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Fig. 1: Self-supervision with semantic part consistency (a–d): (a) Images of
different objects in the same category (e.g., birds in this example). (b) Semantic part
segmentation for each image learned via self-supervision. (c) Canonical semantic UV
map for the category. (d) Semantic part segmentation on meshes. Single-view 3D
Mesh reconstruction (e–g): Reconstruction (inference) of each single-view image
(e) is demonstrated in (g), along with semantic labels of the mesh in (f).

Abstract. We learn a self-supervised, single-view 3D reconstruction
model that predicts the 3D mesh shape, texture and camera pose of
a target object with a collection of 2D images and silhouettes. The pro-
posed method does not necessitate 3D supervision, manually annotated
keypoints, multi-view images of an object or a prior 3D template. The
key insight of our work is that objects can be represented as a collection
of deformable parts, and each part is semantically coherent across differ-
ent instances of the same category (e.g., wings on birds and wheels on
cars). Therefore, by leveraging part segmentation of a large collection of
category-specific images learned via self-supervision, we can effectively
enforce semantic consistency between the reconstructed meshes and the
original images. This significantly reduces ambiguities during joint pre-
diction of shape and camera pose of an object, along with texture. To the
best of our knowledge, we are the first to try and solve the single-view
reconstruction problem without a category-specific template mesh or se-
mantic keypoints. Thus our model can easily generalize to various object
categories without such labels, e.g., horses, penguins, etc. Through a
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variety of experiments on several categories of deformable and rigid ob-
jects, we demonstrate that our unsupervised method performs compara-
bly if not better than existing category-specific reconstruction methods
learned with supervision. More details can be found at the project page
https://sites.google.com/nvidia.com/unsup-mesh-2020.

Keywords: 3D from Single Images; Unsupervised Learning

1 Introduction

Recovering both 3D shape and texture, and camera pose from 2D images is
a highly ill-posed problem due to its inherent ambiguity. Existing methods re-
solve this task by utilizing various forms of supervision such as ground truth 3D
shapes [3, 34, 33], 2D semantic keypoints [15], shading [11], category-level 3D
templates [18] or multiple views of each object instance [40, 17, 35, 27]. These
types of supervision signals require tedious human effort, and hence make it chal-
lenging to generalize to many object categories that lack such annotations. On
the other hand, learning to reconstruct by not using any 3D shapes, templates,
or keypoint annotations, i.e., with only a collection of single-view images and
silhouettes of object instances, remains challenging. This is because the recon-
struction model learned without the aforementioned supervisory signals leads to
erroneous 3D reconstructions. A typical failure case is caused by the “camera-
shape ambiguity”, wherein, incorrectly predicted camera pose and shape result
in a rendering and object boundary that closely match the input 2D image and
its silhouette, as shown in Figure 2 (c) and (d).

Interestingly, humans, even infants who have never been taught about objects
in a category, tend to mentally reconstruct objects in that category by perceiving
them as a combination of several basic parts, e.g., a bird has two legs, two wings,
and one head, etc., and use the parts to associate all the divergent instances
of the category. By observing object parts, humans can also roughly infer the
relative camera pose and 3D shape of any specific instance. In computer vision,
a similar intuition is formulated by the deformable parts model, where objects
are represented as a set of parts arranged in a deformable configuration [7, 24].

Inspired by this intuition, we learn a single-view reconstruction model from
a collection of images and silhouettes. We utilize the semantic parts in both the
2D and 3D space, along with their consistency to correctly estimate shape and
camera pose. Specifically, we first leverage self-supervised co-part segmentation
(SCOPS [14]) to decompose 2D images into a collection of semantic parts (Fig-
ure 1(b)). By exploiting the property of semantic part invariance, which states
that the semantic part label of a point on the mesh surface does not change even
when the mesh shape is deformed, we associate the semantic parts of different
object instances with each other and build a category-level canonical semantic
UV map (Figure 1(c)). The semantic part label of each point on the recon-
structed mesh surface (Figure 1(d)) is then defined by this canonical semantic
UV map. Finally, we resolve the aforementioned “camera-shape ambiguity” and
learn the self-supervised reconstruction model by encouraging the consistency
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of semantic part labels in both the 2D and 3D space (Figure 1, orange arrow).
Furthermore, we train our model by iteratively learning (a) instance-level recon-
struction and (b) a category-level template mesh from scratch. Thus, our model
also does not require a pre-defined 3D template mesh or any other shape prior.
Our main contribution is a 3D reconstruction model that is able to:

– Conduct single-view mesh reconstruction without any of the following forms
of supervision: category-level 3D template prior, annotated keypoints, cam-
era pose or multi-view images. In other words, the model can be generalized
to other categories which do not have well-defined keypoints, e.g., penguin.

– Leverage the semantic part invariance property of object instances of a cat-
egory as a deformable parts model.

– Learn a category-level 3D shape template from scratch via iterative learning.
– Perform comparably to the state-of-the-art supervised methods [15, 18] trained

with either pre-defined templates or annotated keypoints, while also improv-
ing the self-supervised semantic co-part segmentation model (SCOPS [14]).

2 Related Work

3D Shape Representation Various representations have been explored for 3D
processing tasks, including point clouds [6], implicit surfaces [22, 21], triangular
meshes [15, 17, 20, 16, 33, 23, 34] and voxel grids [3, 8, 9, 31, 35, 40, 45, 10].
Among these, while both voxels and point clouds are more friendly to deep
learning architectures (e.g., VON [36, 44], PointNet [25, 26], etc), they suffer
either from issues of memory inefficiency or are not amenable to differentiable
rendering. Hence, in this work, we adopt triangular meshes [15, 17, 20, 16, 33,
23, 34] for 3D reconstruction.

Single-view 3D Reconstruction Single-view 3D reconstruction [3, 8, 9, 31,
35, 40, 45, 6, 11] aims to reconstruct a 3D shape given a single input image. One
line of works have explored this ill-posed task with varying degree of supervision.
Several methods [33, 23, 34] utilize image and ground truth 3D mesh pairs as
supervision. This either requires significant manual annotation effort [38] or is
restricted to synthetic data [1]. More recently, a few works [17, 20, 16, 2] avoid
3D supervision by taking advantage of differentiable renderers [17, 20, 2] and the
“analysis-by-synthesis” approach, with either multiple views, or known ground
truth camera poses.

To further relax constraints on supervision, Kanazawa et al. [15] explored 3D
reconstruction from a collection of images of different instances. However, their
method still requires annotated 2D keypoints to infer camera pose correctly. It
is also the first work to propose a learnable category-level 3D template shape,
which, however, needs to be initialized from a keypoint-dependent 3D convex
hull. Similar problem settings have also been explored in other methods [29, 37,
12], but with object categories restricted to rigid or structured objects, such as
cars or faces. Different from all these works, we target both rigid and non-rigid
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Fig. 2: Comparison with baselines. Each reconstructed mesh is rendered in the
original view of the input image and the frontal view of the bird. (b) Shows the result
from CMR with camera pose and template prior supervision. (c) Shows CMR with
only template prior. (d) Shows CMR without both types of supervision where the
model completely fails to learn the texture and shape. In contrast, our model in (e)
reconstructs correctly even without supervision from camera pose or a template prior.

objects (e.g., birds, horses, penguins, motorbikes and cars shown in Figure 1 (e)-
(g)) and propose a method that jointly estimates a 3D mesh, texture, and camera
pose from a single-view image, using only a collection of images with silhouettes
as supervisions. In other words, we do not require 3D template priors, annotated
keypoints, or multi-view images.

Self-supervised Correspondence Learning Our work is also related to self-
supervised cross-instance correspondence learning, via landmarks [30, 43, 13,
28], part segments [4, 14], or canonical surface mapping [18]. We utilize self-
supervised co-parts segmentation [14] to enforce semantic consistency, which
was originally proposed purely for 2D images. The work of [18] learns a mapping
function that maps pixels in 2D images to a predefined category-level template in
a self-supervised manner. However, it dose not use the learned correspondence
for 3D reconstruction. We show that our work, despite having a focus on 3D
reconstruction, outperforms [18] at learning 2D to 3D correspondences as well.

3 Approach

To fully reconstruct the 3D mesh of an object instance from an image, a network
should be able to jointly predict the shape and texture of the object, and the
camera pose of the image. We start with the existing network from [15] (CMR)
as the baseline reconstruction network. Given an input image, CMR extracts the
image features using an encoder E and jointly predicts the mesh shape, camera
pose and mesh texture by three decoders Dshape, Dcamera and Dtexture. The mesh
shape V is reconstructed by predicting vertex offsets ∆V to a category-specific
shape template V̄ , while the camera pose θ is represented by a weak perspective
transformation. To reconstruct mesh textures, the texture decoder outputs a UV
texture flow (Iflow) that maps pixels from the input image to the UV space. A
pre-defined mapping function Φ further maps each pixel in the UV space to a
point on the mesh surface.

One of the key elements for the CMR method to perform well is to ex-
ploit mannually annotated semantic keypoints for (i) precisely pre-computing the
ground truth camera pose for each instance, and (ii) estimating a category-level
3D template prior. However, annotating keypoints is tedious, not well-defined
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Fig. 3: Overview.(a) Green box: The reconstruction network. (b) Red box: Semantic
part consistency constraint, see Section 3.1 for more details. (c) Blue box: Computing
the canonical semantic UV map and the template shape using the reconstruction net-
work, see Section 3.2. The red dashed arrows show that the gradients from the semantic
part consistency constraint facilitate shape and viewpoint estimation.

for most object categories in the world and impossible to generalize to new cat-
egories. Thus, we propose a method within a more scalable, but challenging
self-supervised setting without using manually annotated keypoints to estimate
camera pose or a template prior.

Not surprisingly, simply taking out the keypoints supervision, as well as all
the related information (i.e., the camera pose and the template prior) from the
CMR network makes it unable to predict camera pose and shape correctly, as
shown in Figure 2(c) and (d). This is due to the inherent ambiguity of hal-
lucinating 3D meshes from only single-view 2D observations, where the model
trivially picks a combination of camera pose and shape that yields the rendering
that matches the given image and silhouette. Consider an extreme case, where
the model predicts the front view for all instances, but is still able to match the
image and silhouette observations by deforming each instance mesh accordingly.

In this work, we propose a framework (Figure 3) designed for self-supervised
mesh reconstruction learning, i.e., with only a collection of images and silhou-
ettes as supervision. The framework consists of: (i) A reconstruction network
(green box) that has the same architecture as [15] – it consists of an image en-
coder E and three decoders Dshape, Dcamera and Dtexture that jointly predict
the mesh deformation ∆V , texture flow Iflow and camera pose θ for the instance
in the image. (ii) A semantic consistency constraint (red box in Figure 3) that
regularizes the learning of module (i) and largely resolves the aforementioned
“camera-shape ambiguity” under the self-supervised setting. We introduce this
module in Section 3.1. (iii) A module that learns the canonical semantic UV map
and category-level template from scratch (blue box in Figure 3). This module is
iteratively trained with module (i) and discussed in Section 3.2.

3.1 Resolving Camera-Shape Ambiguity via Semantic Consistency

In this section, we show the key to solving the “camera-shape ambiguity” is to
make use of the semantic parts of object instances in both 3D and 2D. Specif-
ically, we exploit the fact that (i) in the 2D space, self-supervised co-part seg-
mentation [14] provides correct part segments for a majority of the object in-
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stances, even for those with large shape variations (see Figure 1(b)); and (ii) in
the 3D space, semantic parts are invariant to mesh deformations, i.e., the se-
mantic part label of a specific point on the mesh surface is consistent across all
reconstructed instances of a category. We demonstrate that this semantic part
invariance allows us to build a category-level semantic UV map, namely the
canonical semantic UV map, shared by all instances, which in turn allows us to
assign semantic part labels to each point on the mesh. By enforcing consistency
between the canonical semantic map and an instance’s part segmentation in the
2D space, the camera-shape confusion can be largely resolved.

Part Segmentation in 2D via SCOPS [14] SCOPS is a self-supervised
method that learns semantic part segmentation from a collection of images of
an object category (see Figure 1(b)). The model leverages concentration and
equivariance loss functions, as well as part basis discovery to output a proba-
bilistic map w.r.t. the discovered parts that are semantically consistent across
different object instances. We discuss in the supplementary as to how, besides
generalizing SCOPS to reconstructing objects, our model also improves SCOPS
in return.

Part Segmentation in 3D via Canonical Semantic UV Map Given the
semantic part segmentation of 2D images estimated by SCOPS, how can we ob-
tain the semantic part labels for each point on the mesh surface? One intuitive
way is to obtain a mapping from the 2D image space to the 3D shape space.
Therefore, we propose to first utilize the learned texture flow Iflow by our recon-
struction network that naturally forms a mapping from the 2D image space to
the UV texture space, and then further map the semantic labels from the UV
space to the mesh surface by the pre-defined mapping function Φ. We denote the
semantic part segmentation of image i as P i ∈ RH×W×Np (see Figure 3 in the
blue bbox), where H and W are the height and width of the image, respectively
and Np is the number of semantic parts. By mapping P i from the 2D image
space to the UV space using the learned texture flow, we obtain a “semantic UV
map” denoted as P i

uv ∈ RHuv×Wuv×Np , where Huv and Wuv are the UV map’s
height and width, respectively.

Ideally, all instances should result in the same semantic UV map – the canon-
ical semantic UV map for a category, regardless of shape differences of instances.
This is because: (i) the semantic part invariance states that the semantic part
labels assigned to each point on the mesh surface are consistent across different
instances; and (ii) the mapping function Φ that maps pixels from the UV space
to the mesh surface is pre-defined and independent of deformations in the 3D
space, such as face location or area changes. Thus, the semantic part labels of
pixels in the UV map should also be consistent across different instances.

However, if we directly sample the individual P i via the learned texture
flow Iflow, the obtained semantic UV maps are indeed very different between
instances, as shown in Figure 3 (blue box). This is caused by the fact that (i) the
part segmentation predictions produced by the self-supervised SCOPS method
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are noisy, and (ii) texture flow prediction is highly uncertain for the invisible faces
of the reconstructed mesh. Therefore, we approximate the canonical semantic UV
map, denoted as P̄uv by aggregating the individual semantic UV maps:

P̄uv =
1

|U|
∑
i∈U

Iiflow(P i), (1)

where Iiflow(P i) indicates the sampling of P i by Iflow and U is a subset of selected
training samples with accurate texture flow prediction (details of the selection
process can be found in the appendix). Through this aggregation process, P̄uv

produces a mean semantic UV map, which effectively eliminates outliers (i.e.,
instances with incorrect SCOPS), as well as the noisy pixel-level predictions.

Semantic Consistency between 2D and 3D As mentioned above, because
our model learns via self-supervision and only relies on images and silhouettes
that do not provide any semantic part information, it suffers from the “camera-
shape ambiguity” introduced in Section 1. Take row (i) in Figure 4 as an example.
The model erroneously forms the wing’s tip in the reconstructed bird by deform-
ing the mesh faces assigned to the “head part” (colored in red). This incorrect
shape reconstruction, associated with an incorrect camera pose, however, can
yield a rendering that matches the observed image and its silhouette.

This ambiguity, although is not easy to spot by only comparing the rendering
of the reconstruction with the input image, however, can be identified once the
semantic part label for each point on the mesh surface is available. One can
tell that the reconstruction in row (i) of Figure 4 is wrong by comparing the
rendering of the semantic part labels on the mesh surface and the 2D SCOPS
part segmentation. Only when the camera pose and shape are both correct,
will the rendering and the SCOPS segmentation be consistent, as shown in row
(ii) in Figure 4. This observation inspires us to propose a probability and a
vertex-based constraint that facilitate correct camera pose and shape learning
by encouraging the consistency of semantic part labels in both 2D images and
in the mesh surface.

Probability-based constraint. For each reconstructed mesh instance i, we
map the canonical semantic UV map P̄uv onto its surface by the UV mapping
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Φ and render it using the predicted camera pose θi. We denote the projection
from 3D to 2D as R. We constrain the projected probability map to be close to
the SCOPS part segmentation probability map P i by computing the loss:

Lsp =
∥∥P i −R(Φ(P̄uv); θi)

∥∥2
. (2)

We empirically found the mean squared error (MSE) metric to be more robust
than the Kullback–Leibler divergence for comparing two probability maps.

Vertex-based constraint. We also propose a vertex-based constraint to en-
hance semantic part consistency (see Figure 2 in the supplementary) by enforcing
that 3D vertices assigned a part label p, after being projected to the 2D domain
with the predicted camera pose θi, align with the area assigned to that part in
the input image:

Lsv =

Np∑
p=1

1

|V̄p|
Chamfer(R(V̄p; θi), Y i

p ), (3)

where V̄p is the set of vertices on a learned category-level 3D template V̄ (see
Section 3.2) with the part label p, Y i

p is the set of 2D pixels sampled from the
part p in the original input image and Np is the number of parts. Here we use
the Chamfer distance, because the projected vertices and pixels with the same
part label p in the input image do not have a strictly one-to-one correspondence.

Note that, V̄p is a set of vertices on the category-level shape template V̄ as
opposed to each instance reconstruction V i, since using V i results in a degenerate
solution where the network only alters 3D shape to satisfy this vertex-based
constraint, rather than the camera pose. Instead, using V̄ drives the network
towards learning the correct camera pose, in addition to shape.

3.2 Progressive Training

We train the framework in Figure 3 via progressive training based on two consid-
erations: (a) building the canonical semantic UV map, introduced in Section 3.1,
requires reliable texture flows to map the SCOPS from images to the UV space.
Thus the canonical semantic UV map can only be obtained after the reconstruc-
tion network is able to predict texture flow reasonably well, and (b) a canonical
3D shape template [15, 18] is desirable, since it speeds up the convergence of the
network [15] and also avoids degenerate solutions when applying the vertex-based
constrain as introduced in Section 3.1. However, jointly learning the category-
level 3D shape template and the instance-level reconstruction network leads to
undesired trivial solutions. Thus, we propose an expectation-maximization (EM)
style progressive training procedure below. In the E-step, we train the reconstruc-
tion network with the current template and canonical semantic UV map fixed,
and in the M-step, we update the template and the canonical semantic UV map
using the reconstruction network learned in the E-step.
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E-step: Learning Instance-specific Reconstruction In the E-step, we fix
the canonical semantic UV map as well as the category-level template and train
the reconstruction network mainly with the following objectives. (i) A negative
IoU objective [16] between the rendered and the ground truth silhouettes for
shape learning. (ii) A perceptual distance objective [42, 15] between the ren-
dered and the input RGB images for texture learning. (iii) The probability and
vertex-based constraints introduced in Section 3.1 to resolve the “camera-shape
ambiguity” under the self-supervised setting. (iv) A texture consistency con-
straint to facilitate accurate texture flow learning that will be introduced in
Section 3.3. Other constraints are included in the appendix. Note that in the
first E-step, the template is a sphere and hence the probability and vertex-based
constraints are not used.

M-step: Canonical UV Map and Template Learning In the M-step, we
compute the canonical semantic UV map introduced in Section 3.1 and learn a
category-level template from scratch, i.e., from a sphere primitive. As far as we
know, we are the first method that learns a category-level template from scratch.
This is in contrast to existing methods [18], where the template is either a
readily available instance mesh from the category or is estimated from annotated
keypoints [15]. Jointly learning the shape template along with the reconstruction
network does not guarantee a meaningful “mean shape” which encapsulates the
most representative characteristics of objects in a category. Instead, we propose
a feed-forward template learning approach: the template starts out as a sphere
and is updated every K training epochs by:

V̄t = V̄t−1 +Dshape(
1

|Q|
∑
i∈Q

E(Ii)), (4)

where V̄t and V̄t−1 are the updated and current templates, respectively, Ii is the
input image passed to the image encoder E and Dshape is the shape decoder (see
the beginning of Section 3). Q is a set of selected training images with consistent
mesh predictions and their selection procedure is discussed in the appendix. The
template V̄t is the mean shape of instances in a category for the current epoch,
which enforces a meaningful shape (e.g., the template looks like a bird) rather
than an arbitrary form for the category.

3.3 Texture Cycle Consistency Constraint

One issue with the learned texture flow is that the texture of 3D mesh faces
with a similar color (e.g., black) can be incorrectly sampled from a single pixel
location of the image (See Figure 3 in the supplementary). Thus we introduce
a texture cycle consistency objective to regularize the predicted texture flow
(i.e., 2D→3D) to be consistent with the camera projection (i.e., 3D→2D). As
shown in Figure 5, considering the pixel marked with a yellow cross in the input
image, it can be mapped to the mesh surface through the predicted texture flow
Iflow along with the pre-defined mapping function Φ introduced in Section 3.
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Meanwhile, its mapping on the mesh surface can be re-projected back to the 2D
image by the predicted camera pose, as shown by the green cross in Figure 5.
If the predicted texture flow conforms to the predicted camera pose, the yellow
and green crosses would overlap, forming a 2D → 3D → 2D cycle.

Formally, given a triangle face j, we denote the set of input image pixels
mapped to this face by texture flow as Ωj

in. We further infer the set of pixels

(denoted as Ωj
out) projected from the triangle face j in the rendering operation by

taking advantage of the probability map W ∈ R|F |×(H×W ) in the differentiable
renderer [20] where |F |, H,W are the number of faces, height and width of the
input image, respectively. Each entry in Wm

j indicates the probability of face j
being projected onto the pixel m. We compute the geometric center of both sets
(Ωj

in and Ωj
out), denoted by Cjin and Cjout, respectively as:

Cjin =
1

Nc

Nc∑
m=1

Φ(Iflow(Gm))j ; Cjout =

∑H×W
m=1 W

m
j × Gm∑H×W

m=1 Wm
j

, (5)

where G ∈ R(H×W )×2 is a standard coordinate grid of the projected image
(containing pixel location (u, v) values), and Φ is the fixed UV mapping that,
along with the texture flow Iflow maps pixels from the 2D input image to a mesh
face j, as discussed in the beginning of Section 3. Nc is the number of pixels in
the input image mapped to each triangular face and × indicates multiplication
between two scalars. We constrain the predicted texture flow to be consistent
with the rendering operation by encouraging Cjin to be close to Cjout:

Ltcyc =
1

|F |

|F |∑
j=1

∥∥∥Cjin − Cjout

∥∥∥2

F
. (6)

We note that while not targeting 3D mesh reconstruction directly, a similar
intuition, but with a different formulation was also introduced in [18].

4 Experimental Results

We first introduce our experimental settings in Section 4.1, and present qualita-
tive evaluations for the bird, horse, motorbike and car categories in Section 4.2.
Quantitative evaluations and ablation studies for the contribution of each pro-
posed module are discussed in Section 4.3 and Section 4.4, respectively.

4.1 Experimental Settings

We validate our method on both rigid objects, i.e., car and motorcycle im-
ages from the PASCAL3D+ dataset [39], and non-rigid objects, i.e., bird images
from the CUB-200-2011 dataset [32], horse, zebra, cow images from the Ima-
geNet dataset [5] and penguin images from the OpenImages dataset [19]. We use
progressive training (Section 3.2) to learn the model parameters. In each E-step,
the reconstruction network is trained for 200 epochs and then used to update the
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(a)

(b)

(c)
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Fig. 6: Learned template and instance reconstructions from single-view im-
ages. (a) The learned template shape (first three columns) and semantic parts (last
four columns). (b)-(d) 3D reconstruction from a single-view image. In each row from
left to right, we show the input image, reconstruction rendered using the predicted
camera view and from four other views. Please see the results for additional views in
the appendix video.

template and the canonical semantic UV map in the M-step. The only exception
is in the first round (a round consists of one E and M-step), where we train
the reconstruction network without the semantic consistency constraint. This is
because, at the beginning of training, Iflow is less reliable, which in turn makes
the canonical semantic UV map less accurate.

4.2 Qualitative Results

Thanks to the self-supervised setting, our model is able to learn from a col-
lection of images and silhouettes (e.g., horse and cow images [5] and penguin
images [19]), which cannot be achieved by existing methods [15, 33, 41, 17] that
require extra supervisory signals.

Template and Semantic Parts on 3D Meshes We show the learned tem-
plates for the bird, horse, motorbike and car categories in Figure 6 and Figure 7,
which capture the shape characteristics of each category, including the details
such as the beak and feet of a bird, etc. We also visualize the canonical semantic
UV map by showing the semantic part labels assigned to each point on the tem-
plate’s surface. For instance, bird meshes have four semantic parts – head (red),
neck (green), belly (blue) and back (yellow) in Figure 6, which are consistent
with the part segmentation predicted by SCOPS [14].

Instance 3D Reconstruction We show the results of 3D reconstruction from
each single-view image in Figure 6 (b)-(d) and Figure 7 (b). Our model can
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(a) input image (b) mesh reconstruction (c) semantic template

Fig. 7: More reconstruction results. Visualization of instance-level reconstructions
and semantic templates for the horse, motorbike and car categories.

reconstruct instances from an object category with highly divergent shapes, e.g.,
a thin bird in (b), a duck in (c) and a flying bird in (d). Our model also correctly
maps the texture from each input image onto its 3D mesh, e.g., the eyes of each
bird as well as fine textures on the back of the bird. Furthermore, the renderings
of the reconstructed meshes under the predicted camera poses (2nd and 3rd
columns in Figure 6 and Figure 7) match well with the input images in the first
column, indicating that our model accurately predicts the original camera view.

4.3 Quantitative Evaluations

As a self-supervised approach, our model is more practically suited to reconstruct
many non-rigid objects, e.g., animals captured in the wild that do not have 3D
ground truth meshes available. Therefore, we treat the bird category [32] as
the major one for qualitative evaluation, through the task of keypoint transfer
following previous work [18]. Given a pair of source and target images of two
different object instances from a category, we map a set of annotated keypoints
from the source image to the target image by first mapping them onto the learned
shape template and then to the target image. Each mapping can be carried out
by either the learned texture flow or the camera pose, as explained below.

To validate 3D reconstruction results, we also evaluate our model on rigid
objects, e.g., cars [39], in terms of 3D IoU. However, we note that reconstruction
of such rigid objects for which the ground truth 3D meshes/CAD models are
easy to obtain, is not the major focus of this self-supervised method.

We first evaluate shape reconstruction on the bird category. Due to a lack
of ground truth 3D shapes in the CUB-200-2011 dataset [32], we follow [15]
and compute the mask reprojection accuracy – the intersection over union (IoU)
between rendered and ground truth silhouettes. As shown in Table 1, our model is
able to achieve comparable if not better mask reprojection accuracy compared to
CMR [15], which unlike our method is learned with additional supervision from
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Table 1: Quantitative evaluation of mask IoU and keypoint transfer (KT) on the CUB
dataset [32]. The comparisons are against the baseline supervised models [15, 18].

(a) Metric (b) CMR [15] (c) CSM [18] (d) Ours

Mask IoU ↑ 0.706 - 0.734
KT (Camera) ↑ 47.3 - 51.2

KT (Texture Flow) ↑ 28.5 48.0 58.2

Table 2: Ablation studies of each proposed module by evaluating mask IoU and key-
point transfer (KT) on the CUB-200-2011 dataset [32].

(a) Metric (b) Ours (c) w/o Ltcyc (d) w/o Lsv & Lsp (e) with original [14]

Mask IoU ↑ 0.734 0.731 0.744 0.731
KT (Camera) ↑ 51.2 48.5 29.0 48.7

KT (Texture Flow) ↑ 58.2 51.0 32.8 52.9

semantic keypoints. This indicates that our model is able to predict 3D mesh
reconstructions and camera poses that are well matched to the 2D observations.

Next, we evaluate shape reconstruction on the car category. Although PAS-
CAL3D+ [39] provides “ground truth” meshes (the most similar ones to the
image in a mesh library), our reconstructed meshes are not aligned with these
“ground truth” meshes since our self-suerpvised model is free to learn its own
“canonical reference frame”. Thus, to quantitatively evaluate the intersection
over union (IoU) between the two meshes, following CMR [15], we exhaustively
search a set of scale, translation and rotation parameters that best align to the
“ground truth” meshes. Our method achieves an IoU (0.62) that is comparable
to CMR [15] (0.64), even though the latter is trained with keypoints supervision.

Consider two different instances of a category as source and target images. To
evaluate learned texture flow via keypoint transfer, given an annotated keypoint
ks in a source image (s), we map it to a triangle face (Fj) on the template using
its learned flow Isflow. We then find all pixels (Ωj) in the target image (t) that are
mapped to the same triangle face Fj , by its texture flow Itflow and compute the
geometric center of all pixels in Ωj . We compare the location of the geometric
center of Ωj to the ground truth keypoint kt and find the percentage of correct
keypoints (PCK) as those that fall within a threshold distance α = 0.1 of each
other [18]. Figure 4 (a) in the appendix demonstrates qualitative visualizations
of the keypoint transfer using texture flow and Table 1 shows that the texture
flow learned by our method, even without supervision, outperforms the 2D→3D
mappings learned by the supervised methods [15, 18].

To evaluate the learned camera pose via keypoint transfer, we first find the 3D
template’s vertex v that corresponds to a source image’s annotated 2D keypoint
ks by rendering all 3D vertices using its predicted pose θs. Then, v is the vertex
whose 2D projection lies closest to the keypoint ks. Next, we render the point
v with a target image’s predicted pose θt and compare it to its ground truth
keypoint kt to compute PCK. Figure 4 (b) in the supplementary demonstrates
the keypoint transfer results by the predicted camera pose. Table 1 shows that
our model achieves favourable performance against the baseline method [15].
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4.4 Ablation Studies

In this section, we discuss the contribution of each proposed module: (i) The
semantic consistency constraint discussed in Section 3.1. (ii) The texture cy-
cle consistency introduced in Section 3.3. We evaluate on the CUB-200-2011
dataset [32] and use the mask reprojection accuracy as well as the keypoint
transfer (via texture flow and via camera pose) accuracy discussed in Section 4.3
as our metrics.

As shown in Table 2 (b) vs. (d) our baseline model trained without the
semantic consistency constraint performs much worse at the keypoint transfer
task than our full model, indicating this baseline model predicts incorrect texture
flow and camera views. We note that this baseline model achieves better mask
IoU because the model trained without any constraint is more prone to overfit
to the 2D silhouette observations.

Our model trained without the texture cycle consistency constraint achieves
worse performance (Table 2 (b) vs.(c)) at transferring keypoints using the pre-
dicted texture flow. This proves the effectiveness of the texture cycle consistency
constraint in encouraging the model to learn better texture flow.

5 Failure Case and Limitations

Our method performs sub-optimally for objects with large concavities and ob-
jects with a genus greater than 0, such as horses and chairs. It captures the
major shape characteristics of each instance but ignores some details, e.g., the
two wings of flying birds, and the legs of zebras or horses are not separated,
as shown in Figure 6 and Figure 7. Moreover, our method utilizes the SCOPS
method to provide semantic part segmentation, and so it suffers when the se-
mantic part segmentation is not accurate, as shown in the first row of Figure 8 in
the supplementary or if the SCOPS model fails to discover meaningful parts for
a certain category, such as airplanes, as shown in the supplementary document
of [14]. We leave these failure cases and limitations to future works.

6 Conclusion

In this work, we learn a model to reconstruct 3D shape, texture and camera
pose from single-view images, with only a category-specific collection of images
and silhouettes as supervision. The self-supervised framework enforces semantic
consistency between the reconstructed meshes and images and largely reduces
ambiguities in the joint prediction of 3D shape and camera pose from 2D obser-
vations. It also creates a category-level template and a canonical semantic UV
map, which capture the most representative shape characteristics and semantic
parts of objects in each category, respectively. Experimental results demonstrate
the efficacy of our proposed method in comparison to the state-of-the-art super-
vised category-specific reconstruction methods.
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