

ing diffusion probabilistic models. arXiv preprint

arXiv:2104.05358, 2021. 2
[71] Dong Wook Shu, Sung Woo Park, and Junseok Kwon.

3d point cloud generative adversarial network based on

tree structured graph convolutions. In Proceedings of the

IEEE/CVF International Conference on Computer Vision,

pages 3859–3868, 2019. 1

[72] J. Ryan Shue, Eric Ryan Chan, Ryan Po, Zachary

Ankner, Jiajun Wu, and Gordon Wetzstein. 3d neural

field generation using triplane diffusion. arXiv preprint

arXiv:2211.16677, 2022. 1, 2
[73] Yawar Siddiqui, Justus Thies, Fangchang Ma, Qi Shan,

Matthias Nießner, and Angela Dai. Texturify: Generating

textures on 3d shape surfaces. In Shai Avidan, Gabriel J.

Brostow, Moustapha Cissé, Giovanni Maria Farinella, and

Tal Hassner, editors, Computer Vision - ECCV 2022 -

17th European Conference, Tel Aviv, Israel, October 23-

27, 2022, Proceedings, Part III, volume 13663 of Lecture

Notes in Computer Science, pages 72–88. Springer, 2022. 2
[74] Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan,

and Surya Ganguli. Deep unsupervised learning using

nonequilibrium thermodynamics. In International Confer-

ence on Machine Learning, 2015. 3
[75] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denois-

ing diffusion implicit models. In International Conference

on Learning Representations, 2021. 3, 14
[76] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma,

Abhishek Kumar, Stefano Ermon, and Ben Poole. Score-

based generative modeling through stochastic differential

equations. In International Conference on Learning Repre-

sentations, 2021. 3
[77] Xuan Su, Jiaming Song, Chenlin Meng, and Stefano Er-

mon. Dual diffusion implicit bridges for image-to-image

translation. arXiv preprint arXiv:2203.08382, 2022. 2
[78] Yongbin Sun, Yue Wang, Ziwei Liu, Joshua E Siegel, and

Sanjay E Sarma. Pointgrow: Autoregressively learned point

cloud generation with self-attention. In Winter Conference

on Applications of Computer Vision, 2020. 1
[79] Jiaxiang Tang. Stable-dreamfusion: Text-to-3d with

stable-diffusion, 2022. https://github.com/ashawkey/stable-

dreamfusion. 15
[80] Zhibin Tang and Tiantong He. Text-guided high-definition

consistency texture model. ArXiv, abs/2305.05901, 2023. 9
[81] Greg Turk. Texture synthesis on surfaces. SIGGRAPH ’01,

page 347–354, New York, NY, USA, 2001. Association for

Computing Machinery. 2
[82] Arash Vahdat, Karsten Kreis, and Jan Kautz. Score-based

generative modeling in latent space. In Neural Information

Processing Systems (NeurIPS), 2021. 2
[83] Diego Valsesia, Giulia Fracastoro, and Enrico Magli.

Learning localized generative models for 3d point clouds

via graph convolution. In International Conference on

Learning Representations (ICLR) 2019, 2019. 1
[84] Pascal Vincent. A connection between score matching and

denoising autoencoders. Neural Computation, 23(7):1661–

1674, 2011. 3
[85] Haochen Wang, Xiaodan Du, Jiahao Li, Raymond A. Yeh,

and Greg Shakhnarovich. Score jacobian chaining: Lifting

pretrained 2d diffusion models for 3d generation. arXiv

preprint arXiv:2212.00774, 2022. 1, 2, 7
[86] Tengfei Wang, Bo Zhang, Ting Zhang, Shuyang Gu, Jian-

min Bao, Tadas Baltrusaitis, Jingjing Shen, Dong Chen,

Fang Wen, Qifeng Chen, and Baining Guo. Rodin: A gener-

ative model for sculpting 3d digital avatars using diffusion.

arXiv preprint arXiv:2212.06135, 2022. 1, 2
[87] Li-Yi Wei and Marc Levoy. Texture synthesis over arbi-

trary manifold surfaces. In Proceedings of the 28th Annual

Conference on Computer Graphics and Interactive Tech-

niques, SIGGRAPH ’01, page 355–360, New York, NY,

USA, 2001. Association for Computing Machinery. 2
[88] Cheng Wen, Baosheng Yu, and Dacheng Tao. Learning pro-

gressive point embeddings for 3d point cloud generation. In

Proceedings of the IEEE/CVF Conference on Computer Vi-

sion and Pattern Recognition, pages 10266–10275, 2021.

1
[89] Li-Yi Wie, Sylvain Lefebvre, Vivek Kwatra, and Greg Turk.

State of the Art in Example-based Texture Synthesis. In M.

Pauly and G. Greiner, editors, Eurographics 2009 - State of

the Art Reports. The Eurographics Association, 2009. 2
[90] Jiajun Wu, Chengkai Zhang, Tianfan Xue, Bill Freeman,

and Josh Tenenbaum. Learning a probabilistic latent space

of object shapes via 3d generative-adversarial modeling.

Advances in neural information processing systems, 29,

2016. 1
[91] Fanbo Xiang, Zexiang Xu, Milos Hasan, Yannick Hold-

Geoffroy, Kalyan Sunkavalli, and Hao Su. Neutex: Neural

texture mapping for volumetric neural rendering. In Pro-

ceedings of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition, pages 7119–7128, 2021. 2
[92] Jianwen Xie, Yifei Xu, Zilong Zheng, Ruiqi Gao, Wen-

guan Wang, Zhu Song-Chun, and Ying Nian Wu. Gener-

ative pointnet: Deep energy-based learning on unordered

point sets for 3d generation, reconstruction and classifica-

tion. In The IEEE Conference on Computer Vision and Pat-

tern Recognition (CVPR), 2021. 1
[93] Jianwen Xie, Zilong Zheng, Ruiqi Gao, Wenguan Wang,

Zhu Song-Chun, and Ying Nian Wu. Learning descriptor

networks for 3d shape synthesis and analysis. In The IEEE

Conference on Computer Vision and Pattern Recognition

(CVPR), 2018.
[94] Guandao Yang, Xun Huang, Zekun Hao, Ming-Yu Liu,

Serge Belongie, and Bharath Hariharan. PointFlow: 3D

point cloud generation with continuous normalizing flows.

2019. 1
[95] Ling Yang, Zhilong Zhang, and Shenda Hong. Diffusion

models: A comprehensive survey of methods and applica-

tions. arXiv preprint arXiv:2209.00796, 2022. 2
[96] Kangxue Yin, Jun Gao, Maria Shugrina, Sameh Khamis,

and Sanja Fidler. 3dstylenet: Creating 3d shapes with ge-

ometric and texture style variations. In Proceedings of In-

ternational Conference on Computer Vision (ICCV), 2021.

1
[97] Jonathan Young. xatlas. In github.com/jpcy/xatlas, 2016. 4
[98] Xiaohui Zeng, Arash Vahdat, Francis Williams, Zan Go-

jcic, Or Litany, Sanja Fidler, and Karsten Kreis. Lion:

Latent point diffusion models for 3d shape generation.

In Advances in Neural Information Processing Systems

(NeurIPS), 2022. 1, 2
[99] Lvmin Zhang and Maneesh Agrawala. Adding conditional

control to text-to-image diffusion models, 2023. 9
[100] Qinsheng Zhang and Yongxin Chen. Fast sampling of diffu-

sion models with exponential integrator. arXiv:2204.13902,

2022. 9
[101] Yuxuan Zhang, Wenzheng Chen, Huan Ling, Jun Gao, Yi-

nan Zhang, Antonio Torralba, and Sanja Fidler. Image

{gan}s meet differentiable rendering for inverse graphics

and interpretable 3d neural rendering. In International Con-

ference on Learning Representations, 2021. 1
[102] Linqi Zhou, Yilun Du, and Jiajun Wu. 3d shape generation

and completion through point-voxel diffusion. In Proceed-

ings of the IEEE/CVF International Conference on Com-

puter Vision (ICCV), 2021. 1, 2

7. Algorithm Details

Algorithm We present a full itinerary for the Sequential

Interlaced Multiview Sampler in Algorithm 1 and a simpli-

fied block diagram in Fig.10. The symbol I denotes a ma-

trix/tensor of ones of the appropriate size. We elaborate on

our choices for the hyperparameters in the following para-

graphs. For all other hyperparameters not explicitly speci-

fied below (such as the values of αi), we follow the default

settings provided in Stable Diffusion 2’s public repository.

Adapting DDIM schedule We use DDIM [75] as the

basis for configuring our sampler. We use the accel-

erated denoising process with 50 time steps, uniformly

spaced. We truncate the time-step range to (300, 1000)
to prevent the network from focusing too much on ar-

tifacts introduced when rendering the latent texture map

into latent images. At the last denoising step i = 1, we

perform sequential aggregation at the setting of ti−1 =
300, but additionally compute x0 predictions x̂0,n =
xi,n−

√
1−αiϵ

ti
θ
(xi,n)√

αi
as final outputs. Following DDIM, we

parameterize the noise scale of the DDIM process as σi =
η
√

(1− αi−1)/(1− αi)
√

1− αi/αi−1. To maximize the

consistency of updates produced in each viewpoint, we fur-

ther introduce a temperature parameter 0 ≤ τ ≤ 1 which

scales the noise term. Choosing τ < 1 reduces the vari-

ance of the posterior p(xi−1|xi) without effecting its ex-

pectation. In the results presented in the manuscript, we use

η = 1, τ = 0.5 in the coarse stage, and η = 1, τ = 0 in the

high-resolution refinement stage, which we find to be the

most robust configuration.

Classifier-free guidance We use classifier-free guidance

to control the alignment of texture to both depth and text.

Specifically, we apply classifier-free guidance to both depth

and text according to this formula: ϵ′tiθ (xi,n; dn, text) =
(1 − wjoint)ϵ

ti
θ (xi,n) + wjointϵ

ti
θ (xi,n; dn, text). We set

wjoint = 5, and use ϵ′tiθ (xi,n) in place of ϵtiθ (xi,n) in all

experiments. We note that this formula is different from

that used in SD2/w-depth, which only applies classifier-free

guidance to the text prompt by including depth conditioning

in both terms on the RHS of the equation.

For human heads and bodies, we find that stronger

text guidance is helpful for stylization. Thus, we add a

text-condition only term as follows: ϵ′tiθ (xi,n; dn, text) =
(1−wjoint −wtext)ϵ

ti
θ (xi,n) +wjointϵ

ti
θ (xi,n; dn, text) +

wtextϵ
ti
θ (xi,n; text). We set wtext = 3 for these prompts.

Additional geometry processing We align objects with

meaningful “front” to face the +x direction, and ensure

all objects are placed with +y as “up”. Following [59],

https://github.com/Stability-AI/stablediffusion

Reverse Diffusion
Step

xi-1,n = f(xi,n, i)

For each Camera
n = 1 ... N

xi,n = Render(zi,n-1)

z'i-1,n= Inverse Render(xi-1,n)
zi-1,n = Update(zi,n,zi-1,n) Increment n

Return last latent tex-
map to outer loop

zi-1=zi-1,N

For each timestep
i = T ... 1

Initialize Cameras
and buffers

Decrement i

Return last set of latent
images {xo,n}n=1...N

Initialize zT,1

Sequential Interlaced Multiview Sampler

Figure 10: Simplified block diagram of SIMS.

we augment prompts with “{prompt}, front/side/rear/top-

view” based on the location of the camera to the nearest

exact direction; “top-view” is used when the elevation of

the camera is above 60◦. Perspective cameras are placed

facing the origin at a fixed distance of 1.5 from the origin,

and adjust the FOV to fit the object within the image. For

most objects, we find that a set of nine cameras - all looking

at the origin, eight spaced uniformly surrounding the object

(azimuth from 0◦ to 315◦ spaced 45◦ apart, at an elevation

of 30◦), and one camera looking down the −y direction -

to work reasonable well for objects with reasonable aspect

ratios and few occlusions.

In the first round of SIMS sampling, we apply 10◦ ran-

dom jitters to the elevation and azimuth of each camera, and

re-sample each camera for a total of 18 cameras to ensure

surface coverage. In the second round, we do not apply jit-

tering and use the fixed set of nine cameras. For human

characters, the default set of nine cameras does not ade-

quately cover the entire surface due to occlusions. We in-

stead use 3 sets of 8 cameras: each set is placed radially

looking at the y axis (azimuth from 0◦ to 315◦ spaced 45◦

apart), and a different offset is applied to the cameras’ y
position depending on the set (0.3, 0.0,−0.3 respectively).

https://github.com/Stability-AI/stablediffusion

This forms a cylinder of cameras looking at the y axis, and

adequately covers all surfaces on the human character ge-

ometry.

8. Additional Results

8.1. Qualitative Results

We provide in the supplementary video multi-view ren-

derings of all examples we show in the main paper. Fur-

ther, in this document, we provide additional results of our

method in Fig. 13 and Fig. 14, and comparison to two addi-

tional baselines in Fig. 11 as described in Sec. 8.2.

8.2. Additional Baselines

We include two additional methods for qualitative com-

parison. First is stable-dreamfusion [79], a community-

implemented version of Dreamfusion [59] that replaces

the proprietary Imagen diffusion model with Stable Dif-

fusion 1.4. Although stable-dreamfusion is a text-to-3D

method, not text-to-texture, we include it in our experi-

ments because it is a recently released method and it il-

lustrates the difficulty of jointly synthesizing geometry and

texture. We use the default hyperparameters provided in this

repository, which performs SDS optimization for 10,000
iterations, with a classifier free guidance weight of 100.

The second baseline method is the latent-painter variant of

latent-nerf [48], for synthesizing textures on an input mesh.

Latent-painter performs the same task as us, namely text

and geometry-conditioned texture generation, but it does

so using the SDS optimization, akin to [59]. We include

this method as it was recently the state-of-the-art in texture

synthesis with 2D image priors. We use the default hyper-

parameters provided with this repository, which performs

5, 000 iterations of SDS optimization, also with a classifier

free guidance weight of 100.

Results from these two baselines, along with results

from TexFusion on the same prompts, can be found in

Fig. 11. Stable Dreamfusion failed to converge at all for

most prompts in our dataset (e.g. Fig. 12), so we selected

prompts where Stable DreamFusion did produce reason-

able geometry for visualization. This outcome highlights

the fragility of optimizing 3D geometry and texture jointly.

We find that Latent-Painter often produced over-saturated

colors in the texture due to the use of the SDS optimization

with high guidance weights. Furthermore, we find signifi-

cant artifacts in Latent-Painter results that are reminiscent

of incorrect UV mapping. This artifact is in fact due to

Latent-Painter applying Stable Diffusion’s decoder to the

latent texture map directly in texture space, thereby creat-

ing artifacts at all boundaries of UV islands. Our method

does not suffer from the same issue because we apply the

https://github.com/ashawkey/stable-dreamfusion

https://github.com/eladrich/latent-nerf

Stable-DreamFusion Latent-Painter TexFusion

“yellow plastic stool with white seat”

“cartoon dog”

“moai stone statue with green moss on top”

“white bunny”

“railroad worker wearing high-vis vest”

“leather lounge chair”

Figure 11: Visual comparison of texture generated by Sta-

ble DreamFusion (left) [79], Latent-Painter (middle) [48],

and our TexFusion (right). Prompts are cherry picked for

those where Stable DreamFusion successfully converged to

a reasonable geometry.

decoder to multiview latent images, making our method ag-

nostic to the underlying UV parameterization.

https://github.com/ashawkey/stable-dreamfusion
https://github.com/eladrich/latent-nerf

Algorithm 1 Sequential Interlaced Multiview Sampler

Input: mesh M, cameras {C1, . . . , CN}
Parameters: Denoising time schedule {ti}0i=T , DDIM noise schedule {σi}0i=T , DDIM noise scale η, temperature τ , func-

tion for camera jittering maybe apply jitter
zT ∼ N (0, I)
for i ∈ {T . . . 1} do

Init mask Mi = 0 of shape (N,H,W)
Init quality buffer Qi = −∞ of shape (N,H,W)
zi−1,0 = zi

Apply camera jitter {Ci,1, . . . , Ci,N} = maybe apply jitter({C1, . . . , CN})
Sample forward noise ϵi
for n ∈ {1 . . . N} do

Compute forward diffusion term zi,n = Mi ⊙
(

√

αi−1

αi
zi−1,n−1 +

√

1− αt

αt−1

ϵi

)

+ (1−Mi)⊙ zi

Render latent image and compute screen space derivatives x′
i,n, (

∂u
∂p

, ∂v
∂p

, ∂u
∂q

, ∂v
∂q

) = R(zi,n;Ci,n)

Ji,n =
∣

∣

∣

∂u
∂p

· ∂v
∂q

− ∂u
∂q

· ∂v
∂p

∣

∣

∣

Sample εi,n ∼ N (0, I)

Perform denoising: xi−1,n =
√
αi−1

(

xi,n−
√
1−αiϵ

ti
θ
(xi,n)√

αi

)

+
√

1− αi−1 − σ2
i · ϵtiθ (xi,n) + τ · σi · εi,n

if i = 1 then

x0 prediction: x̂0,n =
xi,n−

√
1−αiϵ

ti
θ
(xi,n)√

αi

end if

z
′
i−1,n = R−1(xi−1,n;Ci,n)

Qi,n = R−1(−Ji−1,n;Ci,n)
Mi,n = R−1(I(xi−1,n);Ci,n)
Determine update area U = Mi,n(u, v) > 0, andQi,n > Qi

Update pixels zi−1,n = U ⊙ z
′
i−1,n + (1− U)⊙ zi−1,n

Update mask and quality buffer Mi = max (Mi,Mi,n), Qi = max (Qi, Qi,n) (max is applied element-wise)

end for

zi−1 = zi−1,N

end for

return {x̂0,n}Nn=1

Figure 12: Example result of Stable-DreamFusion where

the geometry did not converge properly. Prompt is “ambu-

lance, white paint with red accents”.

8.3. Runtime Comparison

We compare the runtime of TexFusion to baselines run-

ning on a workstation with a single NVIDIA RTX A6000

GPU in Tab. 2. We separately measure the runtime of our

method under two different camera configurations (see Ap-

Figure 13: Top: TexFusion + ControlNet in “guess mode”; bot-

tom: TexFusion + ControlNet in “normal mode”.

pendix Section 7 for details of the camera configuration).

We find TexFusion to be an order of magnitude faster than

methods that rely on optimizing a neural representation with

SDS (17.7x w.r.t stable-dreamfusion and 10x w.r.t. Latent

“black and white dragon in chinese ink art style” “cartoon dragon, red and green”

“blonde girl with green eyes, hair in a tied “Portrait of a humanoid robot, futuristic,
bun, anime illustration, portrait” science fiction”

“brown mountain goat” “white bunny”

“portrait of greek-egyptian deity hermanubis,
“sandstone statue of hermanubis”lapis skin and gold clothing”

“white fox” “cartoon fox”

“nunn in a black dress” “nunn in a white dress, black headscarf”

“minecraft house, bricks, rock, grass, stone” “colonial style house, white walls, blue ceiling”

Figure 14: Gallery of meshes textured by TexFusion .

Method Runtime

stable-dreamfusion 39 min

Latent Painter 22 min

TEXTure (reported in [62]) 5 min

TEXTure (ran on our setup) 2.9 min

TexFusion (24 cameras) 6.2 min

TexFusion (9 cameras) 2.2 min

Table 2: Runtime comparison: wall clock time elapsed to

synthesize one sample

Figure 15: Screenshot of example user study screen

Painter). Our runtime is similar to the concurrent work of

TEXTure (2.9 min), whose runtime falls between the 9 cam-

era configuration of our method (2.2 min) and 24 camera

configuration of our method (6.2 min). Of the 2.2 min du-

ration, 76 seconds are spent on the first round of SIMS, 22

s on the second round, and 34 s on optimizing the neural

color field.

9. Experiment details

9.1. User study details

We conduct a user study using Amazon Mechanical Turk

https://www.mturk.com/. We ask each survey par-

ticipant to look at one pair of texturing results generated

by TEXTure and TexFusion according to the same prompt,

displayed side-by-side in random left-right order, and an-

swer four questions. For each prompt, we show the sur-

vey to 3 participants. We then aggregate the results over

all responses. A screenshot of one such survey is shown in

Fig. 15.

9.2. Dataset description

We collect 35 meshes from various sources. A com-

plete list can be found in Tab. 3 and Tab. 4. Objects from

shapenet are selected from ShapeNetCore.v1, obtained un-

der the ShapeNet license. One Human model is obtained

from Text2Mesh repository. Objects “house” and “casa”

are obtained for free from Turbosquid with permissive li-

censing. “bunny” and “dragon” are obtained from Stanford

3D scans. “Hermanaubis” and “Provost” are obtained from

3D scans, which are shared freely without copyright restric-

tions. All other objects are obtained under appropriate com-

mercial licenses.

https://shapenet.org/terms

https://github.com/threedle/text2mesh/tree/main/data/source meshes

http://graphics.stanford.edu/data/3Dscanrep/

https://threedscans.com/

https://www.mturk.com/
https://shapenet.org/terms
https://github.com/threedle/text2mesh/tree/main/data/source_meshes
http://graphics.stanford.edu/data/3Dscanrep/
http://graphics.stanford.edu/data/3Dscanrep/
https://threedscans.com/

Object Source Description Prompts

1a64bf1e658652ddb11647ffa4306609 shapenet SUV

“lamborghini urus”

“pink porsche cayenne”

“white mercedes benz SUV”

“green ambulance with red cross”

1a7b9697be903334b99755e16c4a9d21 shapenet coupe

“silver porsche 911”

“blue bmw m5 with white stripes”

“red ferrari with orange headlights”

“beautiful yellow sports car”

1a48d03a977a6f0aeda0253452893d75 shapenet pickup truck

“black pickup truck”

“old toyota pickup truck”

“red pickup truck with black trunk”

133c16fc6ca7d77676bb31db0358e9c6 shapenet luggage box
“blue luggage box”

“black luggage with a yellow smiley face”

1b9ef45fefefa35ed13f430b2941481 shapenet handbag

“white handbag”

“turquoise blue handbag”

“black handbag with gold trims”

54cd45b275f551b276bb31db0358e9c6 shapenet backpack

“red backpack”

“camper bag, camouflage”

“black backpack with red accents”

e49f6ae8fa76e90a285e5a1f74237618 shapenet handbag

“crocodile skin handbag”

“blue handbag with silver trims”

“linen fabric handbag”

2c6815654a9d4c2aa3f600c356573d21 shapenet lounge chair
“leather lounge chair”

“red velvet lounge chair”

2fa970b5c40fbfb95117ae083a7e54ea shapenet two-seat sofa
“soft pearl fabric sofa”

“modern building in the shape of a sofa”

5bfee410a492af4f65ba78ad9601cf1b shapenet bar stool
“yellow plastic stool with white seat”

“silver metallic stool”

97cd4ed02e022ce7174150bd56e389a8 shapenet dinning chair
“wooden dinning chair with leather seat”

“cast iron dinning chair”

5b04b836924fe955dab8f5f5224d1d8a shapenet bus “yellow school bus”

7fc729def80e5ef696a0b8543dac6097 shapenet taxi sedan
“new york taxi, yellow cab”

“taxi from tokyo, black toyota crown”

85a8ee0ef94161b049d69f6eaea5d368 shapenet van

“green ambulance with red cross”

“ambulance, white paint with red accents”

“pink van with blue top”

a3d77c6b58ea6e75e4b68d3b17c43658 shapenet beetle
“old and rusty volkswagon beetle”

“red volkswagon beetle, cartoon style”

b4a86e6b096bb93eb7727d322e44e79b shapenet pickup truck
“classic red farm truck”

“farm truck from cars movie, brown, rusty”

fc86bf465674ec8b7c3c6f82a395b347 shapenet sports car
“batmobile”

“blue bugatti chiron”

person Text2Mesh Human model

“white humanoid robot, movie poster,

main character of a science fiction movie”

“comic book superhero, red body suit”

“white humanoid robot, movie poster,

villain character of a science fiction movie”

Table 3: Description of all geometries used in our dataset, (continued in Tab. 4)

https://github.com/threedle/text2mesh

Object Source Description Prompts

rp alvin rigged 003 MAYA Renderpeople Human model
“person wearing black shirt and white pants”

“person wearing white t-shirt with a peace sign”

rp alexandra rigged 004 MAYA Renderpeople Human model
“person in red sweater, blue jeans”

“person in white sweater with a red logo, yoga pants”

rp adanna rigged 007 MAYA Renderpeople Human model
“nunn in a black dress”

“nunn in a white dress, black headscarf”

rp aaron rigged 001 MAYA Renderpeople Human model
“railroad worker wearing high-vis vest”

“biker wearing red jacket and black pants”

Age49-LoganWade Tripleganger Human head

“oil painting of a bald, middle aged banker

with pointed moustache”

“moai stone statue with green moss on top”

“portrait photo of abraham lincoln, full color”

Age26-AngelicaCollins Tripleganger Human head

“Portrait of a humanoid robot, futuristic, science fiction”

“blonde girl with green eyes, hair in tied a bun,

anime illustration, portrait”

“blonde girl with green eyes, hair in tied a bun,

DSLR portrait photo”

house Turbosquid Medieval house

“medieval celtic House, stone bricks, wooden roof”

“minecraft house, bricks, rock, grass, stone”

“colonial style house, white walls, blue ceiling”

casa Turbosquid house in the sea

“white house by the dock, green ceiling, cartoon style”

“minecraft house, bricks, rock, grass, stone”

“white house by the dock, green ceiling, impressionist painting”

1073771 Turbosquid rabbit

“brown rabbit”

“purple rabbit”

“tiger with yellow and black stripes”

1106184 Turbosquid cartoon dog

“cartoon dog”

“lion dance, red and green”

“brown bull dog”

1117733 Turbosquid goat

“brown mountain goat”

“black goat with white hoofs”

“milk cow”

1281334 Turbosquid cartoon cow
“cartoon milk cow”

“giant panda”

1367642 Turbosquid cartoon fox

“cartoon fox”

“brown wienner dog”

“white fox”

bunny Stanford 3D Scans bunny “white bunny”

dragon Stanford 3D Scans dragon
“black and white dragon in chinese ink art style”

“cartoon dragon, red and green”

Hermanubis 3D scans statue
“sandstone statue of hermanubis”

“portrait of greek-egyptian deity hermanubis, lapis skin and gold clothing”

Provost 3D scans statue
“portrait of Provost, oil paint”

“marble statue of Provost”

Table 4: Description of all geometries used in our dataset continued.

https://renderpeople.com/3d-people/alvin-rigged-003/
https://renderpeople.com/3d-people/alexandra-rigged-004/
https://renderpeople.com/3d-people/adanna_rigged_007/
https://renderpeople.com/3d-people/rp_aaron_rigged_001/
https://triplegangers.com/search-products/logan-wade
https://triplegangers.com/search-products/angelica-collins
https://www.turbosquid.com/3d-models/3d-lowpoly-cartoon-medieval-house-polygonal-2028066
https://www.turbosquid.com/3d-models/house-3d-model-1412380
https://www.turbosquid.com/
https://www.turbosquid.com/
https://www.turbosquid.com/
https://www.turbosquid.com/
https://www.turbosquid.com/
http://graphics.stanford.edu/data/3Dscanrep/
http://graphics.stanford.edu/data/3Dscanrep/
https://threedscans.com/
https://threedscans.com/

