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Abstract

High-dynamic-range (HDR) images can be created with standard camera hardware by capturing and combining
multiple pictures, each sampling a different segment of the irradiance distribution of a scene. This seemingly
straightforward process involves several important steps, which will be the focus of this chapter. We start by
examining the problem of selecting the set of exposures that properly measures the full dynamic range of a
particular scene, a process known as metering for HDR. We then describe how to perform radiometric calibration,
needed to estimate the incoming irradiance from the low-dynamic-range (LDR) images. After that, we offer an
overview of methods to merge multiple LDR images into a single HDR image. Finally, we discuss methods to
compensate for camera and scene motion, which would otherwise cause artifacts in the final HDR image.
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1. Introduction
In this chapter, we examine approaches to capture high-dynamic-
range (HDR) images and video using conventional digital
cameras. This is in contrast with cameras that are specifically
designed to capture a larger dynamic range in a single exposure

(see Ch. 2). Since standard digital sensors can only capture a
small fraction of the incident irradiance (see Ch. 1), approaches
for capturing HDR images with a standard sensor must take
a stack of N sequential images Z1, . . . ,ZN with different ex-
posure settings, and combine their information together as a
post-process to reconstruct a high-dynamic-range irradiance
image, E. We refer to these as stack-based algorithms to HDR
capture and reconstruction.

While the focus of this book is HDR video, a thorough
discussion on HDR capture for still images is very important.
First and foremost, a large portion of the methods proposed
for video HDR use a similar strategy, in that they acquire a
stream of differently exposed frames. Additionally, many of
the topics we cover in this chapter are central also in the case of
video HDR, even when the latter is captured with specialized
sensors.

From a historical perspective, and although HDR imaging
has only recently become widespread, the analog counterpart
of today’s stack-based approaches was introduced as early as
the mid-1800s by French photographer Gustave Le Gray. To
expand the limited dynamic range he could capture on film,
he literally cut and pasted together multiple films, each mea-
suring a different portion of the dynamic range. The resulting
landscapes are simply breathtaking (see Fig. 1). The idea of
taking multiple shots to extend the dynamic range a camera can
capture re-appeared in the context of digital photography over
a hundred years later: two decades ago, Mann (1993)1 and

1The algorithmic details of the work by Mann were published in a later
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Figure 1. The Great Wave, Sète, Gustave Le Gray, 1857. In one of
the earliest examples of stack-based HDR imaging, French photogra-
pher Gustave Le Gray extended the dynamic range he could capture
by taking two images with different exposure times and combining
the two negatives into one. From: www.metmuseum.org

Madden (1993) proposed to combine multiple low-dynamic-
range (LDR) pictures into a single HDR image. Since then,
stack-based HDR imaging has attracted growing interest by the
research community. Today, most consumer cameras, and even
some high-end DSLR cameras, offer HDR shooting modes
generally based on this strategy.

The layout of this chapter roughly follows the steps in-
volved in stack-based HDR imaging generation. First, we
must determine how many pictures to take and what their expo-
sure times should be to adequately capture the dynamic range
of a given scene (Sec. 2). Once the images are captured, we
must then merge their information together to reconstruct the
HDR result (Sec. 3). These approaches work well for static
scenes captured with tripod-mounted cameras.

However, if the scene is dynamic or the camera is handheld,
the slight differences between exposures in the stack will pro-
duce unacceptable ghost-like artifacts in the final result. Since
this scenario is very common, a large body of research on stack-
based HDR image reconstruction focuses on handling motion
(Sec. 4), and two major kinds of methods have been developed:
(1) methods that remove ghosting artifacts by rejecting infor-
mation from images that contain motion (Sec. 4.2), and (2)
methods that perform some kind of non-rigid registration to
align the input images (Sec. 4.3).

Throughout the chapter, we will use the notation shown in
Table 1, often rewriting equations from the different papers to
match this notation for consistency and clarity.

paper (Mann and Picard, 1995).

2. Metering for HDR Imaging

When a photographer presses the shutter button to take a pic-
ture, digital cameras analyze the scene content to determine
the optimal capture parameters. Collectively, the algorithms
designed to select these parameters are referred to as the three
A’s: auto focus (AF), auto white balance (AWB), and auto
exposure (AE). The first two, AF and AWB, will not be dis-
cussed in this chapter as they do not require modification for
the process of HDR capture. Auto exposure, also called me-
tering, is the process of selecting the combination of exposure
time, ISO setting, and aperture that optimally capture a spe-
cific scene based on some criterion. The heuristics involved in
metering algorithms range from considerations about motion
blur to signal quality in terms of both signal-to-noise ratio and
quantization. Additionally, they may include optimizations
better suited to work with the algorithms used by the image
signal processor (ISP) in later stages.

In the absence of automatic methods, metering is the pho-
tographer’s responsibility, requiring both technical and artistic
skills. This process is particularly involved in the context
of analog photography, because of the non-linearity of the
film’s response. An example of a beautifully developed theory
for metering is the Zone System by Ansel Adams and Fred
Archer (Adams, 1948). In a nutshell, Adams and Archer sug-
gest to divide the range of gray levels that can be captured by
the camera in eleven segments, also called “zones.” Metering
then becomes the process of selecting an exposure time that as-
signs zones to the correct range of irradiance in the scene. For
instance, the exposure time should be selected so that the fifth
zone captures the values in the middle of the scene’s irradiance
distribution.

However, when capturing the scene with a single exposure
and a digital camera, an optimal AE algorithm is expose-to-
the-right (ETTR)2; in essence, ETTR selects the longest possi-
ble exposure time that does not induce saturation (or blur for
hand-held cameras or dynamic scenes). The resulting image
minimizes the impact of photon shot noise (PSN). Because
of the discrete nature of light, the actual number of photons
hitting a pixel in a given time can be modeled by a random
Poisson process. Noting that for large numbers a Poisson pro-
cess can be approximated by a Gaussian process, the number
of incoming photons is np ∼ N (µ,σ2 = µ), where µ is the
average number of collected photons. Therefore the signal-to-
noise ratio (SNR) increases with a longer exposure time, as
the latter increases the average number of collected photons:
SNR = µ/σ =

√
µ . A shorter exposure time also causes a

larger quantization error: the analog signal from the sensor is
linearly quantized by the analog-to-digital converter (ADC),
which induces a mean square error of ∆2/12, where ∆, the
size of the quantization bins, decreases linearly with the ex-
posure time, see Fig. 2(a). By encouraging a long exposure
time, ETTR minimizes the quantization mean square error

2The name stems from the fact that longer exposure times push the center
of mass of the brightness histogram towards the right, see also Fig. 2(c).
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N number or exposures in the source image stack
{Zi}i=1:N stack of N input LDR source images
Zi(p) value of pixel p in the ith exposure
{ti}i=1:N exposure times for each of the N source images on the stack
Ri, j exposure ratio between exposures j and i (if the exposure time is the only parameter changing, then Ri, j = t j/ti)
E HDR irradiance image of the scene (W/m2), which the algorithms in this chapter attempt to reconstruct from

an input stack
Ẽ estimated scene irradiance
{Xi}i=1:N stack of N exposure images (J/m2, computed as Xi = E · ti)
f (·) camera response function (CRF), which converts the pixel exposure X to the pixel value Z, i.e., Zi(p) = f (Xi(p))
g(·) inverse camera response function (ICRF), which converts pixel values to pixel exposures, i.e., Xi(p) = g(Zi(p)) (note that g(·)

is not an exact inverse of f (·))
wi(p) weight matrix indicating how well exposed each LDR pixel is, e.g., for merging LDR images to form a final HDR result
Zref reference input LDR source, for algorithms that need a reference image from the stack to be specified

Table 1. Notation used in this chapter.

and increases the average number of collected photons, thus
increasing the SNR.

Stack-based HDR imaging also requires three A’s. Focus
and white balance, as mentioned before, need no adaptation.
On the contrary, the metering strategy needs to account for
the fact that different segments of the scene’s irradiance must
be sampled by different pictures in the stack. Note that the
aperture setting affects the depth-of-field of the image, and
thus should typically not change across the stack, leaving only
exposure time and ISO sensitivity as the main parameters that
can be adjusted3.

Metering for HDR imaging is more involved than single-
picture metering for several reasons. First, a metering algo-
rithm needs to select the actual number of pictures required to
completely sample the scene’s irradiance, given the sensor’s
dynamic range. Note that this may be complicated by practical
constraints: on the one hand a large number of captures may
be impractical for memory and computational requirements.
A larger stack also requires longer time to capture, making it
more likely for the scene content to change or move. It may
also degrade the user experience by forcing the photographer
to wait while a long stream of pictures are captured. On the
other hand, a sparser sampling of the range, i.e., taking fewer
pictures separated by a larger number difference in exposure
time, may cause registration and merging issues. Second, and
perhaps more obvious, it needs to select multiple exposure
times. Several strategies have been proposed to perform meter-
ing for HDR imaging. We can roughly classify these methods
in three main categories.

Range-agnostic methods use a standard auto-exposure algo-
rithm together with a simple progression of exposures, prede-
fined or user-supplied (such as 0,+1,−1 EV4). This method is

3However, HDR reconstruction methods based on patch-based synthesis
(see Sec. 4.3.2) can handle changes in aperture as well, as first shown by Sen
et al. (2012).

4In general EV, or exposure value, indicates a specific exposure level,
corresponding to a set of different combinations of exposure time and aperture
setting. It is also used in a relative sense to indicate power-of-2 increments of
exposure level, also called “stops.” Here we use the latter definition, where 0
EV corresponds to the exposure level obtained with standard AE, and +1 EV
indicates a picture that captures twice as many photons.

the most common strategy found in commercial products since
it is extremely efficient from a computational standpoint—no
computation is really needed. However, these methods do not
provide any guarantee that the scene’s irradiance will be fully
captured: over- or under-exposed regions may still appear in
the final result.

Range-aware methods select the exposure time by looking
at some top and bottom percentile of pixel values in the image.
By constraining the number of the pixels at both ends of the
range, or their maximum and minimum brightness, this class
of methods guarantees that the darkest and brightest regions
of the scene be covered. The method proposed by Bilcu et al.
(2008) is an example of this strategy: after metering for a single
image, they select the exposure time of two more images to
capture the highlights and the dark areas of the scene. To
find the actual extent of the range, they iteratively change the
exposure time while streaming the viewfinder frames. Because
they always capture three images, the resulting stacks may
be larger than necessary and suboptimal in terms of the noise
characteristics. Gelfand et al. (2010) use a similar strategy,
but allow the number of exposures to vary based on the actual
range of a specific scene, although they limit the maximum
number of stops between images.

Noise-aware methods model the noise characteristics of
the camera system, sometimes even accounting for the scene’s
radiance distribution. For instance, the noise model proposed
by Hasinoff et al. (2010) shows that using a higher ISO setting
is beneficial to SNR for a given time budget: the gain boosts
the signal before quantization, thus reducing the effect of ADC
noise. Based on this observation they propose an optimal,
though scene-agnostic, selection of the exposure times for
stack-based HDR. A closely related solution is the “HDR+”
mode available on the Google NEXUS devices (Levoy, 2014).
Rather than selecting different exposures, they take a burst
of pictures with the same exposure time, selected to be as
short as needed to avoid saturation. Because of the stochastic
properties of photon shot noise and ISO noise, merging the
different pictures yields a higher SNR in the dark regions of
the scene. This strategy, however, does not seem to address
the problem of quantization noise, which, as mentioned above,
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Figure 2. Changing the exposure time affects, among other things, the granularity of the quantization intervals and the shape of the histogram
of the captured image. Specifically, the granularity is finer for longer exposure times: the top of the left pane (a) shows the irradiance
distribution of an hypothetical scene and the quantization bins of three exposures separated by one stop (t3 = 2t1 = 4t1) for a hypothetical
4-bit sensor which measures pixel values from 0 to 15. The last bin is indicated with a dotted line, signifying that it captures all the irradiance
values from its left boundary to infinity. This causes saturation in the image, as is visible in column (b), which shows the measured irradiance
distribution for these exposure times. In the digital domain, the center of mass of these histograms shifts towards the right as the exposure
time is lengthened (c); this is why the process of selecting the longest exposure that does not induce saturation is called expose-to-the-right
(ETTR), in this case exposure time t1. Note that all the graphs are normalized to show details, and the saturated pixel bins are clamped to fit
in the graph.

is a particularly pressing issue in the case of short exposures,
where the size of the quantization bins is large.

Other noise-aware methods define the optimal sequence of
exposures based on the actual distribution of irradiance from
the scene. Leveraging on this knowledge, these algorithms
can produce a smaller stack with a higher signal-to-noise ratio.
Granados et al. (2010) perform an accurate analysis of the
different sources of noise in the image formation process of
linear cameras and greedily determine the optimal stack—in
terms of exposure times and actual number of exposures—
given a target SNR. To predict the SNR for a specific scene,
they assume an a priori knowledge of the histogram of the
scene irradiance. This is also similar to the work by Chen
and El Gamal (2002). The method by Gallo et al. (2012)
extends these methods in two ways. First, it proposes a strategy
to compute the actual HDR histogram of the irradiance of a
specific scene. Second, it finds the globally optimal stack
for a generic camera response function, making it possible to
use merging strategies designed for non-linear images. Fig. 3
shows a result from the method by Gallo et al. (2012).

When the metering process is completed, the selected im-
ages can be sequentially captured. In the following sections
we will discuss the processing involved in the combination of
the resulting LDR images.

3. From low dynamic range to high
dynamic range

Once the necessary LDR images are selected and captured,
they need to be combined into a single irradiance map. In this
entire section, we assume that the camera is steady, and that
the captured scene is static during the acquisition of the stack;
in other words, a given pixel p in the sensor measures the same
irradiance E across the whole stack (these assumptions will

Figure 3. A naı̈ve metering strategy, even one that prevents over- and
under-saturation in the final image, may lead to suboptimal results. In
this example, Gallo et al. (2012) compare their method with a uniform
sampling of the exposure domain that uses enough images to capture
the whole dynamic range (i.e., each pixel is correctly exposed at least
once in the stack). For the scene shown in the tonemapped image
on the left, their method with one that captures the whole dynamic
range uniformly (in this case with 5 pictures, each 2 stops apart).
Nevertheless, as shown in the insets in the bottom row, their method
outperforms the uniform sampling method (insets in the top row) in
terms of noise. Image courtesy of Gallo et al. (2012).

be relaxed in Sec. 4). We will further assume that the only
parameter that changes across the stack is the exposure time
texp and, possibly, the ISO gain g. Without loss of generality,
we subsume both with the variable t = texp ·g.

The measured energy density (Joules/m2), often referred
to as exposure, can then be modeled as:

Xi(p) = E(p) · ti, (1)

where i is the index of the specific LDR image in the stack.
Eq. 1 is called reciprocity assumption because it states that
the exposure Xi(p) can be kept constant when the irradiance
changes by a factor k, provided that the exposure time t is
also changed by a factor 1/k. This effect was first reported by
Bunsen and Roscoe (1862).

There are two main approaches to the problem of combin-
ing information from the LDR images. The first works directly
in the pixel’s digital value, and never estimates the underlying
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irradiance map (these methods are often referred to as “expo-
sure fusion” methods, see Sec. 3.2.3). The second approach
works in the irradiance domain and computes an actual HDR
map. The latter requires radiometric calibration, the process of
determining the mapping between the digital value of a pixel
and the corresponding irradiance (up to a scale factor), which
we will discuss first. Later, we will describe different strategies
to merge the LDR images into the final HDR irradiance map,
and conclude this section by discussing exposure fusion tech-
niques. Note that tone-mapping, the process of compressing
the dynamic range so that the image can be shown on a regular
low-dynamic-range display, will not be covered in this chapter,
but is discussed in the second part of this book.

3.1 Radiometric calibration
Eq. 1 describes the relationship between the irradiance E(p)(
W/m2

)
at pixel p and the corresponding energy density Xi(p)(

J/m2
)
. However, we cannot always access X directly. In

analog cameras, the film’s opacity relates to exposure via a
highly non-linear curve called the characteristic (or Hurter–
Driffield) curve. In CCD and CMOS cameras, we can often
access the RAW values, which are linearly related to the ex-
poure X . However, manufacturers apply carefully-designed
transfer functions that both compress the data and enhance the
quality of the final image, see Fig. 4. These curves, combined
with any other linear and non-linear process applied by the rest
of the image processing pipeline (e.g., white balance), can be
combined in a single function f , called the camera response
function (CRF):

Zi(p) = f (Xi(p)) = f (E(p) · ti), (2)

where Zi(p) is the digital value associated with pixel p in
the ith exposure. If we know the inverse of the CRF, we can
estimate the irradiance at the pixel:

Ẽ(p) = f−1(Zi(p))/ti. (3)

Strictly speaking, the CRF f is not invertible due to sat-
uration, since all pixels whose irradiance is beyond a certain
value are mapped to the highest digital value. Furthermore, the
process of quantization maps a finite set of irradiance values
to the same bin. Therefore, the function f is not one-to-one
and cannot be inverted; after all, if it was invertible, the full
irradiance could be recovered from a single image. Despite
this observation, we follow conventional notation, and say that
radiometric calibration is the process of estimating the inverse
of the CRF, g = f−1. By “inverse function,” we simply mean
a look-up table that remaps the non-linear values Zi to values
that are linearly related to the original irradiance Ẽ, saturation
and quantization aside.

Although different algorithms have been proposed for ra-
diometric calibration, they generally assume that the CRF is
fixed; it can then be sampled by taking multiple pictures of
the same scene (same irradiance at each pixel) with different
exposure times. The assumption that the CRF does not change

across the pictures in a stack is paramount if its estimation is
to be accurate. However, it is worth pointing out that cam-
era manufacturers spend a great effort to optimize the visual
quality of the final image, sometimes adapting the CRF to a
specific scene to achieve this (Kim et al., 2012); this poses
limits to the overall accuracy of the estimation process.

Camera manufacturers are often reluctant to share informa-
tion about CRFs, which are their “secret sauce” necessary to
deal with the low quality of the pictures that popular, cheap
sensors produce. However, a couple of assumptions are fairly
safe to make, when performing radiometric calibration. First
and foremost, it is commonly assumed that f is monotonic. It
is also natural to accept that f be spatially uniform.

The literature on radiometric calibration is vast. How-
ever, based on the assumption they make about the shape of
the CRF, most approaches can be classified into one of two
classes: parametric and non-parametric methods. We describe
a few representative methods from these two categories in
Sec. 3.1.1 and Sec. 3.1.2. A small number of methods explore
the possibility of estimating the CRF from a single image, but
because this class is orthogonal to the previous classification,
we describe it separately in Sec. 3.1.3.

3.1.1 Parametric methods for radiometric calibration

While the CRF can differ from camera to camera, and even
for the same camera but different scenes, it is unlikely that its
form be too exotic. Based on this observation, several methods
assume a specific functional form for the CRF and attempt to
estimate it using different strategies.

Farid (2001) assumes the CRF to be a simple gamma func-
tion, Z = X γ , in which case the radiometric calibration process
is reduced to estimating γ . He then observes that gamma-
compressing a signal introduces higher order harmonics in the
spectrum of the image. With that, he estimates the gamma as:

argmin
γ

∑
ω1,ω2∈ [0 ,2π)

|B(ω1,ω2)|, (4)

where B is the bicoherence of the Fourier transform of Z, a
measure of the correlation of harmonically related frequen-
cies (Farid, 2001).

In their work on HDR, Mann and Picard (1995) assume the
CRF to be of a slightly more general form: Z = α +βX γ . To
estimate α , essentially the black level of the camera, they use
a picture captured with the lens cap on, usually referred to as
dark frame. Then, assuming the images to be registered, they
compute the cross-histogram of the intensity values of a pair of
images. For 8-bit images, for example, this is a 256×256 two-
dimensional histogram where bin (r,c) contains the number of
pixels such that Zi(p)= c and Z j(p)= r. The parameters (β ,γ)
can then be found by regression. Mann (2000) later extends
this work by considering a number of different analytical forms
for the CRF.

Mitsunaga and Nayar (1999) assume a polynomial form of
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Figure 4. Imaging pipeline of a typical digital camera showing the different sources of noise. The radiant power of the scene is captured by
the camera and integrated over the area of the lens aperture, over the time the shutter is open, and over the area of the pixel’s footprint to be
converted into energy. This signal could be cut off by the saturation of the sensor, which limits the dynamic range of the camera. The result is
then quantized by an analog to digital converter (ADC), and the camera response function (CRF) is applied to get the final non-linear digital
pixel values. Diagram inspired by Figs. 1 of Debevec and Malik (1997) and of Hasinoff et al. (2010). Tree model courtesy of vecteezy.com.

the inverse of the CRF. Specifically,

X = f−1(Z) =
K

∑
k=0

ckZk, (5)

where K is the order of the polynomial. Given a rough estimate
of the exposure time ratio Ri,i+1, the exact ratio and the inverse
of the CRF can be found as

argmin
{cn},Ri,i+1

∑
i

∑
p

(
∑
k

ck(Zi(p))k−Ri,i+1 ∑
k

ck(Zi+1(p))k

)2

.

(6)

This is a straightforward LS optimization that can be solved
iteratively for Ri,i+1 and the polynomial coefficients {cn}, until
convergence.

Grossberg and Nayar (2003a) relax the assumption on the
CRF having a specific analytical form. They start by observing
that, under the assumption that CRFs are monotonic, the space
of the CRFs is a convex space, therefore a linear combination
of CRFs is still a CRF. After collecting a large number of real
CRFs, { f j} j=1:J , they compute the first M eigenvectors of the
covariance matrix whose elements are defined as:

Cr,c = ∑
j
( f j(Xr)− f (Xr))( f j(Xc)− f (Xc)), (7)

where f = 1/J ∑
J
j=1 f j, X are different exposure values, and

(r,c) index the bin in the covariance matrix. They show that as
few as M = 3 eigenvectors can capture 99.5% of the energy,
while using M = 9 eigenvectors produces curves that are visu-
ally indistinguishable from the ground truth. This approach is
accurate and extremely efficient, which is the reason why it is
used by several methods, as we will see in later sections.

3.1.2 Non-parametric methods for radiometric calibration
Making explicit assumptions on the analytical form of the
CRF is not necessary. After all, radiometric calibration can
be reduced to computing the look-up table that maps digital
values to irradiance (or exposure) estimates, while respecting
some properties.

In one of the seminal papers that perhaps most popularized
modern HDR stack-based imaging, Debevec and Malik (1997)

use a least square formulation to recover the inverse of the
camera response function as well as the irradiance values,
while imposing smoothness of the recovered response:

argmin
E,g

∑
i,p
(E(p)−g(Zi(p))/ti)+λ

Zmax

∑
z=Zmin

g′′(z), (8)

where g = f−1. Essentially, the first term imposes that Eq. 3
be satisfied, while the second encourages smoothness of the
recovered CRF. Changing λ in Eq. 8 has a strong impact on
the overall shape of the estimated CRF; for this reason their
method can be seen as a means to convert the images in the
stack to the same domain, rather than to perform accurate
calibration.

Lee et al. (2013) make the acute observation that the es-
timates for the exposures Xi from the different images in the
stack should be linearly dependent. More formally, the matrix
formed with the N exposure images represented as column
vectors, [X1,X2, . . . ,XN ], should have rank 1. With the ma-
trix O = [Z1,Z2, . . . ,ZN ], where the columns are the observed
images, the inverse of the CRF g can then be then found as

g = argmin
g

rank(g⊗O), (9)

where the operator ⊗ represents an element-wise application
of a function. For numerical considerations, rather than mini-
mizing the rank of the matrix, the authors suggest to minimize
the ratio of the first two singular values of g⊗O (this is also
called condition number). The authors propose to solve

g = argmin
g

φ(g⊗O)+λ ∑
Zi

H

(
− ∂g

∂Z

∣∣∣∣
Zi

)
, (10)

where φ(·) is the first condition number of a matrix, and H(·)
is the Heaviside step function, which is 1 if its argument is
non-negative, and 0 otherwise. The second term encourages
monotonicity: it adds a penalty that is proportional to the
number of points where g is decreasing.

Another interesting approach is the work of Kim et al.
(2012). Based on their analysis of a large database of JPEG+RAW5

5RAW images are in first approximation linear with the exposure X , and
can therefore be used as ground truth to estimate the irradiance impinging the
sensor.
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images taken with different cameras and settings, they propose
that a single CRF, as traditionally defined and estimated, is
not sufficient to explain all of the in-camera processing steps.
They observe that cameras perform a gamut mapping that is
a function of the scene, or, more specifically, of the “picture
style.” Therefore, they propose the following image formation
model:

Z = f (h(TsTwX)), (11)

where h(·) is the gamut mapping, Ts is the conversion matrix to
sRGB, and Tw is the white balance matrix. The key observation
is that the gamut mapping, carefully adapted to the scene’s
type to improve the visual quality of the JPEG image, can
be detrimental to the estimation of the inverse of the CRF;
however, they hypothesize that the pixels that are affected the
most by gamut mapping are the ones that highly saturated (i.e.,
in the HSV colorspace they have a high S value), and show
that removing them from the computation of the CRF allows
for a more accurate result.

Virtually all the methods described in this section require
that the input stack be perfectly registered; in other words, they
assume that the underlying irradiance at pixel p is the same
across the stack. Grossberg and Nayar (2003b) propose to over-
come this constraint by estimating intensity mapping functions
(IMFs). The idea is similar to that of comparagrams (Mann
and Picard, 1995): IMFs capture how the brightness values
change between two images in the stack. However, rather than
building the cross-histogram of two images, which implicitly
assumes registration, they look at the cumulative histogram of
brightness: C(Z̃) = ∑

Z̃
Z=0 H(Z), where H is the histogram of

the image. The advantage of the cumulative histogram of an
image is that it is robust to small motions in the scene. Given
the cumulative histogram of two images C1 and C2, the IMF
τ1,2 is straightforward to compute:

τ1,2(Z1) =C−1
2 (C1(Z1)). (12)

More recently, Badki et al. (2015) proposed an algorithm
specifically designed to tackle the problem of radiometric cal-
ibration for scenes with significant motion. Their approach
builds upon both the work by Grossberg and Nayar (2003b) and
the method for radiometric calibration by rank-minimization
of Lee et al. (2013). First, inspired by the method of Hu et al.
(2012), they extend the method of Grossberg and Nayar to
large motions by proposing a new RANSAC-based method
for computing the IMFs that is robust to such motions. Sec-
ond, they replace the least-squares optimization for solving for
the CRF in Grossberg and Nayar with the rank-minimization
scheme of Lee et al. However, the original method by Lee
et al. uses artifact-prone, pixel-wise correspondences in their
optimization, so Badki et al. reformulate the optimization to
replace these correspondences with IMFs. The result is an al-
gorithm that can solve for the CRF even in cases of significant
camera and scene motion.

3.1.3 Single-image methods for radiometric calibration
The methods we described thus far assume that multiple im-
ages Zi of the same scene are available, essentially allowing to
measure different segments of the CRF. However, radiometric
calibration can also be performed on a single image, though
with a potentially lower accuracy. Single-image methods can
be beneficial in the context of stack-based HDR imaging when
the assumption that the CRF is the same across the stack is not
valid.

Matsushita and Lin (2007) leverage the fact that the dif-
ferent sources of noise in a camera system can be modeled
with symmetric distributions: the cumulative noise distribution
should then be symmetric as well, and any deviation from the
overall symmetry results only from the non-linearity of the
CRF. Therefore, using existing methods to estimate the noise
distribution from a single image, they frame the problem of
radiometric calibration as:

g = argmin
g

ξη , (13)

where ξη is a measure of the skewness induced by f to the
noise distribution η . Eq. 13 essentially states that g should
restore the symmetry of the noise distribution that is expected
before the CRF is applied to the image.

Lin et al. (2004) propose another single-image method.
They observe that, due to the finite size of the pixels, the
irradiance of pixels at the boundary between two uniform
regions is a linear combination of the values on either side of
the edge. Moreover, moving along a direction orthogonal to
the edge in image space should correspond to moving along
a line in RGB space only if the CRF is linear. However, if
a non-linear CRF is applied to the pixel values, these linear
segments become curved. Therefore, they use the method by
Grossberg and Nayar (2003a) to parametrize the CRF, and
formulate an optimization problem where the solution for g
maximizes the linearity in the RGB space of several segments
that cross image edges.

Lin et al. (2004) extend this method to a single, grayscale
image based on the same idea: the irradiance values of edge
pixels should be a linear combination of the irradiances of
the regions on either side of the edge. However, since color
is not available, they look at the histograms of the intensities
in patches lying across edges. These histograms should be
roughly uniform, because the point spread function, together
with the finite pixel size, turns a sharp edge in a smooth gra-
dient. Once again, they formulate an optimization problem
where the inverse CRF is the function that maximizes the uni-
formity of histograms of different “edge” patches.

The methods described in this section are not intended to
serve as a complete survey the space of radiometric calibra-
tion methods; rather they are meant to offer insight on the
strategies most commonly used. Many other relevant methods
have been proposed, such as methods that model and esti-
mate the noise characteristics of the sensor (Tsin et al., 2001;
Granados et al., 2010), approaches based on a probabilistic
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framework (Xiong et al., 2012), or algorithms working with
video sequences, where the CRF may also vary from frame to
frame (Grundmann et al., 2013).

3.2 Merging the LDR images into the final HDR re-
sult

The process of radiometric calibration we described in Sec. 3.1
essentially maps images captured with different exposure times,
and processed with non-linear operators, to the same linear
domain. In this domain, an estimate of the irradiance Ẽ(p)
can be computed as a linear combination of the values of the
corresponding pixels across the stack:

Ẽ(p) =
∑i wi(·) ·Xi(p)/ti

∑i wi(·)
, (14)

where we do not make the dependency of the weights wi(·)
explicit because, for different methods, they can be a function
of the pixel value Zi(p) or the exposure Xi(p). Eq. 14 is at
the heart of most methods that merge multiple LDR images
into a single HDR image, with the difference between the
various methods lying in the actual definition of the weights
w. These weights can have a big impact on the quality of
the final irradiance estimate because the different images in
the stack will, in general, be affected by different amounts of
quantization noise, photon shot noise, thermal noise, etc.

In their paper, Debevec and Malik (1997) observe that the
non-linearity induced by clipping (saturation or underexposure)
limits the accuracy with which the true exposure X of these
pixels can be recovered. Therefore they empirically define a
simple triangle function for w that attenuates the contribution
of pixels whose exposure is close to either end of the range:

wDM(Z) = min(Z−Zmin,Zmax−Z), (15)

where [Zmin,Zmax] is the range of the pixel values. Mann and
Picard (1995) adopt a similar solution, but quantify more ac-
curately the quality of the irradiance estimate offered by each
image in the stack. Specifically, they propose to consider the
granularity of the quantization induced by the CRF. Where the
CRF is steeper, the mapping from X to digital value Z produces
a lower quantization error; conversely, where the CRF is more
flat, larger ranges of the exposure axis are mapped to the same
digital value. Therefore, they define the weights as

wMP(X) = f ′(X). (16)

Note that Eq. 16 only accounts for quantization noise and
ignores the other sources of noise. Mitsunaga and Nayar (1999)
extend the work by Mann and Picard by explicitly considering
the SNR in the weight computation:

wMN(X)=SNRX ·wMP(X)=
X
σX
· f ′(X)=

g(Z)
σX
· 1
g′(Z)

≈ g(Z)
g′(Z)

(17)

where, again, g = f−1 and, in the last step of the equation, the
noise σX is assumed to be independent of the level itself, and

is therefore dropped. As pointed out by Granados et al. (2010),
for linear cameras we can write wMN(X) = t, since the rest of
the terms are the same in every LDR.

Robertson et al. (2003) use a weighted least square ap-
proach, where the contribution of each pixel to the error is
weighted with Mann and Picard’s weight, wMP, from Eq. 16:

Err = ∑
i,p

wMP(Xi(p))
(

Xi(p)− tiẼ(p)
)2

, (18)

which can be minimized leading to the weights:

wR = wMP · t2. (19)

3.2.1 Maximum likelihood estimation
A more theoretically-founded approach is to compute the max-
imum likelihood (ML) estimate of the irradiance Ẽ(p) (Tsin
et al., 2001; Granados et al., 2010). Given two irradiance esti-
mates Ei(p) = Xi(p)/ti from two different images in the stack,
we seek to compute:

Ẽ = argmax
E

p(Ẽ |E1,E2), (20)

where we omitted the dependence on the pixel p for clarity.
We can assume that the observations are drawn from two inde-
pendent Gaussian distributions N (Ei,σi). We can then write:

p(Ẽ |E1,E2) =
p(E1,E2 | Ẽ)p(Ẽ)

p(E1,E2)

∝ p(E1 | Ẽ) · p(E2 | Ẽ), (21)

where we made the common assumption of a uniform prior dis-
tribution. Plugging Eq. 21 into Eq. 20 and taking the logarithm,
we can write:

Ẽ = argmax
Ẽ

p(E1 | Ẽ) · p(E2 | Ẽ)

= argmin
Ẽ

(E1−E)2

σ2
1

+
(E2−E)2

σ2
2

(22)

We can find the ML estimate for Ẽ by setting the derivative
with respect to Ẽ of Eq. 22 to zero:

Ẽ =
σ2

2

σ2
1 +σ2

2
E1 +

σ2
1

σ2
1 +σ2

2
E2

=
1/σ2

1 E1 +1/σ2
2 E2

1/σ2
1 +1/σ2

2
, (23)

from which we can see that wML = 1/σ2
i . Several methods

build on this result, by observing that weights should at least
account for the uncertainty of the pixel’s value. The first
attempt in this direction is the work of Tsin et al. (2001). After
modeling white balance as an affine transformation of the
exposure X , and calibrating the sensor for photon shot noise
and thermal noise, they define the weights as:

wT =
1

σ(Z)
, (24)
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where σ(Z) is the standard deviation of the signal, measured
from the residuals of the irradiance estimation. Kirk and An-
dersen (2006) use the ML weights as well:

wKA =
1

σ(Xi/ti)
=

t2
i

σ(Xi)
≈ t2

i
σ(Zi)g′(Zi)2 . (25)

Arguably, the most complete noise model was proposed by
Granados et al. (2010). They too use the maximum likeli-
hood weights, but improve upon previous work by considering
both spatial and temporal noise, the latter being also modeled
more accurately than in other approaches. Moreover, they pre-
calibrate the camera noise parameters to avoid polluting the
irradiance estimate with the uncertainty of the noise estimation.

3.2.2 Winner-take-all merging schemes
A few researchers have proposed a different approach to the
generation of an HDR map from a stack of LDR images. Their
work is based on the observation that the picture with the
longest exposure in the stack is also the one with the smallest
quantization noise, and the one impacted by the least photon
shot noise (see also Sec. 2). Following this logic, in his work
preceding the work of Mann and Picard (1995), Madden (1993)
suggested to combine the different images in an HDR stack
by using the longest, non-saturated exposure available for
each pixel p. A similar approach was proposed by Tocci
et al. (2011); however, they also suggest to blend the irradiance
estimates at the very top and bottom of the useful range of each
LDR image to prevent banding artifacts in the transition areas.
Additionally, Tocci and colleagues work in Bayer domain to
prevent artifacts due to demosaicing when a subset of the color
channels saturate, and assess the reliability of a pixel’s estimate
also based on its neighborhood.

3.2.3 Exposure fusion methods
The approach to HDR we have described so far consists of
radiometric calibration, followed by a merging process that
produces the final HDR result. To be displayed on regular mon-
itors, the HDR map needs to be tonemapped. An orthogonal
approach is that of fusing the images directly in the non-linear
brightness domain. The most popular method in this category
is exposure fusion by Mertens et al. (2007). Their simple and
effective method side-steps the estimation of the exposure val-
ues Xi, and blends the digital values Zi directly. To reflect the
quality of a pixel value, the authors define

wEF = ws ·wc ·we, (26)

where ws, the color saturation weight, encourages more vivid
colors, wc, the contrast weight, penalizes low contrast, and we,
the well-exposedness weight, prefers pixels close to the middle
of the range. A naı̈ve application of the method directly to the
image may cause visible seams due to abrupt changes in the
values of the weights of neighboring pixels. To prevent such
artifacts, Mertens et al. decompose the image into a Laplacian
pyramid, and combine it with a Gaussian pyramid decomposi-
tion of the weight maps to create the final image. Once again,

unlike Eq. 14, wEF is used in the weighted average of the digital
values Zi. Merging images directly in the non-linear bright-
ness domain has advantages and disadvantages. In general, it
creates natural-looking results, whereas the tonemapping pro-
cedure required for the standard HDR pipeline often produces
unnaturally contrasted pictures. Moreover, artifacts due to
mis-registration are often attenuated by the weighting process.
At the same time, it never produces an actual HDR irradiance
map, which can be beneficial for computer vision tasks. Fi-
nally, when the difference in brightness between the images
in the stack is too large, it can introduce artifacts caused by
the Gaussian pyramid decomposition of the weights. Several
methods build on this idea to increase computational efficiency
(Gelfand et al., 2010), to embed deghosting (Zhang and Cham,
2010; An et al., 2011; Gallo et al., 2015), or simply to propose
different weights (Shen et al., 2011).

4. Handling artifacts from motion for HDR
imaging

The algorithms described in the previous section assume the
scene to be static and the camera to be steady. However, when
the stack of LDR images is captured in the presence of camera
or scene motion, the misalignment between different expo-
sures produces ghost-like artifacts in the final HDR result (see
Fig. 5(b)). Since this is a common scenario, addressing motion
artifacts is an important problem for practical HDR capture.
Indeed, there is a large body of research on the subject, some
of which we will survey here. These methods are often known
as HDR “deghosting” algorithms, because they deghost (or
remove ghosting artifacts from) the final HDR result. Readers
seeking detailed explanation of the individual algorithms or
thorough comparisons are referred to the original papers cited,
as well as survey papers in the field (Srikantha and Sidibe,
2012; Hadziabdic et al., 2013; Tursun et al., 2015).

Before we begin, we note that stack-based approaches to
HDR reconstruction cannot always recover the actual HDR im-
age when the scene is dynamic, at least not like an actual HDR
camera would. For example, consider the situation shown
in Fig. 6, where the volleyball in front of the bright window
occupies different positions across the two-image stack. In the
long exposure, which has been selected as the reference, the
window is almost entirely saturated and offers no useful detail.
Ideally, we would recover this information from the short ex-
posure, which properly captures the scene outside the window.
Unfortunately, in the second frame, the ball has moved and
blocks part of the view of the window, making it impossible
to capture the scene behind it. Because this information is not
available in any picture of the stack, we cannot reconstruct
an HDR image that would exactly reproduce the structure of
the scene as it was when the reference image was captured,
as shown in Fig. 6(c). However, some of the deghosting algo-
rithms we will discuss are able to reconstruct plausible HDR
results, even in extreme cases. Furthermore, they offer the only
practical way to capture HDR images of dynamic scenes using
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(a) Low-dynamic-range inputs (b) HDR Result
Figure 5. Example of ghosting with stack-based HDR imaging for dynamic scenes. (a) stack of input images Z1, . . . ,Z5. Some of the input
images were captured while people were in the scene. (b) HDR result from traditional merging (Sec. 3), with objectionable ghosting artifacts.
Images courtesy of Gallo et al. (2009).

conventional digital cameras.
Previous deghosting work can be divided into two major

categories: (1) rejection-based algorithms and (2) alignment
algorithms. Rejection-based algorithms assume the scene to
be mostly static and use a rejection technique to eliminate
motion artifacts, while alignment algorithms perform some
kind of non-rigid registration between the images so that they
can be merged to produce the final HDR result. Each kind of
algorithm has advantages and disadvantages, which we will
discuss at a high level below. Before we begin discussing
the two major kinds of deghosting algorithms, however, we
note that either approach can first address artifacts from small
camera motions through simple, rigid-alignment approaches
as described in the next section.

4.1 Simple rigid-alignment methods
A simple rigid-alignment pre-process (e.g., using a rotation,
translation, or homography matrix to align the images) can of-
ten eliminate many of the artifacts from small camera motions,
making it easier to deghost images that contain mostly static
objects. Of course, such rigid registrations do not address the
problem of parallax (caused by camera translation), or artifacts
caused by highly dynamic scenes. However, they usually work
reasonably well when the camera motion is relatively small
and the scene does not undergo significant changes.

To our knowledge, the first method which performed a
simple rigid-alignment pre-process is the work of Bogoni
(2000), who applied a global affine alignment prior to his
optical flow alignment (we will discuss this method in more
detail in Sec. 4.3.1). Another early method is the work by
Ward (2003), which targets artifacts from camera translations.
To compare the differently-exposed images, Ward proposes
to first convert them into median threshold bitmaps (MTBs),
which are binary images with 1’s for pixels greater than the
images’ median. This strategy stems from the observation that
MTBs from differently-exposed images resemble each other
more closely than when other potential transformations, such
as edge operators, are applied to the images.

MTBs can be used to measure the registration quality by

simply XORing the pixels of the MTBs to see where they are
different. The optimal translation is the one that maximizes
the number of 1’s in the MTB. To minimize the impact of
noise induced by the pixels close to the median threshold,
Ward excludes the pixels whose distance from the threshold
is within the noise tolerance. This process can be accelerated
with a pyramidal approach, where the translational alignment
is computed on coarse versions of the images and then refined
at higher resolutions. This multi-scale approach also reduces
the chance of converging to a local minimum.

Subsequent work by Tomaszewska and Mantiuk (2007)
proposed a different method of rigid alignment by using SIFT
to extract key points in each image and finding correspon-
dences between them. They then eliminate spurious matches
using RANSAC to estimate the homography that can be used
to pre-warp the images. These warped images can then be
merged using any of the methods described in Sec. 3. In the
end, different flavors of methods like these are common pre-
processing steps for more advanced algorithms, as we will see
in the next section.

4.2 Rejection algorithms for HDR deghosting
Rejection-based algorithms assume minimal scene motion and
a static camera so that only few pixels actually exhibit motion.
If the camera shakes slightly, a simple rigid registration pro-
cess, such as those described in the previous section, can be
applied as a pre-process to align the images and satisfy this
assumption. Since most of the pixels will exhibit no motion
under these assumptions, the majority of the final HDR image
can be computed with the standard HDR merging process for
static scenes described in Sec. 3. To prevent artifacts at the
pixels affected by motion, only the images that are deemed to
be static at those locations are combined.

The challenge for these rejection algorithms, therefore, is
to detect pixels affected by motion and select from the stack
the pixels that can be used in the corresponding locations.
These algorithms are usually easy to implement and fairly fast,
as they only have to detect motion pixels that deviate from
the predicted value. Furthermore, because of their design,
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(a) Long Exposure (reference) (b) Short Exposure (c) Actual HDR scene
Figure 6. The problem with stack-based HDR imaging when the scene is dynamic. The region marked in the reference image (a) is occluded
in the exposure that captures the highlights (b), making it impossible to reconstruct the actual content of the scene, which is shown in (c).

they are usually successful at completely removing ghosting
artifacts, but sometimes have to compromise on the extent of
the dynamic range reconstructed in certain regions.

However, rejection algorithms do have serious shortcom-
ings. Perhaps most importantly, these methods cannot handle
moving HDR content since they typically discard from the
stack any pixels that contain motion. For example, consider
a scene with a moving object whose radiance has a dynamic
range too high to be captured by a single image (e.g., a moving
person who is partly in the shadows and partly under direct
sunlight). Rejection-based techniques cannot reconstruct this
HDR image correctly, as these methods only merge corre-
sponding pixels across the stack of images, rather than com-
pensating for motion (i.e., they do not move content around).
In these cases, different portions of the HDR irradiance range
may be measured by non-overlapping regions of the images in
the stack, and therefore the values from a single pixel across
the stack cannot be combined to get a proper HDR result.
Therefore, in general, rejection algorithms have not been as
effective in reconstructing HDR results from complex dynamic
scenes as the registration-based algorithms we will examine
later in Sec. 4.3.

Nevertheless, rejection-based techniques are useful to study
because the results they produce are generally not affected by
motion artifacts. We can classify rejection-based methods into
two categories, which we will describe in the subsequent sec-
tions: (1) those that do not select a reference image and try to
use information from all images equally (often producing an
image only from the static parts of the scene), and (2) those
that select an image in the stack as the reference (with the goal
of producing an HDR result that resembles this image).

4.2.1 Rejection methods without a reference image
Rejection methods that do not define a single reference image
are based on the observation that small moving objects tend to
affect different regions of the images across the stack. There-
fore, if the stack of LDR images is large enough (usually 5 or
more images), a pixel p is likely to capture the irradiance from
the static parts of the scene in most of the pictures. Methods
from this category then propose a model for how pixel p should
behave across the stack if it represented a static object, and
discard the values Zi(p) across the stack that do not follow this

model, as they are likely to be affected by motion. However,
these methods run into the problem that neighboring pixels
may come from a different subset of exposures where objects
might be in different positions, which would introduce visible
discontinuities. To minimize these effects, these algorithms
generally identify clusters or groups of pixels that can be drawn
coherently from one (or more) of the input LDR images.

One of the first methods to do this was described in Sec. 4.7
of the book by Reinhard et al. (2005). In this method, the CRF
is assumed to be known so that the LDR images Zi can be
converted into their corresponding irradiance images Ei. The
different images Ei should theoretically be the same, except
for noise, saturation, and motion, which may alter some of the
pixels’ values from image to image. Therefore, the authors
propose to compute the weighted normalized variance of the
values at each pixel p to determine which pixels are affected
by motion:

σ
2(p) =

N
∑

i=0
wi(p)Ei(p)2/

N
∑

i=0
wi(p)( N

∑
i=0

wi(p)Ei(p)
)2

/
( N

∑
i=0

wi(p)
)2
−1. (27)

This equation, explained only verbally by Reinhard et al. (2005)
and later presented mathematically by Jacobs et al. (2008), uses
weights wi to exclude over- or under-exposed pixels from the
computation as their divergence from the true irradiance may
bias the estimate of the variance. Note that unlike traditional
variance, the variance in Eq. 27 is normalized to the actual size
of the signal.

The key observation is that, when looking across the im-
age stack, pixels that are not affected by motion should have
a smaller variance than those that measure irradiance from
different objects. Of course, one could set a simple threshold
for this variance to distinguish between these two cases. How-
ever, this naı̈ve approach has the problem that the image would
suffer from discontinuity artifacts when neighboring pixels are
selected from different images with different objects.

To avoid this problem, rejection methods that do not de-
fine a reference image must group pixels together into larger
clusters, where all the pixels in a cluster are drawn coherently
from the same image in the stack. In the particular case of
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Reinhard et al. (2005), morphological operators like erosion
and dilation are used to grow the binary image after threshold-
ing the variance to create larger, contiguous regions that are
identified to have motion. To decide which exposure to use
in each region, they generate a histogram of irradiance values
in each region and find the maximum value that is not in the
top 2%, which they consider to be outliers. They then find the
longest exposure that still includes this maximum value within
its valid range, and interpolate between this exposure and the
original HDR result using the per-pixel variance as a mixing
coefficient. In this way, pixels with lower variance across the
stack will use the original HDR result, while pixels with larger
variance will use the single exposure. This algorithm is able to
produce deghosted images and, at the same time, ensure that
each region is drawn coherently from one exposure.

In another method, Eden et al. (2006) first use a SIFT-
based feature registration technique to align the input images
in the presence of varying exposure levels. Once the stack is
aligned, they map the images to the irradiance domain, where
they draw each pixel of the final composite from one of the
input images. This is done in two steps. In the first step, they
use a subset of the aligned input images to create a reference
panorama that covers the full angular extent of all the inputs
using graph-cuts (Boykov et al., 2001). However, because of
over- or under-exposure this reference image could have areas
of missing information, so they introduce detail from images
that are better exposed while solving for a smooth transition
between regions in a second pass. This problem is minimized
via max-flow graph-cut to produce the final result, which can
be smoothed out to remove any remaining seams.

The approach of Khan et al. (2006) attempts to compute a
ghost-free image through several iterations of kernel density
estimation that modify the blending weights wi of Eq. 14, by
assuming that background (static) pixels are the most common.
Essentially, they compute the probability that a given pixel is
part of the background, and use this weight when blending so
pixels from dynamic objects (and not the background) get a
smaller weight. To do this, they represent each pixel in the
stack of images with a five-dimensional vector xi(p), where i
is the index of the image in the stack and p is the pixel location.
This vector contains the 3 LDR color channels of the pixel
value (in Lab space) as well as the coordinates of the pixel on
the image.

For a given pixel p, they select all pixels y j(q) in its 3×3
neighborhood over all the images in the stack, denoted by
N (p). Note that the pixels at position p across the stack are
not included in this neighborhood. They begin by assuming
that all y j(q) are equally likely to be part of the background.
The probability that a pixel p belongs to the background B
(given by P(xi(p) |B)) can then be calculated using a kernel
density estimator:

P(xi(p) |B) =
∑

j,q ∈ N (p)
w j,qKH(xi(p)−y j(q))

∑
j,q ∈ N (p)

w j,q
, (28)

where the kernel KH is a 5-D multivariate Gaussian density
function, and the weight w j,q indicates the probability of the
pixel belonging to the background. For the first iteration,
these weights are initialized to a “hat” function similar in
spirit to that of Debevec and Malik (1997). For subsequent
interations, the value of the weights can be set to the probability
that the pixel belongs to the background, as computed by
Eq. 28 in the previous iterations. However, each time the
newly computed weights are multiplied by the initial weights
from the hat function to continually diminish the probability
that pixels that are over- or under-exposed are used in the final
estimates. Upon convergence, the weights are plugged into
Eq. 14 to merge the LDR images into an HDR result.

Jacobs et al. (2008) extended the deghosting algorithm of
Reinhard et al. (2005) in several ways. First, they pre-align
the images as in the earlier work of Ward (2003), but in this
case iteratively solving for the translation and rotation that
maximizes the XOR score between the two median threshold
bitmaps. In the second stage, they replace the variance metric
of Eq. 27 with a local entropy measure that indicates movement
in the scene. Specifically, they measure the local entropy at
each pixel in the LDR image Zi by looking at the pixel values
z within a 2D window around pixel p:

Hi(p) =−∑
z

P(Z = z) log(P(Z = z)) , (29)

where the probability function P(Z = z) is computed from
the normalized histogram of the intensity values of pixels
within the window. Using these entropies, they compute an
uncertainty image U , which is the local weighted entropy
difference between the images:

U(p) =
N−1

∑
i=1

i−1

∑
j=0

vi j
N−1
∑

i=1

i−1
∑
j=0

vi j

∣∣Hi(p)−H j(p)
∣∣ , (30)

where vi j = min(wi(p),w j(p)), and weights wi(p) and w j(p)
are computed using Debevec and Malik’s triangle function in
Eq. 15, with Zmin = 0.05 and Zmax = 0.95. The intuition is
that static regions would have similar local entropy measures
across the LDR images, even if they are near edges, which
might increase the variance because of slight camera motions.
This method also does not need an a priori knowledge of the
CRF, as the entropy measurement can be done in the LDR
domain. As with previous methods, this uncertainty image
is thresholded and the resulting binary image is eroded and
dialated to produce contiguous regions that are affected by
motion. At this point, each region is filled with values from
one of the irradiance images Ei that is not over- or under-
exposed in that region, and blended with the original HDR
value to avoid artifacts at the borders.

Sidibe et al. (2009) observe that the value of pixel p across
the stack should increase with the exposure time, since the
camera response curve is monotonically increasing: Zi(p)≤
Z j(p) if ti < t j. Therefore, they propose to identify regions
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where this order relation is broken at least once as ghosted
regions. Of course, there might be motions that preserve this
order which would not be detected. In the ghosted regions,
they use the input images that they deem to have captured the
background, which is assumed to appear in the majority of
images. To do this, they effectively compute the histogram
of irradiance values at each ghosted pixel and compute the
mode of this distribution, which is the value that appears the
most often. The mode is assumed to be the background and
the values are merged together (ignoring pixel values close to
saturation or zero) to form the final HDR image. In order to
have enough samples at each pixel to compute the mode, they
require at least 5 images in the stack.

In another approach, Pece and Kautz (2010) first compute
median threshold bitmaps for each image in the stack as pro-
posed by Ward (2003) and accumulate these binary maps for
each pixel over all the exposures. Values that are neither 0 nor
N are considered motion, and the morphological operators of
dilation and erosion are applied to this result to generate the
final motion map. In the paper, Pece and Kautz show results
using exposure fusion (Mertens et al., 2007), where they se-
lect the best available exposure for each of the clusters in the
motion map to produce their results.

Zhang and Cham (2012) present a technique similar to
exposure fusion (Mertens et al., 2007) (see Sec. 3.2.3) because
they fuse the images without generating an HDR image first,
but use a novel consistency metric that uses the image gradient
to detect movement. To begin, they compute the magnitude
Mi(p) and direction θi(p) of the gradient around every pixel of
each image in the stack. Next, they observe that the magnitude
of the gradient can be used to determine saturated or under-
exposed pixels, as these regions typically have lower gradient
magnitude. Therefore, they propose a visibility measure that
indicates how well exposed and visible a particular pixel is:

Vi(p) =
Mi(p)

N
∑

i=1
Mi(p)+ ε

, (31)

where the ε is a small value (e.g., 10−25) to avoid division by
zero. Finally, they observe that the gradient direction can serve
as a consistency measure to detect motion across the exposure
stack because of its invariant property over different exposures.
Therefore, they compute the gradient direction difference of
the ith image with respect to the jth image as follows:

di j(p) =
∑

k∈N

∣∣θi(p+ k)−θ j(p+ k)
∣∣

M2 , (32)

where N (p) is the set of offsets of the pixels in an M×M
square neighborhood around pixel p. Using this, a consistency
score Si can be computed for every image. This is done by
accumulating a Gaussian weight for each pixel based on the
difference of its gradient direction across the stack:

Si(p) =
N

∑
j=1

exp
(
−

di j(p)2

2 ·0.2

)
. (33)

Given these scores, a consistency score for each pixel p in the
stack image i can then be calculated as:

Ci(p) =
Si(p) ·αi(p)

N
∑
j=1

S j(p) ·α j(p)+ ε

, (34)

where αi(p) is simply a 1 if the pixel is well exposed and 0 if
not. Here, we use the term “well exposed” to define a pixel
whose value is in the middle of its range, say between 0.1
and 0.9 in a normalized pixel value range. These consistency
scores can then use used to compute the final weights for the
fusion process (Eq. 26):

wEF(p) =
Vi(p) ·Ci(p)

N
∑
j=1

Vj(p) ·C j(p)+ ε

. (35)

The final image can then be fused together without the need of
tonemapping, but does not produce a true HDR result.

Granados et al. (2013) propose to use a noise-aware model
to determine whether the image stack values for a particular
pixel are consistent, which means that they measure the same
static irradiance. They observe that, for a pixel in a static re-
gion, the exposure values across the stack should all be within
an error margin based on the noise of the imaging system.
Therefore, rather than using an arbitrary threshold to detect
motion, they characterize the noise in the imaging system (both
shot noise and readout noise) as a Gaussian distribution that
enables them to determine the probability that the difference
between two pixel values is caused by scene motion or noise.
This idea can be extended to the N images in the stack to
produce consistent subsets, which will not introduce ghosting
artifacts when combined together.

Once these consistent subsets have been identified, the next
challenge is to ensure that neighboring pixels draw coherently
from the subsets to avoid artifacts. To do this, they pose the ir-
radiance reconstruction problem as a labeling problem, solved
by minimizing an energy function with two terms. The first,
a consistency term, encourages the pixels to be selected from
consistent subsets of the image to reduce ghosting. The second
is a prior term that penalizes incoherency across neighboring
pixels by enforcing that neighboring pixels should draw from
the same consistent subset. They solve this labeling prob-
lem using the expansion-move graph-cuts algorithm and then
merge the consistent sets together at each pixel to produce the
final HDR result. However, despite this graph-cut optimiza-
tion, their method still cannot always guarantee a semantically
consistent result, and thus it requires a manual intervention to
resolve remaining issues.

Finally, in recent work, Oh et al. (2015) propose a clever
rank minimization strategy to solve for the final HDR image.
They begin by assuming that there are two kinds of motion
between the images in the stack. The first is global motion
due to camera movement, which they assume can be mod-
eled with a homography. The second is local motion, which
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they want to eliminate, and is caused by the non-rigid move-
ment of objects in the scene. Their key observation is that if
global motion is accounted for, the stack of exposure images
X1, . . . ,XN should be linearly dependent. In other words, bar-
ring local motion, saturation, or noise, the globally aligned
exposure images would simply be scaled versions of E, i.e.,
Xi = E ·ti. Therefore, they attempt to eliminate motion artifacts
by enforcing that the matrix whose columns are the input LDR
images should be of rank 1 (i.e., all columns should be linearly
dependent).

Oh et al. first account for the global motion by modeling
the hypothetical process of capturing “globally aligned” LDR
source images, as if the camera was not moving. This can be
written as Z̃i = f (X̃i +ηi), where Z̃i are the LDR images that
would have been taken with a static camera, X̃i is the ideal
exposure image that contains only static scene information,
and ηi is a “noise” term representing the local motion in the
scene. Since we can apply a homography operator ◦hi to
perform global alignment on each of the inputs Zi, we can
write Z̃i = Zi ◦hi. Once the camera has been calibrated so that
its response curve is linear (see Sec. 3.1), the capture process
can be modeled as:

Z̃i = Zi ◦hi = aX̃i +aηi. (36)

We can then vectorize the terms in this equation and combine
them into matrices using all of the N captured images: Z◦h =
X+η . Since all the columns of X are simply scaled versions
of the static scene irradiance E, it is a rank-1 matrix. At the
same time, η is sparse if we assume that most of the scene is
static and only a few areas are affected by motion. Therefore,
the problem of removing motion artifacts from the HDR image
is equivalent to the problem of solving for a rank-1 matrix X
and sparse matrix η through the following optimization:

X∗,η∗,h∗ =arg min
X,η ,h

p2(X)+λ‖η‖1

subject to Z◦h = X+η . (37)

Here, p2(X) = ∑
N
i=2 σi(X) is the sum of the singular values

from the second to the last6 which measures the rank of the
matrix. The L1 norm ‖·‖1 is a measure of sparsity, and weight-
ing coefficient λ balances the contribution of the two terms.
This constrained optimization problem can be solved using
augmented Lagrange multipliers (Peng et al., 2012), where the
problem is divided into three different sub-problems for X, η ,
and h and minimized iteratively.

As discussed earlier, rejection-based algorithms have their
drawbacks, but this subset of algorithms that do not specify a
reference image have other additional problems. For example,
they can often produce images that contain duplicate objects

6Assuming that the number of images N is smaller than the number of
pixels in each image.

or other artifacts, because the semantic meaning of objects is
lost when the consistent sets computed in neighboring pixels
are not coherent. These artifacts typically require a manual
correction. Furthermore, since they typically strive to use only
“background” pixels from each image, this type of rejection
methods will suppress dynamic objects from the HDR result.

Finally, because these algorithms produce images that do
not adhere to a ground truth reference (i.e., an HDR picture
taken at a specific moment in time), they cannot be easily
extended to the capture of HDR video. The reason for this
is two-fold. First, they do not guarantee temporal continuity
since each frame is individually computed, and may use a pixel
cluster that is not temporally coherent with the neighboring
frames. Second, even if temporal coherency could be enforced,
the fact that dynamic objects are usually suppressed defeats
the purpose of taking a video in the first place.

4.2.2 Reference-based rejection methods
The algorithms in this category select a single image from the
stack as the reference and use it as the foundation of the final
image. In other words, the HDR result will be geometrically
consistent with this reference, at least in the parts where it is
well exposed. The other images in the stack will be tested
against the reference, and pixels deemed to have been affected
by motion will be rejected. For regions where all the images in
the stack are rejected, the HDR result would be reconstructed
using only the reference.

One of the first examples of these algorithms is the work of
Grosch, which takes two differently exposed images and first
aligns them using a variant of the method proposed by Ward
(2003), extended to consider both translation and rotation. He
then computes the camera response function on the largely
aligned images using the method by Grossberg and Nayar
(2003b), and uses the first image (the reference) to predict the
estimated values in the second:

Z̃2(p) = f
( t2

t1
g(Z1(p))

)
. (38)

If the predicted color Z̃2(p) is beyond a threshold from the
actual color in the second image (i.e., |Z̃2(p)−Z2(p)|> ε), the
algorithm assumes that Z2(p) would introduce motion artifacts,
and falls back to using only the first image at these locations.
This produces an artifact-free result because it largely follows
the reference, and has the advantage that it does not need a
priori knowledge of the camera response function. However, if
the scene contains large moving objects, then the radiometric
calibration step could fail as well, unless a more robust calibra-
tion procedure, such as the algorithm by Badki et al. (2015), is
used (see Sec. 3.1.2).

Gallo et al. (2009) propose a similar approach. They first
define the reference as the image in the stack with the fewest
over- and under-exposed pixels; they then compare the values
of the pixels of the different images in the stack against it.
They perform the comparison in the log-irradiance domain,
where the following relationship holds:

ln(Xref) = ln(Xi)+ ln(ti/tref), (39)
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where the dependence on pixel p is omitted for clarity. Pixels
whose exposure Xi(p) is farther than a threshold from the value
predicted by Eq. 39 belong to moving objects. However, for
increased robustness, rather than working directly with pixels,
the authors propose to work with patches; a patch from the
ith image in the stack is merged with the corresponding patch
in the reference if the number of its pixels obeying Eq. 39 is
above threshold. The patches are defined on a regular grid;
because two neighboring patches in the reference image can
be merged with a different subset of patches from the stack,
visible seams may exist at the patches’ boundaries. To address
this issue, the patches are blended with a Poisson solver (Pérez
et al., 2003).

Raman and Chaudhuri (2011) extend the work by Gallo
et al. (2009) by replacing squared patches with superpixels,
which are inherently more edge-aware. However, rather than
computing the high-dynamic-range irradiance map, they fuse
the images directly using their non-linear digital pixel values.
To begin, the authors compute the weighted variance proposed
by Reinhard et al. (2005), see Eq. 27, to identify the pixels that
may have measured irradiance from moving objects. Then,
using only the pixels that are deemed to have captured static
objects, they fit fourth-order polynomials to create a set of
N−1 intensity mapping functions (IMFs) that map the pixel
values of each exposure in the stack to the reference.

In the next step, all the images but the reference are seg-
mented into super-pixels with homogeneous color and texture.
The idea is to blend the super-pixels that are static with respect
to the reference with the well-exposed reference information.
To identify a superpixel as static, the authors use the IMF and
compare its pixels with those of the superpixel in the reference;
to make the process more robust to noise they also threshold
the distance of each pixel from the predicted value. If 90%
of the pixels are within this threshold, then the super-pixel is
considered to be static with respect to the reference. These
static super-pixels are then decomposed into 6×6 patches with
an overlap of one pixel on each edge. The patches with more
than 90% of pixels within the static super-pixel are considered
static as well, and their gradients are merged using a Gaus-
sian weighting function based on exposure. Finally, a Poisson
solver is used to reconstruct the final color information from
the gradients (Pérez et al., 2003).

Wu et al. (2010) propose a set of criteria for detecting
moving pixels. First, they use a criterion that ensures that
the pixel values are monotonically increasing as we lengthen
exposure time, similar to the earlier work of Sidibe et al. (2009).
Next, they use a criterion similar to Grosch that compares a
pixel’s value to that predicted from another exposure after
compensating for the CRF and the exposure time ratio. If
a pixel violates any of these criteria then it is considered to
be affected by motion. The final motion map is generated by
using the morphological operators such as opening and closing.
Once the pixels affected by motion have been identified, the
authors proceed to compute the final HDR image. Specifically,
they select image k as a reference and use it to fill in the pixels

affected by motion in the neighboring images k−1 and k+1
with the value predicted by the camera response curve as in
Eq. 38. These new images are then used to predict the next
images, and so on until the entire stack has been processed.
Finally, boundary artifacts near the edges of the regions in
the motion map are corrected by convolving the images with
a low-pass kernel, and using the result to replace the values
calculated originally in these regions. The HDR image is then
computed using the standard merging equation (Eq. 14).

In the work by Heo et al. (2010), the images in the stack
are first globally aligned to the reference image using a ho-
mography estimated with SIFT features using RANSAC. Next,
N− 1 joint histograms are computed between the values in
the reference and those in the other images. These histograms
are then converted into smooth joint probability distribution
functions, pdfs, through a Parzen windowing process using a
5×5 Gaussian filter followed by a normalization to enforce
that the subtended area sums to one. Pixels in the other images
in the stack with a joint probability less than a fixed threshold
are labeled as ghost pixels. This simple thresholding of the
joint probability to determine ghost regions can be very noisy,
however, so the authors further refine the ghost regions us-
ing an energy minimization that enforces smoothness between
neighboring pixels, and which is solved using graph-cuts.

The refined ghost regions can be used to compute new joint
histograms that are not affected by motion artifacts; therefore,
the algorithm iteratively alternates between computing the
joint pdfs and detecting the ghost regions. The pixels not
affected by motion are then used to compute the CRF with
the method of Debevec and Malik (1997). To further reduce
artifacts, this CRF is used to refine the radiance values of all
the pixels in the other images in order to make their values
more consistent with the reference image. Finally, the different
exposures are blended together to generate the final HDR result
using a weighted filtering step. These weights are computed
by applying a bilateral filter (Tomasi and Manduchi, 1998)
to all the samples in a patch around a pixel, using a global
intensity transfer function to compare the differently exposed
pixel values.

Rejection-based methods that use a single reference im-
age generally reduce or completely remove ghosting artifacts
from the final HDR image. They do, however, have some of
the shortcomings of all rejection-based methods we discussed
earlier, such as not being able to handle dynamic HDR content.
Furthermore, if the regions where the reference is over- or
under-exposed are large, these algorithms could have prob-
lems recovering the full dynamic range because of their heavy
reliance on the reference, see Fig. 7.

4.3 Non-rigid registration for HDR deghosting
Rather than simply rejecting content that could generate ghost-
ing, one can compensate for motion by means of non-rigid
registration. To do this, researchers have proposed two kinds
of algorithms: (1) algorithms based on a flavor of optical flow
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Z1 Z2 (reference) Z2 tonemapped Reference-based
rejection method

Figure 7. Rejection-based HDR reconstruction methods cannot “move” information around the image. Here, the façade of the building
is completely saturated in the reference image, as seen in the tonemapped version of Z2. A reference-based rejection method, such as that
shown in the last image, produces a gray halo in the final result because it falls back to the reference when motion is detected. Since the
reference is saturated in this region, the measured irradiance is much lower than the actual irradiance measured by the low exposure, resulting
in the artifact visible in the right-most image. Images courtesy of Sen et al. (2012).

to align the images, and (2) algorithms based on patch-based
synthesis. Note that while non-rigid registration algorithms
have the potential to preserve a larger dynamic range from the
stack, they tend to introduce objectionable artifacts when the
estimation of the displacement between the images fails. This
is particularly true for flow-based algorithms, which we will
discuss first.

4.3.1 Optical flow and correspondence registration meth-
ods

Bogoni (2000) presents perhaps the earliest known method
to register a stack of images for HDR reconstruction. First,
he applies an affine motion estimation to globally align the
images. This process, based on earlier work on registration for
image mosaics (Hansen et al., 1994), operates in a multireso-
lution fashion from coarse to fine, using a Laplacian pyramid
scheme. At each iteration, the optical flow field is computed
from one image to another using local cross-correlation analy-
sis, and then an affine motion model is fit to the flow field using
weighted least-squares regression. The affine transform is then
used to warp each image to align it roughly to the reference.
At this point, a second step performs unconstrained motion
estimation with optical flow between each source image and a
pre-defined reference. This resulting field is used to warp the
individual sources to compute the final registration with the
reference.

Jinno and Okuda (2008) propose to address the problem
of ghosting using Markov random fields. After selecting the
reference image, they estimate three arrays (the same size as
the images) for each of the other images in the stack. The first
is a displacement field d, and the second is a binary occlusion
field o that indicates the parts of the reference that are occluded
in the second image. This is computed by thresholding the
maximum search distance for the displacement field: if a pixel
cannot be found in a neighborhood N (p) around a given pixel
that has a luminance within a specific threshold, then pixel p
is considered occluded. The third is a saturation field, a binary
mask that keeps track of the regions where the second image

is over- or under-exposed. Since these arrays are spatially co-
herent, they can be modeled as Markov random fields (MRFs)
and computed using Bayes rule as an estimation problem that
finds the most likely fields d, o, and s given observed images
Zref and Zi:

max
d,o,s

P(d,o,s |Zref,Zi) = max
d,o,s

P(Zref |d,o,s,Zi)P(d,o,s |Zi)

P(Zref)

= max
d,o,s

P(Zref |d,o,s,Zi)P(d |o,s,Zi)P(o |s,Zi)P(s |Zi)

P(Zref)
.

(40)

This problem is analogous to that of finding:

max
d,o,s

P(Zref |d,o,s,Zi)P(d |o,s,Zi)P(o |s,Zi)P(s |Zi), (41)

which they approximate by first finding s through thresholding,
and then iteratively solving for d and o. Once they have these
fields, they can use them during the merging stage to produce
the final HDR result.

Zimmer et al. (2011) align images in the stack to a speci-
fied reference using an energy-based optical flow optimization
that is more tolerant to changes in exposure. To achieve this
invariance, they define an energy function that leverages the
gradient constancy, similar to Brox et al. (2009) and Brox and
Malik (2011). Specifically, for each image i in the stack they
compute a dense displacement field ui(p) = [ui(p),vi(p)]T

that specifies an offset at every pixel by minimizing an energy
function of the form:

E(ui(p)) = ∑
p∈Ω

D(ui(p))+λS(∇ui(p)), (42)

where D(ui(p)) is the data term that tries to align the image
to the reference, and S is the smoothness term (regularizer)
that encourages smooth flow in places where the reference
image is unreliable (i.e., over- or under-exposed). Because
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the brightness constancy across the stack is violated in this
application, they propose that the data term D(ui(p)) should
try to match the gradient of the offset region in image Zi to
that of the reference:

D(ui(p)) = Ψ

(
1
nx

∣∣∣∣ ∂

∂x
Zi(p+ui(p))− ∂

∂x
Zref(p)

∣∣∣∣2+
+

1
ny

∣∣∣∣ ∂

∂y
Zi(p+ui(p))− ∂

∂y
Zref(p)

∣∣∣∣2
)
,

(43)

where Ψ is regularized L1 norm Ψ(s2) =
√

s2 +0.0012 and
nx and ny are normalization factors. For the smoothness term
S(∇δ pi(p)), they use a regularizer based on Total Variation:

S(∇ui(p)) = Ψ(|∇ui(p)|2 + |∇vi(p)|2). (44)

The energy equation in Eq. 42 is then optimized using a semi-
implicit gradient descent scheme, and the final flows are used
to warp each of the input images in the stack, which are then
merged together using the method of Robertson et al. (1999).

Later, Hu et al. (2012) propose to use the patch-based,
non-rigid dense correspondence (NRDC) method of HaCohen
et al. (2011) to compute dense correspondences between the
reference image and the other images in the stack, called the
source images. They then use this correspondence field to
warp pixels in the source images to match the appearance of
the reference. However, because of occlusions and disocclu-
sions, as well as brightness changes, the correspondences are
generally incomplete; this can result in “holes,” i.e., regions
where the pixels’ value is undefined.

To address this problem, Hu et al. first propose a robust
strategy to estimate the intensity mapping functions (IMFs)
(Grossberg and Nayar, 2003b) using the known pixel corre-
spondences. For each hole in the warped source, they then
attempt to paste the pixels from the original source image;
however, to compensate for motion, they first apply a local pro-
jective transformation to align them to those in the reference.
To ensure that the pasted pixels cause no artifacts, the authors
take a bounding box larger than the hole to be transformed and
pasted. If the pixels within the box, but outside the hole, do
not match, the region is considered to be affected by motion.
In these cases, the pixels are pasted directly from the reference
after their brightness values are appropriately corrected with
the estimated IMF.

Another method based on a flavor of optical flow is the
approach by Gallo et al. (2015). The method is based on the ob-
servation that modern cameras offer fast bursts modes, which
make arbitrarily large displacements unlikely. Therefore, in-
stead of computing the optical flow at each pixel, they suggest
to compute it only at sparse locations, and then to propagate
it to the rest of the pixels. Specifically there are four stages to
the algorithm.

The authors first describe a novel method to find and match
corners across two images in the stack, one chosen to be the
reference and the other being the source image. Their corners

are based on the changes of average brightness around different
pixels, which can be computed efficiently with integral images.
The second stage identifies and removes matches that are either
incorrect or belong to structures that move in a highly non-
rigid fashion. To achieve this, the authors observe that good
matches should be locally consistent with a homography, and
propose a modification of the RANSAC algorithm to isolate
those that are not. The set of matches that are both correct and
rigid offers an estimate of the flow at sparse locations, which
can be propagated to the rest of the pixels using the reference
image as a guide to an edge-aware diffusion algorithm. With
the dense flow, the source image can be warped to be geomet-
rically consistent with the reference. However, to account for
possible errors in the flow propagation, the authors modify the
algorithm by Mertens et al. (2007), see Sec. 3.2.3, by adding
a fourth weight. Specifically, they use the structural similar-
ity index proposed by Wang et al. (2004) to account for the
quality of the registration at different locations, and reduce the
contribution of regions that are not correctly registered. Gallo
et al. report execution times of under 150ms on a pair of 5MP
images on desktop, and under 700ms on a commercial tablet.
For reference, the methods described in Sec. 4.3.2 are several
orders of magnitude slower. As mentioned before, this large
speedup is possible thanks to the observation that arbitrarily
large displacements are unlikely when the stack is captured in
a fast burst.

Compared to rejection-based approaches for HDR recon-
struction, these alignment methods, which rely on correspon-
dences between the different images in the stack, have the ad-
vantage that they can move content around. This allows them
to handle dynamic objects with high-dynamic-range illumina-
tion. However, finding reliable correspondences, especially in
cases of complex motion and deformation, is quite difficult
and can introduce new artifacts. These problems can largely
be resolved using the patch-based synthesis methods discussed
next.

4.3.2 Patch-based synthesis methods
The most successful kind of HDR deghosting algorithms are
perhaps those that align the stack of images together by us-
ing patch-based synthesis to generate plausible images that
are registered to the reference (Sen et al., 2012; Hu et al.,
2013; Kalantari et al., 2013). Indeed, a recent state-of-the-art
report on HDR deghosting techniques has shown that these
algorithms produce the best results for general scenes (Tursun
et al., 2015). These methods can also be considered a new
kind of algorithm (different from the rejection and registration
algorithms we have discussed) because they can solve for the
aligned images and the HDR reconstruction simultaneously.
Although patch-based synthesis had previously been shown
to be very powerful for various computational imaging tasks
(such as image hole filling (Wexler et al., 2007), image summa-
rization and editing (Simakov et al., 2008; Barnes et al., 2010),
morphing (Shechtman et al., 2010), and finding dense corre-
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(a) Low-dynamic-range inputs (b) Aligned intermediate images (c) HDR result
Figure 8. Sample result of the HDR reconstruction algorithm of Sen et al. (2012). (a) Input LDR images (1st, 3rd, and 5th images shown
from of a five-image input stack: Z1,Z3,Z5). (b) Corresponding aligned images (Z̃1, Z̃3, Z̃5), computed by the algorithm. (c) Tone-mapped
HDR result after the reconstruction. Images courtesy of Sen et al. (2012).

spondences between images (HaCohen et al., 2011)), these new
works apply it to HDR reconstruction by posing the problem
as an energy optimization.

In order to use patch-based synthesis for HDR reconstruc-
tion, the two independent methods of Sen et al. (2012) and Hu
et al. (2013) make similar observations: after registration, each
image Zi from the stack should look as if it was taken at the
same time as the reference Zref, but should be photometrically
consistent with the original Zi, thereby capturing all of the
additional dynamic range information contained in the original
image.

Sen et al. (2012) propose to do this using a new optimiza-
tion equation that codifies the objective of reference-based
HDR reconstruction algorithms: (1) to produce an HDR image
that resembles the reference in portions where the reference
is well exposed, and (2) to leverage well-exposed information
from other images in the stack in places where the reference
is not. This results in what they call the HDR image synthesis
equation, which contains two terms:

Energy(E)= ∑
p∈pixels

[
αref(p) ·

(
g(Zref(p))/tref−E(p)

)2
+

+(1−αref(p)) ·EMBDS(H | L1, . . . ,LN)
]
.

(45)

The first term states that the ideal HDR image E should be
close in an L2 sense to the LDR reference Zref mapped to the
linear irradiance domain. This should only be done for the
pixels where the reference is properly exposed, as given by
the αref(p) term, which is a trapezoid function in the pixel
intensity domain that favors intensities near the middle of the
pixel value range.

In the parts where the reference image Zref is poorly ex-
posed as indicated by the 1−αref(p) term, the algorithm draws
information from the other images in the stack using a novel
multi-source bidirectional equation EMBDS that extends the
bidirectional similarity metric of Simakov et al. (2008):

BDS(T | S) = 1
|S|∑P∈S

min
Q∈T

d(P,Q)+
1
|T |∑Q∈T

min
P∈S

d(Q,P). (46)

Simakov et al.’s original function takes a pair of images (source
S and target T ) and ensures that all of the patches (small blocks

of pixels) in S can be found in T (first term, called “complete-
ness”) and vice versa (second term, called “coherence”). Note
that the coherence term ensures that the final target does not
contain objectionable artifacts, as these artifacts are not found
in the original source.

However, Eq. 46 does not work for HDR reconstruction
directly; sometimes content that should be visible in the ith

exposure when “aligned” with the reference exposure might be
occluded in Zi and needs to be drawn from a different image.
So rather than using a pairwise bidirectional similarity metric,
Sen et al. introduce a multisource bidirectional similarity met-
ric EMBDS that draws information from all the images in the
stack simultaneously.

To optimize Eq. 45, Sen et al. introduce auxiliary variables
Z̃i that represent the different LDR images in the stack after
they have been aligned to the reference. This equation can be
then solved with an iterative, two-stage algorithm that solves
for the Z̃1, . . . , Z̃N and E simultaneously:

Stage 1: The algorithm first solves for the aligned LDR im-
ages Z̃1, . . . , Z̃N with a bidirectional search-and-vote process
(Simakov et al., 2008) accelerated by PatchMatch (Barnes
et al., 2009). This process draws information into each of the
aligned LDR images from the entire stack, which has been
adjusted to match the corresponding exposure level. In order
to produce images aligned with the reference, the irradiance
image E from the previous iteration (which has been injected
with the reference in step 2) is used as the initial target for the
search-and-vote process.

Stage 2: Next, the algorithm optimizes for E by merging
the aligned images Z̃1, . . . , Z̃N together using a standard HDR
merging process (Sec. 3) and then injects the portions of the
reference image where it is well exposed into the result.

Once the new E has been computed, it is used to extract
the new image targets for the next iteration and the algorithm
goes back to stage 1. These two stages are performed at every
iteration of the algorithm until it converges. Furthermore, as is
common for patch-based methods like this (e.g., Simakov et al.
(2008)), this core algorithm is performed at multiple scales,
starting at the coarsest resolution and working to the finest.
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Once the algorithm has converged, it returns both the desired
HDR image E as well as the “aligned” images at each exposure
Z̃1, . . . , Z̃N . A result produced with this algorithm is shown in
Fig. 8. This algorithm was later extended by Kalantari et al.
(2013) to reconstruct HDR video, as described in Ch. 4.

Hu et al. (2013) propose a different patch-based synthesis
algorithm, which, unlike the algorithm by Sen et al., does
not require the camera calibration curve to be known a priori.
Specifically, they calculate the aligned images Z̃i as:

Z̃i = arg min
Z̃i,τ,u

(
Cr(Z̃i,Zref,τ)+Ct(Z̃i,Zi,u)

)
, (47)

where u is the displacement field that “warps” image Zi to
match the geometric appearance of the reference, and τ is the
IMF between the source image Zi and the reference Zref. In
Eq. 47, the first term, Cr for “radiance consistency,” encourages
the aligned image Z̃i to be geometrically consistent with the
reference, Zref:

Cr(Z̃i,Zref,τ) = ∑
p

(
‖Z̃i(p)− τ(Zref(p))‖2 +

+α ‖∇Z̃i(p)−∇τ(Zref(p))‖2
)
.

(48)

Note that both the images and their gradients are accounted for
in Eq. 48. The second term in Eq. 47, Ct , is what Hu et al. call
the “texture consistency” term:

Ct(Z̃i,Zi,u) =
1
k ∑

p

(
‖PZ̃(p)−PZi(p+u(p))‖2 +

+α ‖∇(PZ̃(p)−∇PZi(p+u(p))‖2 ) , (49)

where k is a normalization factor. The texture consistency
term enforces similarity between the patch around pixel p
in the warped source, PZ̃(p), and the corresponding patch in
the source image, PZi(p+u(p)). This helps enforce that the
synthesized content is plausible and free of artifacts.

Hu et al. tackle this optimization iteratively using a coarse-
to-fine approach, which helps in two ways. First, it prevents
the optimization from falling in a local minimum. Second, it
allows the algorithm to deal with large over- or under-saturated
regions: a patch that is entirely saturated at the finest level
could include information from neighboring non-saturated pix-
els at the coarser levels, thus allowing information to propagate
inward. To do this, they propose an iterative, three-stage algo-
rithm:

Stage 1: First, they estimate τ using the intensity histograms
of the images (Grossberg and Nayar, 2003b) at the coarsest
level of the pyramid and initialize Z̃i = τ(Zi) for the same
level. The displacement u, which only appears in Ct , can then
be estimated with PatchMatch (Barnes et al., 2009).

Stage 2: In a second step, the authors propose to refine the
estimate of Z̃i by minimizing Cr. However, for the areas
where reference image is over- or under-exposed, they av-
erage τ(Zref(p)) with the corresponding location in the source

image Zi(p+u(p)) with a weight that accounts for how likely
the latter is to become over- or under-exposed in the reference
image.

Stage 3: In the third and last step, with the new Z̃i, they refine
the IMF, τ . Moving to the next finer level, τ is left unchanged
and u is linearly interpolated. The latent image Z̃i, instead, is
initialized with a weighted average of τ(Zref) and Zi(p+u(p)).

Results from this approach can be seen in Fig. 9.

As discussed earlier, these patch-based synthesis meth-
ods have the advantage that they work very well for scenes
with complex, arbitrarily large motion where other algorithms
would normally fail. However, they are expensive and require
considerable time and hardware resources to evaluate: the
reference implementations provided by the authors take over
a minute for VGA images. Furthermore, although they can
produce plausible results, they are only hallucinating the final
result as compared to the true HDR result that would have been
captured by a hypothetical HDR camera.

5. Conclusion
In this chapter, we have examined approaches to capture high-
dynamic-range (HDR) images and video by taking a stack
of multiple images at different exposure settings. We began
by studying algorithms for metering, which set the exposure
levels for the different images in the stack. Next, we stud-
ied the process of merging the LDR images into a final HDR
result, which included a radiometric calibration process (to
compute the irradiance images from the original pixel values)
and merging schemes (which compute the weights of the differ-
ent irradiance images to compute the final HDR). Finally, we
examined algorithms developed to handle artifacts from mo-
tion when capturing stack-based HDR images, which included
rejection algorithms and registration algorithms.
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