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1 VIDEO ANNOTATION
Here we list the 13 US Open matches we used to extract our tennis
motion dataset.

• US Open 2019 Quarterfinal R. Federer vs. G. Dimitrov
• US Open 2019 Round of 16 R. Federer vs. D. Goffin
• US Open 2018 Round of 16 R. Federer vs. J. Millman
• US Open 2018 Third round R. Federer vs. N. Kyrgios
• US Open 2021 Final N. Djokovic vs. D. Medvedev
• US Open 2021 Semifinal N. Djokovic vs. A. Zverev
• US Open 2021 Quarterfinal N. Djokovic vs. M. Berrettini
• US Open 2021 Third round N. Djokovic vs. K. Nishikori
• US Open 2019 Final R. Nadal vs. D. Medvedev
• US Open 2019 Quarterfinal R. Nadal vs. D. Schwartzman
• US Open 2019 Round of 16 R. Nadal vs. M. Cilic
• US Open 2017 Final R. Nadal vs. K. Anderson
• US Open 2017 Semifinal R. Nadal vs. J. Del Potro

2 LOW-LEVEL IMITATION POLICY
Network. The policy is modeled by a neural network that maps

a state s to a Gaussian distribution over actions 𝜋 (a|s) with an
input-dependent mean 𝜇𝜋 (s) and a fixed diagonal covariance matrix
Σ𝜋 . The mean is specified by a fully connected network with 3
hidden layers of [1024, 1024, 512] units, followed by linear output
units. The value function 𝑉 (s) is modeled by a similar network,
but with a single linear output unit. All the hidden units use ReLU
activations [Nair and Hinton 2010].

Rewards. In all the experiments, we manually specify the weights
and scales as follows: 𝜔𝑜 = 0.6, 𝜔𝑣 = 0.1, 𝜔𝑝 = 0.2, 𝜔𝑘 = 0.1,
𝜔𝑒 = 0.01, 𝛼𝑜 = 60, 𝛼𝑣 = 0.2, 𝛼𝑝 = 100, 𝛼𝑘 = 40.

Training. The low-level policy is trained with 8,192 environments
with a simulation frequency of 120 Hz. Hyper-parameters used
during training of the low-level policy is available in Table 1. The
low-level policy is first trained using AMASS dataset with about 1
billion samples. Next, the low-level policy is fine-tuned using the
kinematic motion dataset (M𝑘𝑖𝑛) we extracted from tennis videos
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Parameter Value
Simulation frequency (Hz) 120

Σ𝜋 Action distribution variance 0.03
Samples per update iteration 262144

Policy/value function minibatch Size 16384
𝛾 Discount 0.99

Adam stepsize 0.00002
GAE(𝜆) 0.95
TD(𝜆) 0.95

PPO clip threshold 0.2
Episode length 300

Table 1. Hyper-parameters for training the low-level policy

with about 1 billion samples, which can then be used to correct
the kinematic motions and create the physically corrected motion
datasetM𝑐𝑜𝑟𝑟 . The low-level policy used in the control hierarchy
for controlling the character’s low-level movements is further fine-
tuned usingM𝑐𝑜𝑟𝑟 for each different player with about 0.25 billion
samples.
To further remove the reliance of residual force control, we can

keep fine-tune the policy by gradually reduce the maximum allowed
residual forces/torques with about 1 billion samples, while the resid-
ual forces are reduced by 1% about every 10 million samples. We
find it critical to slowly decrease the residual forces with sufficiently
long training time.

3 MOTION EMBEDDING
Network. The encoder is a three-layer feed-forward neural net-

work, with 256 hidden units in each internal layer followed by ELU
activations [Clevert et al. 2015]. The output layer has two heads
for 𝜇 and 𝜎 , required for the reparameterization trick used to train
VAEs [Kingma and Welling 2013]. The decoder uses mixture-of-
expert (MoE) architecture. Specifically, the MoE decoder consists
of six identically structured expert networks and a single gating
network to blend the weights of each expert to define the decoder
network to be used at the current time step. Similar to the encoder,
the gating network is also a three-layer feed-forward neural net-
work with 256 hidden units followed by ELU activations. The input
to the gating network is the latent variable 𝑧 and the current pose.
Each expert network is also similar to the encoder network in struc-
ture. These compute the next pose from the latent variable 𝑧 and
the current pose.

Training. Hyper-parameters used during training of the motion
embedding model is available in Table 2. We adopt scheduled sam-
pling [Bengio et al. 2015], where a sample probability 𝑝 is defined
for each epoch. The predicted pose is used as the input for the next
time step with probability 1 − 𝑝 , otherwise, the ground-truth pose
is used. The entire training process is divided into three modes:
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Parameter Value
Latent space dimension 32

Number of frames for condition 1
Number of frames for prediction 1

Sequence length 10
Number of seqs per epoch 50000

Batch size 100
Learning rate 0.0001

Table 2. Hyper-parameters for training the motion embedding model

supervised learning (𝑝 = 1), scheduled sampling (decaying 𝑝), and
autoregressive prediction (𝑝 = 0). The number of epochs for each
mode is 50, 50, and 400 respectively. For the scheduled sampling
mode, the sampling probability decays to zero in a linear fashion
with each learning iteration.

To train the model for predicting the motion phase with limited
supervision (only 20% of the data is labeled with motion phase),
we adopt a curriculum similar to scheduled sampling. We define a
sample probability 𝑞, which specifies the probability of sampling
a motion sequence labeled with motion phase. The entire training
process is also divided into two stages: 𝑞 decays linearly from 1 to
0.1 in the first stage, and stays at 𝑞 = 0.1 for the second stage. Each
stage is trained for 250 epochs.

4 HIGH-LEVEL MOTION PLANNING POLICY
Network. We adopt the same network architecture as the low-

level policy.

Ball trajectory prediction model. The ball trajectory prediction
model is used for estimating future incoming ball trajectory as the
observation for the high-level policy, as well as estimating the out-
going ball bounce position for computing the ball position reward.
At the offline stage, we compute a large ball trajectory pool by
densely sampling the plausible ball states at launch time, including
the height of the ball, the velocity of the ball and the spin velocity
of the ball. The sample steps we used are 0.1m, 0.1m/s and 0.5 RPS,
respectively. To reduce complexity, all the trajectories are computed
in the Y-Z plane. The computed trajectories are stored in a dense
matrix used as a lookup table. At runtime, a particular trajectory
can be estimated by indexing the lookup table with the ball’s launch
state, rounded by the sample steps we used. In practice, we find
this ball trajectory prediction model provides efficient and accurate
estimates of the future ball positions and bounce position.

Rewards. In all the experiments, we manually specify the scales
as follows: 𝛼𝑟 = 0.05, 𝛼𝜃 = 0.1.

Training. The high-level policy is trained with 30,720 environ-
ments. Hyper-parameters used during training of the high-level
policy (with our proposed curriculum of three stages) is available
in Table 3.
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