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Abstract

On-chip global signaling in modern SoCs faces significant challenges due to wire pitch
scaling and increasing die size. Conventional on-chip synchronous CMOS links have
already hit a performance wall in power and latency. Although approaches based on
custom low-swing equalized serial-link techniques can yield improvements, strict
power/silicon budgets and non-ideal in-situ conditions of large SoCs make their design
much more challenging than simply transitioning off-chip signaling technologies to on-
chip. Therefore, a holistic approach to the on-chip global signaling problem is required.
We present analyses and solutions that take into account channel design, low power
transceiver circuits, clocking architectures, and power supply considerations.
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1. Introduction

In modern SoC design, challenges for on-chip global signaling are pressured by two
factors. First, increasing die size produces longer communication distances. Second,
routing wire pitch, which reduces with smaller process nodes, makes the resistance of a
given wire length scale up rapidly. To deal with these challenges, automatic P&R
methods have to insert numerous repeaters and re-timers for global signaling. While
compute cost decreases with smaller process nodes, power and silicon area used for on-
chip global communication tends to increase with each product generation. Also, highly
resistive global wires with a large number of buffer stages have significant insertion
delay, and create difficulties for architecture and design.

Bundled-data wiring channels, sometimes called “fabrics”, are often used where high-
bandwidth, long-distance data movement is required. Custom designed repeater
placement and fully reserved metal routing resource can minimize the frequency of
buffering and re-clocking, and push the performance of CMOS signaling up to its limit.
However, the fundamental physical problem that prevents further energy reduction in
fabrics is the CV’F energy needed to charge and discharge the wire capacitance.
Moreover, fully utilized routing channels for global signaling are consuming resource
from other functional circuits, and this cost is also scaling up rapidly with every new
process node. Conventional synchronous CMOS signaling, even with careful custom
design, faces significant challenges in supporting the performance requirements of
products in the future.

Using high-speed serial link techniques for on-chip global signaling shows promise in
solving some of the problems mentioned above. One big difference between on-chip and
off-chip signaling design is the channel. On-chip metallization generally has much higher
sheet resistance compared to package or PCB traces because of metal thickness.
Therefore, on-chip high-speed link design has to explore the best bandwidth potential
from the available on-chip metallization, model and design the high-speed channels with
existing power delivery networks to optimize the performance. One approach to solving
the signaling energy problem is simply to drive long signal wires with very low voltage
swings. Since the energy required to drive a line scales with V7, this approach can, in
principle, produce large energy savings. The challenge to implementing this low-swing
signaling idea on-chip is how to generate the accurate and stable voltage values in the
environment which has very limited voltage headroom and noisy power rails (no I/O
VDD or analog VDD is available).

To increase the signaling rate, many have adopted equalization to overcome the basic RC
delay of a wire. Using equalization not only increases the effective bandwidth of the wire
but also greatly reduces delay. However, with very limited voltage headroom and energy
budgets, equalization techniques for on-chip signaling have to be as simple as possible,
and robust enough to operate reliably in the very non-ideal on-chip environment. Overall,
compared to traditional off-chip serial links, there are many new challenges to be
considered for on-chip global signaling application.



2. On-chip Signaling Channel

Channel design and optimization based on available metal resources is essential for on-
chip signaling. Typically, signaling over the thicker metal of the upper layers enables
longer distances between repeaters (i.e. fewer repeaters for a fixed distance), which
reduces the energy and delay per-unit length. To provide high cross sectional bandwidth,
we prefer to build wiring channels in the thickest metal layers on-chip which are
available for orthogonal routing, for instance, the two metal layers just below the RDL
(redistribution layer).

One consideration for practical channel design is that the signal channels have to be
routed within the gaps of existing power delivery network. Power integrity is already one
of the most challenging tasks in modern SoC design. So, normally a large portion of the
high-level metal layers are occupied by regular and dense power/ground (P/G)
conductors. Therefore, the high-speed channels must be interleaved between these
conductors. Fortunately, this is not totally bad for signaling channel design, because we
can use these P/G conductors to act as shields to reduce cross-talk. The P/G shielding also
provides current return paths for signals and enables low-swing single-ended signaling to
be used for long distance on-chip communication. Although more vulnerable to cross-
talk, single-ended signaling has the potential of working at lower supply voltage and
consuming less power compared to differential signaling. Figure 1 shows the illustration
of the high-speed signaling channels built between P/G grids.

Figure 1: High-speed channels interleaved between power/ground conductors

For high-speed on-chip signaling, we have designed the wiring channel to operate at the
highest possible data rate to achieve the maximum cross sectional bandwidth ultimately
limited by transistor circuit performance (e.g. ~16Gbps @ 28nm node over corners). For
best energy efficiency, we design the channel according to this speed requirement and try
to reach the maximum length before amplification is needed. Because the on-chip



channel bandwidth is almost always RC dominated, a thicker metal layer is normally
preferred due to its lower resistance and foundries usually offer different high-level metal
options. To make good judgment, it is worthwhile to study the channel performance for
all available metal options.

Comparisons of channel designs for three metal options are summarized in Table 1.
Thicknesses are normalized to the metal option “Ma”. For each metal option, the energy
optimal cross sectional geometry for a single-ended channel was chosen while
simultaneously considering power grid requirements. In each case, the power and ground
grid conductors, which also act as shields, were made wide enough to accept a via from
the RDL. As can be seen from the last column, the thicker metal will provide longer one-
hop distance at full circuit speed. Here we assume that the signal voltage swing on the
wire is about 100mV, and the power supply is 900mV.

Table 1: Comparison of foundry metal options and channel designs

Metal Layer | Thickness Signal P/G Shield Signal Pitch Max Length

Options (normalized) | Width/Space Width @ 16Gbps
Ma 1x 0.5pum 3.0um 4.5um 2mm
Mb 1.7x 0.8um 3.6um 6.0um Smm
Mc 2.5x 1.2pm 3.6um 7.2um 6.5mm

To better understand the trade-offs of different metal options with respect to energy
efficiency, an experimental circuit system was designed. The tested high-speed link has
sixteen parallel data lanes and two source synchronous clock lanes, with six stages of
repeaters and seven wire segments between the transmitter (with serializer) and the
receiver (with deserializer). The whole circuit system was implemented in a 28nm
process and operates at 16Gbps with 900mV typical supply. Figure 2 shows the
equivalent energy per-bit per-mm length and power efficiency with different metal
options. Here efficiency is defined as the ratio of the equalization power used to change
the voltage polarity on the wires (theoretical minimum power) versus the total power.

In Figure 2(a), it is obvious that thicker metal can send signals over longer distances
before hitting the bandwidth limit. Hence, the thicker metal option has more potential to
achieve lower energy/bit/mm and also lower delay/mm. When equalization is used, actual
energy/mm spent on the wire tends to increase as the wire length increases, but as long as
the circuit power is still significant, the total energy/mm will benefit from longer wire
length per hop. The efficiency numbers shown in Figure 2(b) are still have room for
optimization, and can also be improved with the supply voltage scaling and transistor size
shrinks in newer process node (ex. 16nm FinFET).
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Figure 2: (a) Equivalent energy/bit/mm and (b) percentage of equalization power of an experimental circuit
(16 data lanes + 2 clock lanes, seven hops) built on 28nm process with different metal options

3. Repeater and Clocking Architecture

For really long distance (>10mm) signaling at high-speed (>16Gbps), repeaters become
necessary not only to re-drive the low-swing signals on the wires, but also to re-time the
data and mitigate the effects of jitter accumulation. With intrinsic delay matching
between clock and data lanes, source-synchronous clocking can provide much higher data
rates compared to fully synchronous clocking. Because the latency and cost of
deserialization and re-synchronization are too high to be used in every repeater, the
clocking architecture needs to be carefully designed and evaluated to make sure all
cascaded repeaters in a link can operate reliably at full rate.

Figure 3 shows the basic structure of a repeater for high-speed signaling. The amplifier is
used to bring the low swing signal on the wire back to full swing and drive the following
logic circuits in the repeater. Alternatively, the amplification could be achieved by using



the regeneration loop gain within a sampler, which reduces the voltage gain requirement
of the linear amplifier. But this would decrease the benefits of clock and data path delay
matching when there are environmental (e.g. voltage) variations and reduce the timing
margin. For the best delay matching between data and clock lanes, linear amplifier is
preferred to provide the full amplification for both clock and data lanes, at the cost of
some constant DC current. The simplest sampler that can be built for full-swing high-
speed signals consists of four latches driven by double-data-rate clocks, and performs as a
1-to-2 deserializer and a 2-to-1 serializer. Ideally, all jitter and offset accumulated in data
lanes will be removed by the sampling clocks, if the clock signal quality is good enough.
After the sampler, the full speed digital signal will once again drive both the pre-
emphasis driver and DC driver which connect to the next channel segment, exactly the
same as what happens in the very first transmitter stage.
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Figure 3: Circuit for a repeater in high-speed on-chip signaling

In every repeater stage, the transitions of data signals will be re-aligned to the sampling
clock edges. Traditionally in a one-hop data link, the sampling clock at the receiver end is
the quadrature clock (Q-clock) sent from the transmitter end. In a multi-hops source-
synchronous data link, it is almost impossible to re-generate the quadrature clock in every
repeater without significant power and delay overhead. The more practical method is
shown in Figure 4. In this topology, both I- and Q-clocks are sent from the transmitter
stage to the receivers. In each repeater, the Q-clock from previous stage samples the data
and drives the local I-clock driver and then becomes the I-clock signal when arrives the
next stage, while the I-clock from previous stage is simply reversed and drives the local
Q-clock driver which provides the sampling clock for the next stage. This I/Q alternating
clocking structure provide the timing margin for all repeaters cascaded through the data
link, as long as the quadrature clocking quality is still reliable.
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Figure 4: Architecture of a multi-hop serial link with I/Q clocks

It is worth noting that jitter in data lanes will be eliminated by the clock in every repeater,
but variations in clock signal will accumulate through the link. The major cause of clock
lane jitter is cross-talk from parallel data-lanes, and thicker metal layer tends to cause
more significant cross-talk among wires. Figure 5 shows the eye diagrams for both the
data signals and local Q-clock signal measured at the inputs of different hops. The
channel used in this experiment is based on “Mb” listed in Table 1, and wire length is
4mm for each hop. These simulation results show that the jitter accumulation effects on
clock signals are quite significant through multi-hops. And because the quadrature
relationships of the I- and Q-clocks are un-bounded after the transmitter stage, the jitter
on the I- and Q-clocks could be easily uncorrelated. Hence, the timing margin has to
account for the variations in both clock lanes. For very thick metal layer like “Mc” in
Table 1, the maximum wire length per hop may actually be limited by cross-talk instead
of the single lane bandwidth.

Another possible clocking architecture only sends the I-clock through the link, as shown
in Figure 6. In this architecture, the local clock buffer needs to generate the 0.5UI delay
for correct data sampling. Since there is no longer a Q-clock, the sampler’s timing margin
only needs to be budgeted for jitter accumulation within one clock lane. The local clock
buffer delay will vary over process-voltage-temperature (PVT), so it should be carefully
designed to make sure the inserted delay always meets setup and hold time requirements
at all conditions. Because the data are re-timed in every repeater, this local delay
variation will not impact the timing of following stages. In real implementations, it may
be worthwhile to distribute differential clocks (I and Ib) to minimize the offset
accumulation, even the data lanes are single-ended.



Figure 5: Eye diagrams of data and Q-clock signals at repeaters & receiver inputs (“Mb”, 4mm/hop)
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Figure 6: Architecture of a multi-hop serial link with single-ended I-clock only

4. Circuit Design Considerations

The biggest challenge for high-speed on-chip signaling circuit design is power efficiency.
Low-power is critical for potential applications requiring thousands of data lanes and
many TB/s of bandwidth, and this highlights a major distinction when comparing off-
chip links to on-chip links. Off-chip links are evaluated in terms of pJ/bit and the most
efficient links consume from 0.5-5 pJ/bit. However, on-chip links need to be
implemented such that they consume only 10s of fJ/bit/mm. The distinction is that on-
chip link energy is normalized to interconnect length because on-chip interconnect
bandwidth reduces quadratically with length, where-as off-chip interconnect basically
behaves like an LC transmission line, where bandwidth reduces roughly in proportion to
the square-root of length. This means we need to use the simplest circuit structure to



generate the low-swing signal, minimize the number of transistors that are toggling, and
design the circuit to operate reliably over anticipated variations.

Another difficulty for on-chip signaling circuit design is power supply noise. Unlike
chip-to-chip signaling which usually has a dedicated I/O VDD, the on-chip signaling
circuit will most likely share the power supply with large amount of noisy digital circuits.
The noisy power supply not only degrades circuit performance, but also causes common-
mode voltage mismatches among stages in the serial link and may introduce errors.

As mentioned in the previous section, the amplifier is an important circuit block in every
repeater stage to recover the low-swing signals. Working at the highest possible data rate
and with a very limited energy budget, amplifier performance is very sensitive to random
process variation. The mismatches between amplifier and bias circuit (in single-ended
signaling), or between differential pair (for differential signaling) create voltage offset,
which will cause timing margin reduction in the following sampling stage and hence
lower the data rate and the energy efficiency. Unfortunately, random process variation is
an even more severe problem especially with shrinking feature size.

Many different methods have been explored to handle the circuit design challenges
mentioned above. In this section, we discuss one signaling style which will be referred to
as “pulse mode”. Basically, pulse mode signaling means only the transitions of the data
will be sent along the wires and last about one UI, with a positive pulse for 0-to-1
transition and a negative pulse for 1-to-0. When a sequence of unchanging data bits is
sent, the driver output will only send the first bit and then return to the common mode
voltage until next transition.

The pulse mode driver schematic is shown in Figure 7(a). It is basically just two AC-
coupling equalizers running in parallel with one of the inputs reversed and then followed
by a 1-UI delayed. Equalization (EQ) is a very useful technique to increase the effective
bandwidth of the wire and greatly reduces the RC delay. The most commonly used EQ
for on-chip low-swing links is transmitter EQ, because it is simple and easy to
“overdrive” the wire to the supply voltage. Difficulties of using transmitter EQ include
how to match the DC and AC paths delays and also how to adaptively optimize the
strength ratio of DC and AC drivers. Although the high resistance nature of the on-chip
wires make the driver energy basically AC dominated, balancing DC and AC drivers still
produces lots of overhead for local logic circuits and clock distribution. Pulse mode
signaling totally removes the DC driver from the transmitter side, therefore avoiding
these design difficulties and improving the energy efficiency (ex. compared to Figure
2(b)). Pulse mode signaling also avoids the common-mode variation problem caused by
VDD mismatches between neighboring repeaters, therefore, providing better tolerance to
the power supply noise.

Figure 7(b) shows the amplifier circuit for pulse mode signaling. Because of the DC-
balanced nature of pulse mode signaling, it is possible to use a self-biased amplifier with
appropriate compensation. The self-bias loop gain can attenuate the amplifier offset
caused by random process variation to an acceptably low level, without the requirement



of extra tuning circuits and calibration time. Also, the self-biased amplifier tends to have
better tolerance to VDD variation compared to replica-biased design. A latch stage is
needed for the pulse mode amplifier to bring the signal back to CMOS mode before the
sampler.

Figure 7(c) and (d) show the basic sampler circuit design and signal eye diagrams for the
proposed single-ended pulse mode signaling.

Cix1

N — o>
ctx2 —a 2
INdb |_

1 Ul delay &
reversed

1Uldelay & (@
reversed

Figure 7: Schematics and waveform of pulse-mode signaling: (a) AC-coupling pulse-mode driver,
(b) self-biased amplifier, (c) sampler for pulse-mode signaling, and (d) eye diagram of voltage signals

5. Power Supply Noise Effects

Unlike the off-chip I/O transceiver, the on-chip signaling circuits have to share the
noisiest power supply with core logic circuits. This makes accurate data recovery
challenging in a multi-hop data link. Study of the power supply noise effects on high-
speed on-chip serial links is very helpful in learning about the performance potential in
real SoC environments.

Table 2 shows experimental results of a 7-hop serial link. The test circuits are built in a
28nm process with 900mV typical supply. The VDD noise comes from sinusoidal
voltage signals which have frequency of 510MHz. Different columns are for varying data



rate and different rows are for changing peak-to-peak VDD noise amplitudes. The
number (if not “Pass”) in each blank means the number of hops from the starting
transmitter that data can go through before any error bit is detected. Generally, the results
are quite intuitive in that either higher data rate (smaller timing margin) or larger noise
amplitude could cause the data signals fail earlier in the link.

This may be a simplified case compared to the real on-chip environment, but it is typical
enough to provide us some knowledge of the designs limitations. To better understand the
relation of system performance to power supply noise, more cases with different noise
frequency and noise patterns need to be explored. The major effects of VDD noise are:
high frequency noise tends to break the delay tracking function of the source-
synchronous clock and cause some bit errors, and large VDD voltage variations will
cause timing-offset accumulation (i.e. duty-cycle distortion or quadrature distortion) in
the clock lanes and make the clock distribution fail after several stages.

Table 2: On-chip data link performance at various data rates and VDD noise amplitudes

Vnpp/Rate 13Gb/s 14Gb/s 15Gb/s 16Gb/s 17Gb/s 18Gb/s 19Gb/s 20Gb/s

150mV Pass Pass Pass Pass Pass Pass Pass Pass
200mV Pass Pass Pass Pass Pass Pass 6 4
250mV Pass Pass Pass Pass Pass 6 3 3
300mV Pass Pass Pass Pass 4 3

350mV Pass 6 3 3 3

400mV 6 3 3

6. Conclusion

In this paper, we present the challenges and possible solutions to implementing a high-
speed low-power serial link for on-chip global signaling. Methods for custom channel,
circuits, and clocking architecture designs are discussed. Compared to traditional CMOS
signaling and off-chip serial link designs, the multi-hops source-synchronous serial link,
using high-level thick metal channels and simple equalization technique, shows
promising potential to fulfill the performance requirements in future SoC products.



