Large language models (LLMs) have enhanced the capacity of vision-language models to caption visual text. This generative approach to image caption enrichment further makes textual captions more descriptive, improving alignment with the visual …
Weakly-Supervised Semantic Segmentation (WSSS) aims to train segmentation models using image data with only image-level supervision. Since precise pixel-level annotations are not accessible, existing methods typically focus on producing pseudo masks …
Large-scale vision-language models (VLMs) have shown a strong zero-shot generalization capability on unseen-domain data. However, when adapting pre-trained VLMs to a sequence of downstream tasks, they are prone to forgetting previously learned …
Referring Video Object Segmentation (RVOS) aims to segment the object referred to by the query sentence throughout the entire video. Most existing methods require end-to-end training with dense mask annotations, which could be computation-consuming …