
Appendices
In this supplementary material, we provide additional details on our method and experiments. In Appendix A, we describe
our sparse 3D deep learning framework, and compare it to state-of-the-art implementations. In Appendix B, we provide
more implementation details for our method as well as precise definitions of our loss function and evaluation metrics. In
Appendix C, we provide more qualitative results on all the datasets we trained/evaluated on in the main paper. We additionally
provide a supplementary video in the accompanying files to better illustrate our results.

A. Sparse 3D Learning Framework
All of our networks are implemented using a customized sparse 3D deep learning framework built on top of PyTorch. To
represent sparse grids of features and perform efficient deep-learning operations (convolution, pooling, etc.) over them, we
leverage NanoVDB [39], a GPU-friendly implementation of the VDB data structure [38]. A VDB tree is a variant of B+-Tree
with four layers where the top layer is a hash table, followed by two internal layers (with branching factor 323, 163), followed
by leaf nodes with 83 voxels.

To demonstrate the effectiveness of our VDB-based deep learning framework, we benchmark it against TorchSparse [62], a
state-of-the-art sparse deep learning framework. As shown in Tab. 3, our custom framework is both fast and memory-efficient,
especially for large input grid resolutions. Built upon the highly efficient VDB data structure, our 3D representation is
compactly stored in memory and supports more efficient nearest neighbor lookup and processing than its hash table counterpart
in [62]. Such a framework lays the foundation for our high-resolution 3D generative model and has potential to applications in
many other downstream tasks such as reconstruction and perception.

Voxel Grid Memory (MB) ↓ Convolution Forward Time (ms) ↓
Grid Resolution 5123 10243 323 2563 10243

TorchSparse [62] 15.0 104.6 2.1 8.5 446.0
Ours 3.6 8.4 0.5 5.0 149.6

Table 3. Sparse 3D benchmark results.

B. Implementation Details
B.1. Loss Definition

Our model is able to output various attributes A defined on the voxel grids. Here we omit the level subscript l for simplicity.
The direct output of the network at each voxel at each level includes surface normal n ∈ R3, semantic label s ∈ RS , and
neural kernel features ϕ ∈ R4. Here the neural kernel features ϕ are used for computing continuous TSDF values in 3D
space for highly-detailed subvoxel-level surface extraction (using the techniques from [21]), and it could also be replaced with
implicit features q to extract TUDF values for open surfaces as in [45]. The attribute loss LAttr, as mentioned in Eq. (6) of the
main text, is a mixture of different supervisions, written as follows:

LAttr = λ1 ∥n− nGT∥22︸ ︷︷ ︸
normal loss

+λ2 BCE(s, sGT)︸ ︷︷ ︸
semantic loss

+λ3 Ex∈R3∥f(x)− TSDF(x,XGT)∥1︸ ︷︷ ︸
surface loss

, (8)

where nGT and sGT are the ground-truth normal and semantic label at each voxel, andXGT is the ground-truth dense point
cloud of the surface. The surface loss is computed by sampling points x in the 3D space and comparing the predicted TSDF
values f(x) with the ground-truth TSDF values TSDF(x,XGT). To compute f(x) given arbitrary input positions, we leverage
the predicted neural kernels ϕ to solve for a surface fitting problem as in [21]:

f(x) =
∑
v

αvK(x,xv) =
∑
v

αvϕ
⊤
v ϕ(x)Kb(x,xv), (9)

where v is the index of the voxels, ϕ(x) is the neural kernel evaluated at the input position x using bezier interpolation from its
nearby voxels, and Kb(x,xv) = B(x− xv) is a shift-invariant Bezier kernel. The coefficients αv are obtained by performing
a linear solve as detailed in [21]. Similarly, for open surfaces we can replace the neural kernels ϕ with implicit features q



Figure 13. Results of micro-conditioning on Waymo dataset. The voxel number conditioning increases from left to right. There is a clear
trend of increasing number of voxels and more diverse contents in the sampled scenes.

and define f(x) as a local MLP function digesting trilinearly interpolated q at position x [45]. We set λ1 = 1, λ2 = 15, and
λ3 = 1 in our experiment. For the KL divergence, we normalize it by the number of voxels of the voxel grid and then use a
loss weight λ = 0.0015 for all our experiments.

B.2. Conditioning

We explore diverse condition settings for our voxel diffusion models: (1) For the associated attributes from the previous level,
we optionally concatenate them to the latent feature X before the latent diffusion. For example, for user-control cases, we do
not concatenate them for flexibly adding or deleting voxels. (2) For the text prompts, we use cross-attention to fuse them into
the latent. (3) For the category condition, we use AdaGN and fuse them with timestep embedding by adding. (4) For single
scan conditions, we use an additional point encoder to quantize the single scan point cloud to a voxel grid and concatenate it
with the latent feature X.

Micro-conditioning. We found that the Waymo dataset suffers from missing voxels due to the sparsity of the LiDAR scans.
To mitigate this issue, we use a micro-conditioning scheme following SD-XL [46] to inject additional condition to the diffusion
backbone describing the number of the voxels. This helps when the dataset itself contains multi-modal distributions, and
allows fine-grained control of the generated scale of the scene.

B.3. Texture Synthesis

While our model is focused on generating 3D geometry, we also explore the possibility of generating textures for the generated
shapes. To this end, we use a state-of-the-art texture generator TEXTure [51] to create texture maps for the generated shapes.
The method works by applying a sequence of depth-conditioned stable diffusion models to multiple views of the shape.
Later steps in the process are conditioned on the previous steps, allowing the model to generate consistent textures with
smooth transitions. We choose to decouple the geometry and texture generation processes to allow for more flexibility
and controlability – e.g., given the same geometry, different textures can be generated and selected. We demonstrate the
effectiveness of the full pipeline on Objaverse dataset and use the same text prompts for both the geometry and the texture.
Results are shown in Fig. 14.

B.4. Network Architecture

Variational Autoencoders (VAE). We use a custom Autoencoder architecture for our VAE. Given an input voxel grid, Gl at
level l, and associated per-voxel attributes Al, we first positionally encode each voxel using the same function as [37] and
then concatenate the positional encoding of each voxel with the corresponding attribute. We then apply a linear layer to the
concatenated positional embedding and attribute to lift it to a d-dimensional feature (Where d is chosen depending on the task
and described in Table 4). Our VAE then applies successive convolution and max pooling layers, coarsening the voxels to a
bottleneck dimension. When l = 1 (i.e. the coarsest level of the hierarchy), we zero pad the bottleneck layer into a dense
tensor, otherwise, the bottleneck is a sparse tensor. We then apply 4 convolutional layers to convert the bottleneck tensor
into a latent tensor X of the same shape and sparsity pattern as the bottleneck. Latent diffusion is done over the tensor X.
At the end of the decoder, we apply attributes-specific heads (MLPs) to predict the associated attributes within each voxel.
Hyperparameters for our VAEs are listed in Tab. 4.
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Figure 14. Diverse texture synthesis results. Based on the same generated geomtry, we could generate diverse textures by using TEXTrue [51].

Diffusion UNet. As mention in the main paper, we adopt a a 3D sparse variant of the backbone used in [13] for our voxel
latent diffusion. Hyperparameters for training them are in Tab. 5

B.5. Training Details

We train all of our models using Adam [26] with β1 = 0.9 and β1 = 0.999. We use an EMA rate of 0.9999 for all experiments
and use PyTorch Lightning [14] for training. For ShapeNet models, we use 8× NVIDIA Tesla V100s for training. For other
datasets, we use 8× NVIDIA Tesla A100s for training.

B.6. Metric Definition

To perform a quantitative comparison of our generative model on the ShapeNet dataset, we leverage the framework used in
[71] which uses the 1-NNA metric defined as follows: Given a generated set of point clouds Sg , a reference set of point clouds
Sr, and a metric D(·, ·) : 2R3 × 2R

3 → R between two point clouds, the 1-NNA metric is defined as

1-NNA(Sg, Sr) =

∑
X∈Sg

1[NX ∈ Sr] +
∑

Y ∈Sr
1[NY ∈ Sr]

|Sg|+ |Sr|
, (10)

where NA is the closest point cloud to A ∈ 2R
3

in the set Sg ∪ Sr − {X} under the metric D(·, ·) (i.e. the closest point cloud
to A in the generated and reference set not including A itself), and 1[·] is the indicator function which returns 1 if the argument
is true and 0 otherwise.

Intuitively, the 1-NNA distance is the classification accuracy when using nearest neighbors under D to determine if a point
cloud was generated (∈ Sg) or not (∈ Sr). If the generated set is close in distribution to the reference set, then the classification
accuracy should be around 50% which is the best 1-NNA score achievable.

In our experiment, we sampled 2048 points from the surface of each shape (following [71]) to generate Sg and Sr and used
the Chamfer and Earth Mover’s distances as metrics D to compute the 1-NNA.

C. More results
In this section, we provide more qualitative results on all datasets. First, we show more text-to-3D results on Objaverse in
Fig. 16 to 18. Then, we show more results on ShapeNet in Fig. 15 and 19 to 21. Despite the high quality of our generated
shapes, we show that our model does not overfit the training samples and is able to generate novel shapes in Fig. 15 by
retrieving the most similar shapes in the training set given the generated samples. Furthermore, we show more results on
Waymo in Fig. 22 and 23. Finally, we show more results on Karton City in Fig. 24.
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Figure 15. Shape Novelty Analysis. From our generated shape (left), we retrieve top-three most similar shapes in training set by CD distance



"A 3D model of lion"

"A campfire"

"A 3D model of croissant"

"A 3D model of eagle head"

"A 3D model of dragon head"

Figure 16. More qualitative results on text-to-3D.



"A voxelized dog"

"A diamond ring"

"A 3D model of cat"

"A 3D model of duck"

Figure 17. More qualitative results on text-to-3D.



"A designer dress"

"A 3D model of koala"

"A 3D model of mushroom"

"A fireplug"

Figure 18. More qualitative results on text-to-3D.



Figure 19. More qualitative results on ShapeNet Car.



Figure 20. More qualitative results on ShapeNet Airplane.



Figure 21. More qualitative results on ShapeNet Chair.



Figure 22. More qualitative results on Waymo.



Figure 23. More qualitative results on Waymo.



Figure 24. More qualitative results on Karton City.



ShapeNet ShapeNet Objaverse Objaverse Waymo Waymo
163 → 1283 1283 → 5123 163 → 1283 1283 → 5123 323 → 2563 2563 → 10243

Model Size 59.6M 3.8M 236M 14.9M 59.4M 3.8M
Base Channels 64 32 128 64 64 32
Channels Multiple 1,2,4,8 1,2,4 1,2,4,8 1,2,4 1,2,4,8 1,2,4
Latent Dim 16 8 16 8 16 8
Batch Size 16 32 32 32 32 32
Epochs 100 100 25 10 50 50
Learning Rate 1e-4

Table 4. Hyperparameters for VAE. For the Karton City dataset, we used the same hyperparameters as the Waymo dataset.

ShapeNet - 163 ShapeNet - 1283 Objaverse - 163 Objaverse - 1283 Waymo - 323 Waymo - 2563

Diffusion Steps 1000
Noise Schedule linear
Model Size 691M 79.6M 1.5B 79.6M 702M 76.6M
Base Channels 192 64 256 64 192 64
Depth 2
Channels Multiple 1,2,4,4 1,2,2,4 1,2,4,4 1,2,2,4 1,2,4,4 1,2,2,4
Heads 8
Attention Resolution 16,8,4 32,16 16,8,4 32,16 16,8 32
Dropout 0.1 0.0 0.0 0.0 0.0 0.0
Batch Size 256 256 512 128 512 256
Iterations varies* 15K 95K 80K 40K 20K
Learning Rate 5e-5

Table 5. Hyperparameters for voxel latent diffusion models. *We train our model with 25K iterations for ShapeNet Airplane, 45K
iterations for ShapeNet Car, and 35K iterations for ShapeNet Chair. For the Karton City dataset, we used the same hyperparameters as the
Waymo dataset and trained the models to converge.
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