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Abstract
This paper introduces a new approximation algorithm for the near-field ambient occlusion problem. It combines
known pieces in a new way to achieve substantially improved quality over fast methods and substantially improved
performance compared to accurate methods. Intuitively, it computes the analog of a shadow volume for ambient
light around each polygon, and then applies a tunable occlusion function within the region it encloses. The algo-
rithm operates on dynamic triangle meshes and produces output that is comparable to ray traced occlusion for
many scenes. The algorithm’s performance on modern GPUs is largely independent of geometric complexity and
is dominated by fill rate, as is the case with most deferred shading algorithms.

1. Introduction

Ambient illumination is an approximation to the light re-
flected from the sky and other objects in a scene. Ambient
occlusion (AO) is the darkening that occurs when this illu-
mination is locally blocked by another object or a nearby
fold in a surface. Both ambient illumination and occlusion
are qualitatively important to perception of shape and depth
in the real world. Artists have long recognized AO, and
specifically seek to reproduce the real phenomena such as
corner darkening and contact shadows. Ambient occlusion
can also be quantified by specific terms in the integral equa-
tion for light transport (see section 2), which gives a basis
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Figure 1: Time vs. Error tradeoff for several algorithms on
the Sponza scene at 1280×720. A 60-ms AOV render has
comparable quality to a 5-min ray traced result.

for evaluating the error in AO approximation algorithms. As
elaborated in that section, it is common practice to compute
a specific variant called obscurance or near-field occlusion,
in which the effective occlusion distance of each surface is
limited to some small artist-selected distance, e.g., δ = 1m
for human-scale scenes. This is desirable because it allows a
combination of local and global illumination, whether from a
precomputed ambient or environment map term or truly dy-
namic, without double-counting sources; increases the per-
formance of AO algorithms; and allows artistic control over
the impact of occlusion.

The primary contribution of this paper is an efficient
new algorithm called Ambient Occlusion Volume render-
ing (AOV) for estimating the ambient occlusion based on an
analytic solution to the occlusion integral. It is conceptually
an extension of Kontkanen and Laine’s precomputed am-
bient occlusion fields for objects [KL05] to individual, dy-
namic triangles in a mesh, using techniques borrowed from
shadow volumes [Cro77]. AOV rendering is viewer inde-
pendent and produces no noise or aliasing (beyond that of
rasterization itself). Its main limitations are that it requires
tessellating curved surfaces into meshes and it over-counts
occlusion where thin objects are stacked.

Previous ambient occlusion algorithms tend to be fast or
good, but not both simultaneously. AOV aims to achieve
both reasonable quality and reasonable performance (fig-
ure 1) rather than being too geared toward either dimension.
It maintains image quality near that of ray tracing, but pro-
vides a suitably efficient approximation to enable interaction
in modeling and visualization environments.
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Figure 2: For this 1.4M-triangle scene at 1280×720 resolution, Ambient Occlusion Volume results have quality comparable to
ray tracing 1200 visibility samples per pixel but run in real time: a 4000× speedup. Inset: occlusion volume wireframes.

2. Ambient Occlusion Problem Statement
This section formalizes ambient occlusion in the context of
physically-based rendering. The formal definition motivates
our later choice of ray tracing as a “correct” solution for this
term when comparing algorithms. The integral equation for
exitant radiance at position~x in direction ω̂o is

Lo(~x, ω̂o)=Le(~x, ω̂o)+
Z

S2
Li(~x, ω̂i)f (~x, ω̂i, ω̂o)(ω̂i · n̂)dω̂i, (1)

where function f describes how incident light scatters at a
surface and Le represents emitted light. By convention, all
vectors point away from~x.

Ambient illumination is the light incident on an imagi-
nary sphere of radius δ about ~x due to objects outside that
sphere. It can be computed for every frame time and point
with a global illumination algorithm, as is common for of-
fline rendering. Alternatively, a temporally and spatially in-
variant approximation can be precomputed, as is more com-
mon in real-time rendering. Precomputed illumination is of-
ten encoded as one of: a constant, a function on the sphere
represented in a spherical harmonic basis, or a cube map.
Because light superimposes, ambient illumination can also
be separated into dynamic and precomputed terms.

Let La(~x, ω̂i) = Li(~x+ ω̂iδ, ω̂i) represent the ambient illu-
mination. Observe that it may not actually reach~x if there is
an occluder inside the imaginary sphere. Let visibility func-
tion V(ω̂i) = 1 if there is unoccluded line of sight between
~x and~x+ ω̂iδ and 0 otherwise. A common approximation of
the ambient contribution to eq. 1 is (restricting to the posi-
tive hemisphere about n̂ and omitting function arguments to
reveal the mathematical structure):Z

S2
+

La · f · V · (ω̂i · n̂) dω̂i ≈[Z
S2

+

La · f · (ω̂i · n̂) dω̂i

]
·
[

1
π

Z
S2

+

V · (ω̂i · n̂) dω̂i

]
. (2)

This is only an approximation because multiplication and in-
tegration do not commute, except for constants. That is, this
approximation is only exact when distant light La is indepen-

dent of direction and f is Lambertian (which explains why
Phong’s ambient term is a constant function of the diffuse
reflectivity only). However, eq. 2 is reasonable if both func-
tions are relatively smooth over most of the sphere, which is
the case for a typical sky-and-ground model and Lambertian-
plus-glossy BRDF. In this case, the left bracketed factor on
line 2 can be precomputed; for real-time rendering the re-
sult is typically encoded in a MIP-mapped cube map [SI05]
for negligible run-time cost. This is how I lit the scene in
figure 2. Note the repeated (ω̂i · n̂) factor. This is necessary
on both sides to diminish the off-normal light and visibility.
The 1/π compensates for the repeated term and normalizes
the right factor in eq. 2, which is a scalar between 0 and 1
indicating the fractional accessibility of a point.

Because objects typically have explicit representations
and empty space is implicit in most scene models, acces-
sibility is often expressed in terms of ambient occlusion:

AO =
1
π

Z
S2

+

(1−V)·(ω̂i · n̂)dω̂i = 1− 1
π

Z
S2

+

V·(ω̂i · n̂)dω̂i (3)

A hard cutoff at δ would reveal the transition between meth-
ods used for computing visibility at different scales (e.g.,
ambient occlusion vs. shadow map and no area occlusion),
so it is common to replace binary occlusion 1− V(~x,~y)
with fractional obscurance [ZIK98] (1 − V(~x,~y))g(~x,~y),
where falloff function g is smooth, monotonic, and is 0 for
||~x−~y|| ≥ δ and 1 at~x =~y.

Arikan et al. [AFO05] nicely formalized this decomposi-
tion into near vs. far illumination; this is now common in
rendering and the remainder of this paper takes that division
as given. I also assume that limiting occlusion falloff to δ

is a desirable aspect and not a limitation. This is supported
by the fact that far-field occlusion is handled in the far-field
simulation (beyond the scope of this work) which produces
the ambient illumination, and because any enclosed indoor
scene would undesirably be completely occluded, and there-
fore have zero ambient illumination, were the far-field oc-
clusion considered in the near field [SA07].
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Figure 3: This “Suburb” stress-test scene contains close proximity between surfaces, varying depth discontinuities, large off-
screen occluders, and steep screen-space slopes. Various algorithms exhibit aliasing, noise, and over-occlusion compared to
the far right ray traced reference.

3. Related Work

The basic idea of the AOV algorithm is that an ambient oc-
clusion volume is the analog for ambient light of Crow’s
shadow volume [Cro77] for a point source. Zhukov et
al. [ZIK98] introduced ambient occlusion and obscurance in
the context of the radiosity algorithm. They derived an ana-
lytic approximation to the form factor between points on dif-
ferential patches and apply this to occlusion. I apply a simi-
lar approach to whole polygons that is closer to the analytic
polygon form factors introduced by Baum et al. [BRW89].

Many previous analytic algorithms approximate occlud-
ers as spheres [Bun05, HPAD06, RWS∗06, SA07, SGNS07].
AOV follows other work [BRW89, AFO05, SBSO09] in di-
rectly solving for a mesh’s analytic occlusion, but is the first
to do so in real time due to algorithmic improvements.

It is common to compute AO results at low spatial [Mit07,
Kaj09, BS09, FM08] or angular [BS09, RBA09] resolution
and then joint-bilateral upsample to full resolution. The in-
tuition behind this is that AO is smooth across a plane, and
therefore often smooth in screen space as well. Stochastic
sampling AO methods produce substantial noise, which they
rely on upsampling smooth. AOV’s analytic solution is al-
ready noise-free and upsampling introduces error, so I con-
sider upsampling an optional step and apply it only where
specifically denoted in the results section.

Bunnell [Bun05] introduced a purely geometric method.
It requires preprocessing the scene into a set of disks with
bent normals. His algorithm computes approximate analytic
occlusion between the disks. Hoberock and Jia [HJ07] ex-
tend Bunnell’s algorithm to deferred shading per-pixel com-
putations and a disk hierarchy with true polygon occluders
at the leaves following Baum et al.’s form-factor computa-
tion. Both methods require multiple passes to converge and
tend to over-estimate occlusion because the disks are larger
than the actual scene polygons they approximate. Shopf et
al.’s [SBSO09] method is the starting point for our own.
They extend Hoberock and Jia’s analytic deferred-shading
method to a single-pass screen space method by rasteriz-
ing occlusion bounding cubes. This enables real-time perfor-
mance but introduces double-occlusion. They demonstrate
a result on spheres and derive the quadrilaterals case. Be-

ginning with their ideas, we extend the algorithm with tight
dynamic bounding volumes, partial coverage, and bilateral
upsampling; resolve the occlusion over-estimate; and then
provide detailed analysis for the polygon case.

Reinbothe et al.’s Hybrid AO [RBA09] traces rays against
a voxelized scene and then corrects high-frequency features
with a less accurate SSAO pass. Sloan et al.’s image-based
global illumination method [SGNS07] generates accurate
ambient occlusion and indirect illumination in real-time for
small scenes using virtual light probes. Their method uses
spheres as proxy occluders and accumulates the illumina-
tion in spherical harmonic coefficients. A recent method by
Laine and Karras [LK10] extends AOV with bit masks that
prevent over counting (at the cost of quantization), tighter
bounding volumes, and acceleration via level of detail.

Another branch of the literature pursues the phenomeno-
logical characteristics rather than the physics of AO. Hege-
man et al. [HPAD06] recognized that AO is essential to
the rendering of foliage, which is now a standard test (see
figure 11 row 4). They coarsely approximated trees with
bounding spheres and grass with occlusion gradients. Luft
et al.’s seminal unsharp masking paper [LCD06] introduced
the screen space ambient occlusion (SSAO) approach: they
treat the depth buffer as a heightfield and identify con-
cave regions by filtering. They are careful to point out
that this has only passing resemblance to actual ambient
occlusion, however it remarkably improves the perception
of depth and they demonstrate applications in visualiza-
tion. The Crytek SSAO [Mit07, Kaj09] algorithm adapted
unsharp masking for games by sparsely sampling visibil-
ity rays against the depth buffer and filtering the result.
Subsequent techniques improved SSAO quality at varying
performance by: adding distant occluders [SA07], direc-
tional occlusion and indirect illumination [RGS09], better
filtering and sampling [SA07, FM08, BS09], and better ob-
scurance [SKUT∗09]. Evans [Eva06] precomputed voxel
signed-distance fields around static meshes by rasterization
and then estimated occlusion by convexity. Similarly, Kon-
tkanen and Laine [KL05] and Malmer et al. [MMAH07] di-
rectly precomputed AO on a voxel grid and composed results
at run time.
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4. Analytic Polygon Occlusion

Let X be an infinitesimal patch of a smooth manifold.
Without loss of generality, let the centroid of X be at the
origin with normal n̂. Let P be a polygon with vertices
{~p0, ...,~pk−1} that lie entirely within the positive half plane
~p · n̂ ≥ 0. The occlusion by P of ambient illumination di-
rected to X from the sphere at infinity is equal to the form
factor that describes the diffuse radiative transfer between P
and X ,

AOP(n̂) =
1

2π

k−1

∑
i=0

cos−1
(

~pi ·~p j

||~pi|| ||~p j||

)
n̂ ·

~pi×~p j

||~pi×~p j||
(4)

where j = (i+1) mod k. This was first introduced to graph-
ics by Baum et al. [BRW89] in the context of the radiosity
algorithm. I implement it with 1 arccosine, 15 multiply-add,
and 2 reciprocal square root operations per edge.

5. Ambient Occlusion Volume Algorithm

I now extend the analytic solution in equation 4 for occlusion
of one infinitesimal patch by one polygon to an approxima-
tion algorithm for the ambient occlusion of all visible points
by a set of polygons, using OpenGL terminology.

The algorithm takes typical deferred rendering inputs: a
set of polygons, a camera, and normal and depth buffers.

1. Initialize an accessibility buffer to 1 at each pixel

2. Disable depth write, enable depth test, and enable depth
clamp (GL_depth_clamp) to prevent near-plane clipping

3. (Vertex Shader:) Transform all scene vertices as if ren-
dering visible surfaces, e.g., apply skinning and mod-
elview transformations

4. (Geometry Shader:) For each polygon P in the scene:

i. Let the ambient occlusion volume V be the region
over which obscurance falloff function gP > 0

ii. Construct a series of polygons {B} that bound V

iii. If the camera is inside V , replace {B} with a full-
screen rectangle at the near clipping plane.

iv. (Pixel Shader:) For each visible point~x∈V conser-
vatively identified by rasterizing {B}:

a. Let g = gP(~x); discard the fragment if g≤ 0
b. Let P′ be P clipped [HJ07] to the positive half

space of the tangent plane at~x

c. Decrement the accessibility at the projection of~x
by g ·AOP′(n̂) via saturating subtractive blending

5. Shading: Modulate the ambient illumination La (from
eq. 2) by the accessibility buffer during a subsequent for-
ward or deferred shading pass, as if it were a shadow map
or stencil buffer for ambient illumination.

Figure 4: Left: Ambient occlusion volume visualization.
Right Four: Accessibility buffers computed by ray tracing,
Volumetric AO, and our new Ambient Occlusion Volumes for
a simple scene. The AOV result is indistinguishable from the
converged ray traced result for this scene. No matter how
many samples are used, Volumetric AO (like other screen
space methods) cannot converge to the correct result.

I found that the R channel of an 8-bit RGB texture had
sufficient precision to implement the accessibility buffer and
that higher precision had minimal visual impact on most
scenes but significantly degraded performance.

A list of quadrilaterals is a good representation for {B},
however, OpenGL and DirectX can only output triangle
strips from a geometry shader. Under current APIs one must
either convert the quadrilateral list to triangle strips or con-
struct all B in a separate pass over the scene geometry.
Three implementation choices for the latter alternative are
an OpenGL transform feedback loop, an OpenCL or CUDA
program, and a set of CPU vertex and geometry shaders. Ap-
proximately half of the faces in {B} are backfaces, which
the rasterizer automatically culls. I found no performance
advantage in doing so explicitly during face generation.

I implemented both a GPU geometry shader that out-
puts triangle strips, which is well-suited to dynamic geome-
try, and a CPU geometry shader that outputs quadrilaterals,
which is well-suited to precomputing the volumes for static
geometry. For scenes with volumes covering many pixels,
precomputation gave up to 20% speedup in our tests (fig-
ure 10), although in some cases the bandwidth impact of
storing large precomputed streams may actually decrease
rendering performance (e.g., the Trees scene). As is the case
for shadow volumes, static and dynamic AOV geometry cor-
rectly occlude each other–this is an optimization, not an ap-
proximation.

5.1. Falloff Function g

Consider a convex polygon P with vertices {~p0, ...,~pk−1},
no three of which are collinear. The falloff function should
be monotonic in distance from P and map distances 0→ 1
and δ→ 0. For efficiency, I chose:

g(~x) = ᾱ

k

∏
i=0

max(0,min(1,(~x−~pi mod k) · m̂i/δ+1)) , (5)

c© The Eurographics Association 2010.
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where ᾱ = 1 for solid surfaces, m̂i<k are the (inward facing)
normals to the edges of P shown in figure 5, and m̂k is the
negative normal to P:

m̂k = S((~p2−~p0)× (~p1−~p0)) (6)

m̂0≤i<k = S
(
(~p(i+1)mod k−~pi)×~mk

)
(7)

as shown in figure 5.

Figure 5: A polygon P that faces ~0, its k = 4 vertices
{~p0, ...,~p3}, inward edge normals {m̂0, ..., m̂3}, and nega-
tive face normal m̂4. I depict a quadrilateral occluder in this
section to emphasize that the algorithm is defined on con-
vex polygon meshes even though current GPUs are largely
restricted to triangle meshes.

5.2. Bounding Volume {B}

The ambient occlusion volume of P is bounded by k + 2
planes. Let planes {B0, ...,Bk−1} correspond to the polygon
edges, Bk be the plane above P, Bk+1 be the plane that con-
tains P, and m̂i be the normal to Bi. For a maximum obscu-
rance distance δ, let Bi : ~x

∣∣ (~x−~pi) · m̂i = δ, where ~pk = ~p0
and ~pk+1 = ~p0 +δm̂k+1.

Because I derived occlusion for a point at the origin, g
will always be evaluated at~x = 0 but the ~pi will change. The
falloff function from equation 5 thus simplifies to

g(~0) = ᾱ

k

∏
i=0

max(0,min(1,1−~pi mod k ·~mi/δ)) . (8)

AOV uses rasterization to efficiently find all visible
points within an ambient occlusion volume. Let the volume
bounded by these planes be defined by a polyhedron V with
vertices {~v0, ...~v2k−1}, where the first k vertices are in the
plane of P and the second k are displaced along the plane
normal from them.

Let extension vectors {~ei =~vi−~pi mod k} be the displace-
ments of polygon vertices to volume vertices. Because the
bounding planes of the volume are offset along the inward
facing edge normals m̂i by the maximum obscurance dis-
tance and are in the plane of P,~ei<k is constrained by:

~ei ·−m̂i = δ (9)

~ei ·−m̂(i−1+k)mod k = δ (10)

~ei · m̂k = 0 (11)

Figure 6: Diagram of the ambient occlusion volume V cast
by a polygon P. The volume’s base is formed by extending
each original polygon vertex ~pi along a vector ~ei derived
from the normals m̂ of the adjacent edges and maximum ob-
scurance distance δ.

Extension vector~ei is therefore given by the solution:

~e0≤i<k =

 m̂i
m̂(i−1+k)mod k

m̂k

−1 −δ

−δ

0

 (12)

~ek≤i<2k = ~ei−k−δm̂k (13)

Sliver polygons create long volumes yet little occlusion,
so as a practical measure, clamp all ||~ei|| to at most 2δ.

5.3. Masked Polygons and ᾱ

Artists often model planar surfaces with complex contours,
such as foliage or a fence, as α-masked polygons. Because
the underlying geometry does not match the actual occlu-
sion properties of such a surface, its ambient occlusion vol-
ume will result in an over-estimate of occlusion. I there-
fore weigh the occlusion due to a surface by its average α

value, ᾱ, which can be determined efficiently in the geome-
try shader by a texture fetch from a low MIP level. As with
regular α blending and testing, this computation need only
be performed for surfaces that are tagged as having a mask.

It is tempting to consider extending the method to use the
full α-channel of a texture map to achieve positional varia-
tion in occlusion from a single polygon. I have not found an
efficient way of doing this without tessellating the polygon.
The source of the problem is that the analytic solution as-
sumes opacity is constant over the integration domain, and
making it piecewise constant would require multiple inte-
grals...which is equivalent to tessellating the polygon.

5.4. Compensation Map

Overlapping occlusion volumes due to adjacent polygons on
the same surface lead to correct results under the AOV algo-
rithm. This is because of the choice of analytic solution and
point-based falloff function. This is an important benefit of
the algorithm. It means that results are extremely robust to
tessellation and level of detail changes.
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Figure 7: Thick line: The compensation map curve that mit-
igates error from artificial multiple occlusion. Thin lines:
Over-fit curves for a few representative scenes.

However, where objects thinner than δ are in proxim-
ity closer than δ, they can create artificial multiple occlu-
sion. This is because the occlusion volume of one object
passes entirely through another object. This produces over-
darkening of the adjacent faces on the objects, which can be
observed in figure 8 (left). It is similar to artifacts of shad-
ows passing through walls when casting shadow volumes or
rendering shadow maps from only a subset of the scene.

To mitigate this effect, I extend the AOV algorithm to non-
linearly rescale the computed AO of highly occluded regions
according to the thick line plotted in figure 7, which can be
encoded as a 1D luminance texture on a GPU. The perfor-
mance impact of the additional texture fetch is below the
threshold of measurement, and automatically clamps the in-
put AO to [0, 1]. I created the curve by fitting AOV results
from multiple viewpoints from the Suburb and House scenes
to ray traced results (I then applied it to all scenes). An in-
tuitive explanation for the right end of the curve is that the
corner where three walls meet at a right angle has about 75%
occlusion, so that is roughly the maximum occlusion one
would expect to encounter in most man-made scenes.

Note that unlike the rest of the algorithm, the compen-
sation map has no physical basis. It is an ad hoc solution
to allow rendering of scenes that violate the δ-thickness as-
sumption. The AO for such scenes is strictly over-estimated,
and the thin curves demonstrate that it is typically worse in
highly occluded areas. Thus, some roughly-parabolic curve
is a reasonable correction in many cases.

5.5. Optional Sparse Sampling

Any AO method can be accelerated by reconstruction from
sparse samples. AO is an integral over d~x and dω̂. If the

sparsely sampled dimension is angular (dω̂) [Mit07, BS09,
FM08], the reconstruction filter masks noise. If that dimen-
sion is spatial (d~x) [BS09,RBA09], the filter masks aliasing.
In both cases, undersampling is a source of error, particularly
where geometry changes rapidly in screen space.

The AOV algorithm can trade accuracy for performance
by sampling accessibility at low resolution and then recon-
structing the full-screen result with a cross-bilateral filter.
I chose to reconstruct with a gaussian cross bilateral fil-
ter [ED04, PSA∗04] that falls off with surface normal dis-
crepancy and 3D distance between the desired and available
samples, and implement it as separate 1D horizontal and ver-
tical passes.

Undersampling is a source of error when geometry
changes rapidly in screen space. Because the primary benefit
of the AOV algorithm is image quality, I did not use sparse
sampling in results, except where explicitly noted. In those
cases, reconstruction passes account for 1.1-1.3 ms of the
total render time at 1280×720. This is independent of the
resolution reduction.

6. Results

For all algorithm comparisons, I directly processed indexed
triangle meshes. All algorithms were given identical depth
and normal buffers as input and computed the AO factor
only. The ray tracer used a bounding volume hierarchy and
ran on 8 cores of an Intel Dual-Quad Core2 processor. GPU
algorithms executed on a GeForce GT 280 GPU. All images
are at 1280×720 (“HD 720p”), and the falloff distance was
δ = 1.5m. For figure 2, both sides of the image were lit on
the GPU with one shadow-mapped spot light and a cube en-
vironment map modulated by (1 - AO), following eq. 2.

As a rough metric for implementation difficulty, our full-
resolution ambient occlusion volume implementation added
229 C++ and GLSL statements and one draw call to a de-
ferred renderer.

I denote sparse sampling for all algorithms considered as
the product of amortized samples taken per pixel and recon-
struction filter size, which gives the total amortized samples
affecting a result pixel. Thus, 1/32 ·52 denotes one visibility
sample per pixel in 3×3-downsampled buffer, followed by a
5×5 upsampling kernel.

6.1. Qualitative Results

Figure 11 shows selected results from multiple algorithms
and scenes. The PDF version of this paper contains full res-
olution images that can be zoomed to see pixel-level de-
tail. The left-most column shows the reference ray traced re-
sult against which I measure the others. The second column
is our AOV algorithm rendered without sparse sampling; it
overdarkens multiply occluded areas but is generally faithful
to the reference result.

The right-most column of results are by the Crytek SSAO
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algorithm [Mit07, Kaj09], a common baseline in AO litera-
ture and a defacto standard among game developers because
of its performance. The incorrect gray flat surfaces and white
halos are consistent with Mittring and Kajalin’s published
results. The third column is Volumetric AO [SKUT∗09],
which is both the most recent and most efficient published
AO algorithm. The stippling and black halos in the Volu-
metric results are consistent with images from their original
paper. (These artifacts may not be visible in the printed pa-
per; see the inset details in figure 3 or manually zoom in on
any result in the electronic version of the paper.)

Note that Crytek SSAO uses no falloff, Volumetric AO
uses cubic falloff, and our falloff is the product of many fac-
tors. Yet I measure error results against linear falloff in a
ray tracer, which a nonlinear algorithm could not possibly
match. I still believe this is a good metric. The algorithms
with non-linear falloff functions use them because any other
falloff would be less efficient in those algorithms. Artists
seem satisfied with linear falloff in MentalRay and other
popular renderers, so varying from that for efficiency (as
AOV does) compromises quality. I compensate by choosing
δAOV = 0.6δray and δvolumetric = 1.1δray, which minimized
their error on test scenes. Note that all of these algorithms
enjoy a significant performance benefit from the limited oc-
clusion radius. Screen space methods require O(δ2) filter
taps for convergence and experience performance cliffs from
cache misses when δ grows too large. The ray tracer can ter-
minate tracing at distance δ rather than propagating through
the entire tree. AOV consumes O(δ2) fill rate.

The first row of figure 11 is the “Sponza” benchmark
model. The AOV result is comparable to the ray traced one.
Note the black halos on columns in the Volumetric result.

“City” demonstrates occlusion created and received by an
α-masked surface. The chain link fence contains only two
textured triangles (omitting the posts). The Volumetric AO’s
black halos around the fence are a drawback of that method.
The AOV algorithm creates a single occlusion volume for
the entire fence, but with the correct ᾱ value it is close to the
reference. The white line under the fence in the ray traced
result is an artifact in the ray tracer where occlusion rays
miss the fence because they are parallel to it within floating
point precision.

“House” is a simple architectural model. It shows that the
primary artifact of AOV is overdarkening. Note that Volu-
metric AO misses the windows and stairs because the depth
discrepancy is small. “Trees” contains many α-masked poly-
gons with high depth complexity. All algorithms perform
well, although Volumetric AO self-occludes the ground
plane and has excessive stippling.

“Belgium” is a highly-tessellated architectural detail. This
is a challenging case for our algorithm because it generates
occlusion polygons of only a few pixels in area, which are
inefficient on a GPU. AOV is able to reproduce the details
at different scales, including the braids on the central figure,

window mullions, and masonry gaps. The Volumetric algo-
rithm’s result is also very good and is substantially faster
because it is independent of scene complexity.

The scene in row 5 (shown lit in figure 2) was extracted
from the “Secret War” level of Xbox 360 game Marvel Ul-
timate Alliance 2. Secret War produces 1.5M occlusion vol-
umes, but only a quarter pass the frustum and depth test and
AOV renders it in 31 ms. With sparse sampling one can drive
the time as low as 4 ms while maintaining low error.

6.2. Compensation Map

Figure 8 shows the suburb scene as rendered by the AOV
algorithm. Recall that this scene was constructed to be diffi-
cult to render. AOV correctly produces the soft shadows on
the side of the house, the soft shadow from the house out-
side the viewport on the left, and exhibits no noise at any
location. The primary artifact is that, compared to the ray
traced result, the AOV result is too dark between the fins of
the air conditioning (AC) unit and where the AC unit casts
a soft shadow on the nearby wall. This overdarkening arises
from overlapping occlusion volumes from the thin fin fea-
tures. The shadow underneath the fan is also less distinct.
That is a separate artifact that arises because the fan grille is
modeled as a single α-masked polygon, so AOV sees only a
translucent quad instead of detailed grille blades. Modeling
the central disk as a separate polygon would correct this. Af-
ter compensation the local intensity image matches the ray
traced reference, largely correcting the overdarkening. Note
that some detail has been lost at the bottom of the air condi-
tioner fins where the occlusion saturated. Also note the AC
unit’s shadow on the wall of the house, which now has cor-
rect intensity, and that throughout the image, medium tone
regions have been preserved.

6.3. Quantitative Results
6.3.1. Estimation Error

I quantify error with a perceptually-motivated variance met-
ric. Informally, this is

E[AO] = σ
2 = logMSE[1−AO]+ logMSE[~∇(1−AO)].

Formally, let T = 1−AO; 0 < Tx,y < 255 be an 8-bit “test”
accessibility approximation. This is to be compared against
a ray-traced reference R computed from 5000 samples per
pixel. Let the error of approximation T be the mean squared
error (i.e., variance) across the log-mean and log-gradient:

E[T ] = MSE[log† T ]+
1
2

(
MSE

[
log†

∂T
∂x

]
+MSE

[
log†

∂T
∂y

])
where log† preserves signs and avoids the singularity at 0:

log† x = sign(x) · log(|x|+1) (14)

Reflected ambient radiance is linear in accessibility, so like
the human visual system, this metric tracks both radiance
and changes in it, with decreasing marginal sensitivity.
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Figure 8: Left: AOV result before compensation. Middle: AOV result after compensation map. Right: Ray traced 256 spp.

Scene
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Ray Trace 5000 490803.0 0.00 603202.0 0.00 283226.0 0.00 691334.0 0.00 556228.0 0.00 642571.0 0.00 401222.0 0.00
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1 156.4 6.83 167.9 6.06 87.7 2.88 195.0 6.06 161.1 9.38 180.9 3.50 130.7 8.98

AOV (new) 1 77.7 0.59 137.3 0.46 25.9 0.27 100.3 2.03 31.2 0.43 110.1 0.28 31.7 0.65
41.6 1.03 20.5 0.51 7.2 0.69 38.0 2.40 21.3 0.73 32.2 0.61 5.2 0.68
28.1 1.55 8.9 0.72 5.6 0.78 28.7 2.74 18.9 0.88 21.8 0.72 2.8 0.74
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Volumetric 895.4 2.19 1035.3 3.96 473.7 1.20 742.8 4.32 954.8 1.62 967.9 1.49 1050.1 1.34
256 224.3 2.50 259.3 4.75 119.0 1.47 186.8 4.98 252.1 2.55 242.9 2.03 265.2 2.28
32 29.3 4.11 33.6 7.03 15.6 2.42 24.4 6.35 31.0 4.74 238.6 2.39 34.4 4.29
1 3.1 6.65 3.2 12.89 1.7 4.58 2.4 12.26 3.1 9.94 3.1 8.93 3.2 11.36

Crytek  15.6 4.34 15.6 3.82 12.8 1.68 14.3 2.98 15.6 2.85 15.7 2.81 15.5 2.76
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Figure 9: Representative results for selected AO approximation algorithms at 1280×720 on varying scenes and sampling rates.
For each trial I report the AO render time in milliseconds and a measure of perceptual error (as 8-bit variance; see eqn. 14).
Darker color coding is better (i.e., lower numbers). The new AOV algorithm balances quality and performance, so its rows are
heavily shaded.

Figure 9 reports render time and error for multiple tri-
als varying the sampling parameter for each algorithm. Cry-
tek and sparse-AOV both use post-filtering, so the table lists
both the amortized samples per pixel and the filter kernel size
for them. For this test, I assumed static scene geometry and
pre-computed the occlusion volumes for AOV and bounding
volume hierarchy for the ray tracer. See figure 10 for a com-
parison of best- (fully static) and worst- (fully dynamic) case
render times for AOV on these scenes.

To make trends visible in figure 9, the low (i.e., good)
time and error values are colored dark. The data is arranged
so that rows near the top are high quality and ones near
the bottom are fast. The gray-outlined rows for Ray Trace
with 1941 samples and full-quality AOV demonstrate the
success of AOV for the target application: upgrading of-
fline ray tracing to interactive AOV rendering in a modeling
program or similar application, while retaining the charac-
ter of the illumination. Pushing the algorithm farther, with
sparse screen-space sampling AOV performance is compet-
itive with screen space methods, although sparse sampling
degrades image quality.

6.3.2. Execution Time

In practice, I observe that performance of the AOV al-
gorithm is primarily governed by the amount of oc-
clusion volume overdraw (“fill rate”) as measured by

GL_OCCLUSION_QUERY and largely independent of scene
polygon count, as shown in figure 10. This holds even for
fully dynamic scenes in which every volume is computed on
the GPU every frame. Note the outlier of the dynamic render
time for the Belgium scene, which has neither high geomet-
ric complexity nor fill consumption. I attribute this to small
screen-space triangles in that scene, which either starve the
geometry processor of resources or cause it to block on the
rasterizer. The average volume in that scene covers only two
pixels, so although little fill rate is consumed, there is sig-
nificant edge processing per pixel rendered. In the starvation
scenario, rasterization is inefficient because most threads in
a pixel shader warp are idle because they lie outside the tri-
angle. Those threads are still devoted to the pixel processor
and therefore starve the geometry processor of resources. In
the blocking scenario, the rasterizer’s input queue blocks be-
cause of the overhead of triangle setup for tiny triangles.

Figure 1 demonstrates the tradeoff between time and error
and the convergence rate of different algorithms for a sin-
gle scene. At 15× 15 subsampling, AOV renders Sponza at
100 fps with quality comparable to a 1 minute-per-frame ray
traced rendering; both have the same mean, but the ray tracer
is very noisy and AOV misses the high frequencies. Moving
towards full-resolution decreases the AOV frame rate but
recovers the high frequencies. Volumetric AO at compara-
ble performance to AOV has high error. It improves rapidly,
but asymptotically converges to an incorrect result and never
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Figure 10: Scene geometry, AOV fill consumption, and AOV
render time for various scenes. The thick dark line denotes
pre-processed static volumes, the thin gray line represents a
fully dynamic scene with volumes computed in a GPU ge-
ometry shader. This is a bar graph rendered with lines to
emphasize correlations. Render time is strongly correlated
with fill and largely independent of scene complexity.

matches AOV quality. The Crytek algorithm is not intended
for variable sample counts, but I extend its quality level line
to show where it intersects the other algorithms. Volumet-
ric is well-suited to the game domain because it can achieve
very high performance. AOV’s substantially higher quality
is preferable for non-game applications where ray tracing
would be considered.
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Figure 11: Selected qualitative results for several scenes and algorithms (at 1000 dpi for zooming in the electronic version of
this paper). I treat the left-most column as the reference solution.
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