
Supplementary Material: Near-Eye Light Field Displays
Douglas Lanman David Luebke

NVIDIA Research

This document contains additional results and analysis in support of the primary text. Appendix A illustrates the
prototype construction. Appendices B and C present a “backward compatibility” method for stereoscopic content.
Appendices D and E describe PSNR analysis of retinal defocus and microdisplay defect correction, respectively.

A Photographs of the Head-Mounted Display Prototype

Figure S.1: Disassembling the Sony HMZ-T1 personal media viewer. (Top Row) The case was removed, exposing
the driver electronics and the eyepieces. (Bottom Row) The heat sink plates and magnifying optics were removed to
access a pair of Sony ECX332A OLED microdisplays. On the right, a microdisplay is removed from its housing.

Figure S.2: Assembling the near-eye light field HMD prototype. (Top Row) An enclosure was fabricated to hold
the circuit board, pushbutton controller, and microdisplays. (Bottom Row) The OLED ribbon cables, only 8 cm in
length, require the circuit board to be head-mounted; with longer cables, this box could be worn on the waist.

1

Figure S.3: Assembling the near-eye light field display eyepiece. (Top Left) The microdisplay frame and heat
sink plate (not shown) were retained in our eyepiece design. (Top Right) The original eyepiece and our modified
microlens-based eyepiece are compared on the left and right, respectively. (Bottom Row) The near-eye light field
display eyepiece contains four components, shown from left to right: an ECX332A OLED microdisplay, a custom-
fabricated plastic stand-off, a Fresnel Technologies #630 microlens array, and a custom-fabricated plastic cover.

Figure S.4: Our microlens-based design reduces form factor and weight. The prototype weighs 109 grams, in
contrast to the 420-gram HMZ-T1. Components contribute as follows: enclosure (65.1 grams), circuit board and
pushbutton controller (16.5 grams), and OLED with heat sink plate (11.8 grams). Each prototype eyepiece weighs
16.9 grams and is 1.0 cm thick, whereas the HMZ-T1 eyepiece weighs 69.4 grams and is 3.8 cm thick.

2

B Backward Compatibility: Resampling Existing Stereoscopic Content

This appendix describes a method to present existing stereoscopic content using a binocular near-eye light field dis-
play, leveraging the programmable graphics pipeline. Section B.1 introduces a GLSL shader program optimized for
resampling conventional 2D images for presentation by a microlens-based near-eye light field display. Section B.2
describes an associated anti-aliasing shader program for use with the proposed resampling scheme.

B.1 Resampling Shader Program

As shown in Figure S.6, rendering images for a binocular near-eye light field display requires assigning the color of
each microdisplay pixel such that the emitted light field approximates the virtual scene. Following Section 4.2 in the
primary text, ray tracing provides a direct solution. Consider the pixel located a distance xs from the center of the
left microdisplay. Assume this pixel is visible, to the viewer’s left eye, through a microlens whose optical center is
laterally displaced by a distance xl from the center of the microdisplay. In this circumstance, the 3D coordinates of
the microlens optical center and the microdisplay pixel define an optical ray, denoted by the red line in Figure S.6.
Ray tracing provides a direct estimate of the microdisplay pixel color: casting the set of rays defined by every pixel
located within the elemental image region corresponding to each microlens (see Section 3.2 in the primary text for
the definition of elemental image regions). As shown in the supplementary video, we implement this rendering
scheme using the NVIDIA OptiX GPU-accelerated ray tracing engine [Parker et al. 2010].

While ray tracing presents a flexible rendering alternative, a “backward compatibility” option is required to support
existing stereoscopic sources, including movies and video games. Such sources have become widely available with
the recent broad marketing of 3D television (3DTV). Similar to glass-free 3DTVs, particularly those using parallax
barriers [Ives 1903] or lenticular arrays [Lippmann 1908], multiple views must be generated from stereoscopic
sources. Proposed solutions include multiview synthesis, typically requiring estimating depth maps [Jin and Jeong
2008; Jain et al. 2011; Ramachandran and Rupp 2012]. However, unlike existing 3DTVs, near-eye light field
displays necessitate rendering hundreds to thousands of views: one for each microlens. In the remainder of this
section, we describe an alternate approach that is tailored to the distinct properties of near-eye light field displays.

We propose a simple backward compatibility option: a binocular near-eye light field display emulates the appear-
ance of a conventional stereoscopic display located a distance dv from the viewer. A viewer looking through
a given eyepiece will perceive a rectangular virtual display surface, texture mapped with the corresponding view.
Rather than ray trace a general 3D scene, conventional rasterization is applied to generate a stereoscopic pair: eval-
uating two off-axis perspective projections defined by the position and extent of the microlens arrays and the virtual
stereoscopic display [Bourke 1999]. (Note that the left-eye frustum and right-eye frustum are shaded in blue and red
in Figure S.6, respectively.) Under this model, the color of each microdisplay pixel is again determined by ray cast-
ing: interpolating the color at the point of intersection xv with the virtual stereoscopic display surface. We recognize
that this ray casting operation can be efficiently evaluated using a fragment shader program.

Listings S.1 and S.2 define the vertex and fragment shader programs (fixed.vert and resample.frag), written
in GLSL, for an OpenGL-based implementation of our backward compatibility method. We assume that the applica-
tion uses a pair of frame buffer objects (FBOs) to implement off-screen rendering, attaching the stereoscopic pair as
textures to the left-eye and right-eye FBOs. During the final rendering pass, a single texture-mapped quadrilateral is
drawn, embodying the virtual stereoscopic display surface. For quad-buffered rendering, the left-eye FBO texture is
bound when drawing to the back left color buffer and vice versa for the back right color buffer. Note that Listing S.1
implements a minimal vertex shader that emulates the fixed-function graphics pipeline.

We briefly comment on the design of the resample.frag fragment shader defined in Listing S.2. The definition
of the system architecture is provided via uniform variables on Lines 11–30. Lines 34–39 evaluate the displacement
of the current fragment from the center of the microdisplay (i.e., distance xs in Figure S.6). Similarly, Lines 41–45
evaluate the position of the optical center of the corresponding microlens (i.e., distance xl in Figure S.6). Line 48

3

Resampled Microdisplay Images Photographs of the Prototype

A
nt
i-a
lia
si
ng
 E
na
bl
ed

A
nt
i-a
lia
si
ng
 D
is
ab
le
d

Anti-aliasing EnabledAnti-aliasing Disabled

Resampled Microdisplay Images (Inset Regions)

Input View

Figure S.5: Resampling stereoscopic content. The backward-compatible shader program was used to resample
stereoscopic image pairs for presentation using the binocular near-eye light field display prototype, described in
Section 4.1 of the primary text. (Top Left) A right-eye view rendered using an OpenGL-based model viewer appli-
cation. (Middle) Resampled microdisplay images generated using the resampling fragment shader program defined
in Listing S.2. (Right) Corresponding photographs of the prototype near-eye light field display. (Bottom Left) Inset
regions demonstrate the benefit of the anti-aliasing fragment shader defined in Listing S.3.

evaluates the intersection of the corresponding optical ray with the virtual stereoscopic display surface; following
Figure S.6, the horizontal coordinate of intersection is given by

xv = xl +

(
dv − de

dl

)
(xs − xl)− ov . (S.1)

Lines 50–61 evaluate the fragment color. Pixels outside the virtual stereoscopic display are set to black. As described
in Section 3.2 of the primary text, artifacts result when rendering a portion of the virtual display visible through pe-
ripheral microlenses. The microlensExcludeBorder variable controls whether peripheral microdisplay regions
are also set to black to prevent artifacts. Rendering results for a sample OpenGL application are shown in Figure S.5.

Our shader-based resampling method trades accommodation-convergence conflict resolution and defocus depth cues
for backward compatibility. However, many of the benefits of general ray tracing persist. The distance dv to the
virtual display can be adjusted independently for each eye; similar to Pamplona et al. [2012], such freedom allows
for the correction of the viewer’s optical aberrations (i.e., their eyeglasses prescription) by locating the virtual display
within the unaided accommodation range. Similarly, as discussed in Section 5.2 of the primary text, higher-order
microlens aberrations can be corrected by modifying the ray casting operations implemented by the resampling
shader program, allowing the microlens optical model to differ from that of a Gaussian thin lens approximation.
However, we emphasize that efficient light field rendering methods remain a promising avenue of future research;
either through “brute force” ray tracing or optimized multiview rendering schemes, such methods will be necessary
to restore the central benefit of addressing accommodation-convergence conflict.

B.2 Anti-aliasing Shader Program

As described in Section 5.3 of the primary text, efficient light field anti-aliasing algorithms are also required for
a practical near-eye light field display system. We implement an anti-aliasing pre-filter similar to that originally
proposed by Levoy and Hanrahan [1996]. The left-eye and right-eye views are low-pass filtered, by (separable)
convolution with a 2D box filter, before application of the resampling shader program. This operation is implemented
using the two-pass shader program defined by the vertex and fragment shaders in Listings S.1 and S.3.

4

we

we

interpupillary distance (be)

bs

pupil plane

right microdisplay left microdisplay

 right microlens array left microlens array

virtual (stereoscopic) display

virtual (stereoscopic) display distance (d
v)

eye relief (d
e)

wv

virtual object

d
l

xv

xs

xl

ov

Figure S.6: Rendering geometry for near-eye light field displays. A binocular near-eye light field display comprises
a pair of microdisplays, each covered with a microlens array, separated by a distance bs. The viewer’s eyes are
displaced by a distance de from the microlens arrays and separated by an interpupillary distance be. Rendering
content for such displays requires assigning the color of each microdisplay pixel, either by direct ray tracing along
the corresponding optical ray or by approximation using a virtual (stereoscopic) display (see Section B.1).

1 /∗
2 ∗ f i x e d . v e r t
3 ∗ Near−Eye L i g h t F i e l d D i s p l a y s : Minimal ” F ixed F u n c t i o n ” Ve r t e x Shader
4 ∗ /
5 # v e r s i o n 120
6

7 vo id main () {
8

9 / / E v a l u a t e i n t e r p o l a t e d t e x t u r e c o o r d i n a t e s .
10 gl_TexCoord [0] = gl_MultiTexCoord0 ;
11

12 / / Emula te v e r t e x t r a n s f o r m a t i o n from f i x e d−f u n c t i o n p i p e l i n e .
13 g l P o s i t i o n = gl_ModelViewProjectionMatrix∗gl_Vertex ;
14

15 }

Listing S.1: A minimal vertex shader emulating the fixed-function graphics pipeline.

5

1 /∗
2 ∗ r e s a m p l e . f r a g
3 ∗ Near−Eye L i g h t F i e l d D i s p l a y s : Resampl ing Fragment Shader
4 ∗ /
5 # v e r s i o n 120
6

7 / / G e n e r a l v a r i a b l e s
8 un i fo rm sampler2D viewTexture ; / / s a m p l e r c o r r e s p o n d i n g t o i n p u t view
9

10 / / M i c r o d i s p l a y v a r i a b l e s
11 un i fo rm vec2 microdisplayDim ; / / p h y s i c a l d i m e n s i o n s (mm) [ws]
12 un i fo rm i n t microdisplayOrientation ; / / o r i e n t a t i o n (0 : u p r i g h t , 1 : i n v e r t e d)
13

14 / / M i c r o l e n s a r r a y v a r i a b l e s
15 un i fo rm f l o a t microlensPitch ; / / p i t c h (mm) [wl]
16 un i fo rm f l o a t microlensDist ; / / d i s t a n c e from m i c r o d i s p l a y (mm) [dl]
17 un i fo rm f l o a t microlensRotation ; / / r o t a t i o n a n g l e (r a d i a n s)
18 un i fo rm vec2 microlensOffset ; / / a l i g n m e n t o f f s e t s (mm)
19 un i fo rm boo l microlensExcludeBorder ; / / e x c l u d e p a r t i a l m i c r o l e n s e s a l o n g m i c r o d i s p l a y b o r d e r
20

21 / / E l e m e n t a l image v a r i a b l e s
22 un i fo rm f l o a t elementalImagePitch ; / / p i t c h (mm) [∆ws]
23 un i fo rm vec2 elementalImageOffset ; / / o f f s e t from m i c r o d i s p l a y o r i g i n (mm)
24 un i fo rm vec4 elementalImageRange ; / / i n d e x r a n g e (min column , max column , min row , max row)
25

26 / / V i r t u a l s c r e e n v a r i a b l e s
27 un i fo rm vec2 screenDim ; / / p h y s i c a l d i m e n s i o n s (mm) [wv]
28 un i fo rm f l o a t screenDist ; / / d i s t a n c e from m i c r o l e n s a r r a y (mm) [dv]
29 un i fo rm vec2 screenPosition ; / / o f f s e t from m i c r o d i s p l a y o r i g i n (mm) [ov]
30

31 vo id main () {
32

33 / / E v a l u a t e m i c r o d i s p l a y sample c o o r d i n a t e s [xs] .
34 vec2 microdisplayCoord ;
35 i f (microdisplayOrientation == 0)
36 microdisplayCoord = microdisplayDim∗ (gl_TexCoord [0] . st−0.5) ;
37 e l s e
38 microdisplayCoord = microdisplayDim∗(0.5−gl_TexCoord [0] . st) ;
39

40 / / E v a l u a t e c o r r e s p o n d i n g m i c r o l e n s c o o r d i n a t e s (i . e . , m i c r o l e n s p i x e l i s o b s e r v e d t h r o u g h) [xl] .
41 mat2 R = mat2 (cos (microlensRotation) , −s i n (microlensRotation) ,
42 s i n (microlensRotation) , cos (microlensRotation)) ;
43 vec2 microlensIndex = f l o o r (R∗ (microdisplayCoord−elementalImageOffset) /elementalImagePitch) ;
44 vec2 microlensCoord = t r a n s p o s e (R) ∗microlensPitch∗microlensIndex + microlensOffset ;
45

46 / / E v a l u a t e v i r t u a l s c r e e n sample c o o r d i n a t e s [xv] .
47 vec2 screenCoord = microlensCoord + (screenDist /microlensDist) ∗ (microdisplayCoord−microlensCoord) − ←↩

screenPosition ;
48

49 / / Ass ign c o l o r o f r e s a m p l e d view .
50 vec2 texCoord = screenCoord /screenDim ;
51 i f (((texCoord .x>0.0) && (texCoord .x<1.0)) &&
52 ((texCoord .y>0.0) && (texCoord .y<1.0))) {
53 i f (!microlensExcludeBorder | |
54 (((microlensIndex .x>elementalImageRange .x) && (microlensIndex .x<elementalImageRange .y)) &&
55 ((microlensIndex .y>elementalImageRange .z) && (microlensIndex .y<elementalImageRange .w))))
56 g l F r a g C o l o r = vec4 (t e x t u r e 2 D (viewTexture , texCoord) .rgb , 1) ;
57 e l s e
58 g l F r a g C o l o r = vec4 (0 . 0 , 0 . 0 , 0 . 0 , 1 . 0) ;
59 } e l s e
60 g l F r a g C o l o r = vec4 (0 . 0 , 0 . 0 , 0 . 0 , 1 . 0) ;
61

62 }

Listing S.2: A fragment shader for resampling existing stereoscopic content for near-eye light field displays. Note
that commented variables enclosed by square brackets denote the correspondence of shader variables with the
labeled dimensions in Figure S.6 and Figure 4 in the primary text.

6

1 /∗
2 ∗ a n t i a l i a s . f r a g
3 ∗ Near−Eye L i g h t F i e l d D i s p l a y s : Ant i−a l i a s i n g Fragment Shader
4 ∗ /
5 # v e r s i o n 120
6

7 / / G e n e r a l v a r i a b l e s
8 un i fo rm sampler2D viewTexture ; / / s a m p l e r c o r r e s p o n d i n g t o i n p u t view
9

10 / / Ant i−a l i a s i n g v a r i a b l e s
11 un i fo rm i n t antialiasDirection ; / / f i l t e r d i r e c t i o n (0 : h o r i z o n t a l , 1 : v e r t i c a l)
12 un i fo rm f l o a t antialiasLength ; / / f i l t e r l e n g t h i n n o r m a l i z e d t e x t u r e c o o r d i n a t e u n i t s
13 un i fo rm i n t antialiasNumSamples ; / / number o f samples a l o n g f i l t e r l e n g t h
14

15 vo id main () {
16

17 / / E v a l u a t e t e x t u r e c o o r d i n a t e .
18 vec2 p0 = gl_TexCoord [0] . st ;
19

20 / / Apply s e p a r a b l e a n t i−a l i a s i n g f i l t e r , i f n e c e s s a r y .
21 i f (antialiasNumSamples > 0){
22

23 / / E v a l u a t e t e m p o r a r y a n t i−a l i a s i n g v a r i a b l e s .
24 f l o a t antialiasSampleOffset = antialiasLength / f l o a t (antialiasNumSamples−1) ;
25 f l o a t antialiasHalfLength = antialiasLength / 2 . 0 ;
26 f l o a t antialiasWeight = 1 . 0 / f l o a t (antialiasNumSamples) ;
27 vec3 color = vec3 (0 . 0 , 0 . 0 , 0 . 0) ;
28 vec2 p ;
29

30 / / Apply 1D f i l t e r a l o n g h o r i z o n t a l o r v e r t i c a l a x i s .
31 i f (antialiasDirection == 0){
32 f o r (i n t i=0; i<antialiasNumSamples ; i++){
33 p = p0 + vec2 (antialiasSampleOffset∗ f l o a t (i)−antialiasHalfLength , 0 . 0) ;
34 color += antialiasWeight∗ t e x t u r e 2 D (viewTexture , p) .rgb ;
35 }
36 } e l s e {
37 f o r (i n t i=0; i<antialiasNumSamples ; i++){
38 p = p0 + vec2 (0 . 0 , antialiasSampleOffset∗ f l o a t (i)−antialiasHalfLength) ;
39 color += antialiasWeight∗ t e x t u r e 2 D (viewTexture , p) .rgb ;
40 }
41 }
42 g l F r a g C o l o r = vec4 (color , 1 . 0) ;
43

44 } e l s e {
45

46 / / No a n t i−a l i a s i n g i s r e q u i r e d , so p a s s t h r o u g h i n p u t c o l o r .
47 g l F r a g C o l o r = vec4 (t e x t u r e 2 D (viewTexture , p0) .rgb , 1 . 0) ;
48 }
49 }

Listing S.3: A fragment shader for anti-aliasing images for near-eye light field displays. Full-scene anti-aliasing
(FSAA) is implemented as a separable convolution with a box filter. The filter length is determined by the size of a
microdisplay pixel, as projected into the virtual (stereoscopic) display plane shown in Figure S.6 (see Equation S.2).

Listing S.3 implements full-scene anti-aliasing (FSAA). Stereoscopic views are assumed to be oversampled, relative
to the resolution of the near-eye light field display (given by Equation 8 in the primary text). The low-pass filter
length p̂v is determined by the microdisplay pixel size, as magnified by projection into the virtual display plane;
defined as the antialiasLength uniform variable on Line 13 of Listing S.3, this parameter is given by

p̂v =
Mp

wv
=

(
dv − de

dl

)(
p

wv

)
, (S.2)

where the length is expressed in normalized texture coordinate units and M corresponds to the magnification factor
given by Equation 2 in the primary text. Anti-aliasing results are shown in Figure S.5.

7

C Case Study: Modifying Doom 3 to Support Near-Eye Light Field Displays

This appendix describes how Doom 3 BFG Edition was modified to support near-eye light field displays using the
backward-compatible shader programs in Appendix B. The source code was recently released and can be down-
loaded from the official GitHub repository1. As stated in the release notes, the source archive does not include game
data, which may be purchased separately2. We emphasize that this video game supports quad-buffered stereoscopic
rendering, providing an ideal platform to demonstrate our shader-based resampling method.

Listing S.4 includes the necessary fragment shader, adapted from the base/renderprogs/stereoWarp.pixel
shader provided to support the Oculus Rift. (In the following discussion, file paths are defined relative to the root
source directory.) Note that this shader combines the resampling and anti-aliasing functions into a single-pass im-
plementation, minimizing the required alterations to the source code. To integrate this shader, we chose to add a
second quad buffering mode to neo/renderer/OpenGL/gl_backend.cpp, binding our custom fragment shader
before drawing to the back left and back right color buffers. The near-eye light field display architecture was defined
using the RENDERPARM_USER register indices enumerated in neo/renderer/RenderProgs.h. As a result, Lines
7–38 interpret these user variables to assign the display parameters. For brevity, the microdisplayOrientation
and microlensExcludeBorder variables, previously appearing in Listing S.2, have been omitted from this im-
plementation. Lines 40–65 define the joint resampling and anti-aliasing operations, formatted to comply with the
Doom 3 fragment shader conventions.

We emphasize that Listing S.4 implements single-pass anti-aliasing, rather than the more computationally-efficient
two-pass method described in Listing S.3. Specifically, a non-separable 2D convolution is performed. As a result,
the necessary source revisions are primarily localized to gl_backend.cpp; however, as tabulated in Figure S.7,
this simplicity comes at the cost of reduced frame rates (orange line). We observe resampling, without anti-aliasing,
has a minimal impact on frame rates (red line). To estimate the benefits of the proposed two-pass anti-aliasing filter,
we modified Listing S.4 to only filter along the horizontal axis (green line).

In summary, our shader programs provide a practical route to upgrading existing stereoscopic sources to support
near-eye light field displays. See Figure S.8 and the video accompanying this appendix to review photographs and
videos recorded during a brief gaming session.

1https://github.com/id-Software/DOOM-3-BFG/
2http://store.steampowered.com/app/208200/

40 45 50 55 60 65 70
20

40

60

80

100

120

elapsed time (s)

fr
am

e
ra

te
 (f

ps
)

standard (resampling disabled)
anti−aliasing disabled
separable anti−aliasing
non−separable anti−aliasing

Figure S.7: Frame rates for Doom 3 BFG Edition using the combined resampling and anti-aliasing shader program
in Listing S.4. Frame rates are limited to a maximum of 120 fps by the application. The resampling shader, modified
from Listing S.2, has a negligible impact on performance when anti-aliasing is disabled or when implemented via
a separable convolution. As implemented in Listing S.4, anti-aliasing using a non-separable convolution halves the
frame rate to 60 fps. (Frame rates were measured using the system described in Section 4.2 of the primary text and
were recorded during the introductory sequence shown in the supplementary video accompanying this case study.)

8

https://github.com/id-Software/DOOM-3-BFG/
http://store.steampowered.com/app/208200/

1 /∗
2 ∗ s t e r e o R e s a m p l e . p i x e l
3 ∗ Doom 3 BFG E d i t i o n Fragment Shader f o r Near−Eye L i g h t F i e l d D i s p l a y s
4 ∗ /
5 # i n c l u d e ” g l o b a l . i n c ”
6

7 / / D e f in e un i fo rm v a r i a b l e s and i n p u t / o u t p u t s t r u c t u r e s .
8 un i fo rm sampler2D samp0 : register (s0) ; un i fo rm sampler2D samp1 : register (s1) ;
9 un i fo rm float4 rpUser0 : register (c128) ; un i fo rm float4 rpUser1 : register (c129) ;

10 un i fo rm float4 rpUser2 : register (c130) ; un i fo rm float4 rpUser3 : register (c131) ;
11 un i fo rm float4 rpUser4 : register (c132) ; un i fo rm float4 rpUser5 : register (c133) ;
12 un i fo rm float4 rpUser6 : register (c134) ; un i fo rm float4 rpUser7 : register (c135) ;
13 s t r u c t PS_IN { float2 texcoord0 : TEXCOORD0_centroid ; } ;
14 s t r u c t PS_OUT { float4 color : COLOR ; } ;
15

16 vo id main (PS_IN fragment , o u t PS_OUT result) {
17

18 / / M i c r o d i s p l a y v a r i a b l e s
19 c o n s t vec2 microdisplayDim = rpUser0 .xy ; / / p h y s i c a l d i m e n s i o n s (mm)
20

21 / / M i c r o l e n s a r r a y v a r i a b l e s
22 c o n s t f l o a t microlensPitch = rpUser0 .w ; / / p i t c h (mm)
23 c o n s t f l o a t microlensDist = rpUser1 .x ; / / d i s t a n c e from m i c r o d i s p l a y (mm)
24 c o n s t f l o a t microlensRotation = rpUser1 .y ; / / r o t a t i o n a n g l e (r a d i a n s)
25 c o n s t vec2 microlensOffset = rpUser1 .zw ; / / a l i g n m e n t o f f s e t s (mm)
26

27 / / E l e m e n t a l image v a r i a b l e s
28 c o n s t f l o a t elementalImagePitch = rpUser2 .y ; / / p i t c h (mm)
29 c o n s t vec2 elementalImageOffset = rpUser2 .zw ; / / o f f s e t from m i c r o d i s p l a y o r i g i n (mm)
30

31 / / V i r t u a l s c r e e n v a r i a b l e s
32 c o n s t vec2 screenDim = rpUser4 .xy ; / / p h y s i c a l d i m e n s i o n s (mm)
33 c o n s t vec2 screenPosition = rpUser4 .zw ; / / o f f s e t from m i c r o d i s p l a y o r i g i n (mm)
34 c o n s t f l o a t screenDist = rpUser5 .x ; / / d i s t a n c e from m i c r o l e n s a r r a y (mm)
35

36 / / Ant i−a l i a s i n g v a r i a b l e s
37 c o n s t vec2 antialiasLength = rpUser6 .xy ; / / f i l t e r l e n g t h s
38 c o n s t vec2 antialiasNumSamples = rpUser6 .zw ; / / number o f samples
39

40 / / E v a l u a t e m i c r o d i s p l a y , m i c r o l e n s , and v i r t u a l s c r e e n sample c o o r d i n a t e s .
41 vec2 microdisplayCoord = microdisplayDim∗ (fragment .texcoord0−0.5) ;
42 mat2 R = mat2 (cos (microlensRotation) , −s i n (microlensRotation) ,
43 s i n (microlensRotation) , cos (microlensRotation)) ;
44 vec2 microlensIndex = f l o o r (R∗ (microdisplayCoord−elementalImageOffset) /elementalImagePitch) ;
45 vec2 microlensCoord = t r a n s p o s e (R) ∗microlensPitch∗microlensIndex + microlensOffset ;
46 vec2 screenCoord = microlensCoord + (screenDist /microlensDist) ∗ (microdisplayCoord−microlensCoord) − ←↩

screenPosition ;
47

48 / / E v a l u a t e t e m p o r a r y a n t i−a l i a s i n g v a r i a b l e s .
49 vec2 antialiasSampleOffset = antialiasLength / f l o a t (antialiasNumSamples−1) ;
50 vec2 antialiasHalfLength = antialiasLength / 2 . 0 ;
51 f l o a t antialiasWeight = 1 . 0 / (f l o a t (antialiasNumSamples .x) ∗ f l o a t (antialiasNumSamples .y)) ;
52

53 / / Ass ign c o l o r o f r e s a m p l e d view wi th o p t i o n a l a n t i−a l i a s i n g by non−s e p a r a b l e c o n v o l u t i o n .
54 vec2 texCoord0 = screenCoord /screenDim ; vec2 texCoord ; float3 color = float3 (0 , 0 , 0) ;
55 i f (((texCoord0 .x>0.0) && (texCoord0 .x<1.0)) && ((texCoord0 .y>0.0) && (texCoord0 .y<1.0))) {
56 f o r (i n t i=0; i<antialiasNumSamples .x ; i++){
57 f o r (i n t j=0; j<antialiasNumSamples .y ; j++){
58 texCoord = texCoord0 + vec2 (antialiasSampleOffset .x∗ f l o a t (i)−antialiasHalfLength .x ,
59 antialiasSampleOffset .y∗ f l o a t (j)−antialiasHalfLength .y) ;
60 result .color += antialiasWeight∗tex2D (samp0 , texCoord) ;
61 }
62 }
63 } e l s e
64 result .color = float4 (0 , 0 , 0 , 1) ;
65 }

Listing S.4: A fragment shader to add support for near-eye light field displays to Doom 3 BFG Edition.

9

Resampled Microdisplay Images Photographs of the PrototypeInput Views

Figure S.8: Modifying Doom 3 BFG Edition for the binocular near-eye light field display prototype. (Left) The input
right-eye view, as rendered to support standard quad-buffered stereo displays (e.g., the Sony HMZ-T1 described in
Section 4.1 of the primary text). (Middle) Resampled, anti-aliased microdisplay images generated using the custom
fragment shader program in Listing S.4. (Right) Corresponding photographs of the prototype near-eye light field
display. (Note that these examples are stills taken from the video accompanying this appendix.)

10

D Extended PSNR Analysis of Retinal Defocus

This section elaborates on the peak signal-to-noise ratio (PSNR) analysis of retinal defocus blur presented in Sec-
tion 5.1 of the primary text. In this section, we use a numerical simulation of near-eye light field displays to assess
their ability to approximate retinal defocus blur, as resulting from the observation of out-of-focus scene elements.
In the following analysis, ideal retinal images were simulated using Equation 14 in the primary text. A ray tracing
model, implemented in Matlab, was used to simulate retinal images for the OLED-based prototype described in
Appendix A and Section 5.1 of the primary text. The approximation error was averaged over the set of target images
in Figure S.10, where each image was assigned as a texture to a virtual plane located a distance do from a viewer
whose eye was accommodated at a distance da. Retinal defocus approximation errors are tabulated in Figure S.9.

Figures S.11 and S.12 provide visual examples for interpreting various points within Figure S.9. In these examples,
the virtual object plane was fixed at a distance of 66.7 cm (1.50 diopters). When the viewer accommodates on the
virtual object plane (i.e., the black line in Figure S.9), we observe that the approximation error is dominated by
“pixelization” artifacts (resulting from the limited resolution of the prototype, relative to an ideal high-resolution
display); as illustrated on the third, fourth, and fifth rows of Figures S.11 and S.12, when “close” to focusing
on the virtual object, the near-eye light field display achieves a maximum resolution of 146×78 pixels, following
Section 4.1 in the primary text. Thus, we observe pixelization artifacts predominate within the “zone of comfort”
estimated by Shibata et al. [2011] (the boundary of which is denoted by dashed white lines in Figure S.9).

As described by Shibata et al., the zone of comfort corresponds to the range of comfortable combinations of vergence
and focal distance. We observe that the PSNR of the retinal blur approximation rises markedly for combinations of
virtual object distances (i.e., vergence distances) and accommodation distances outside this zone of comfort. As a
result, near-eye light field displays enhance retinal blur depiction precisely within the zone where accommodation-
convergence conflict occurs. We emphasize that perceptual trials are a promising direction to confirm whether such
objective measures of improvement agree with subjective judgements of viewing comfort by human observers.

virtual object plane distance (cm)

ac
co

m
m

od
at

io
n

di
st

an
ce

 (c
m

)

A
B
C

D

E

50 100 150 200
20

40

60

80

100

120

140

160

180

200

m
ea

n
PS

N
R

 (d
B)

24

26

28

30

32

34

36

38

40

virtual object plane distance (diopters)

ac
co

m
m

od
at

io
n

di
st

an
ce

 (d
io

pt
er

s)

A

B

C

D

E

1 2 3 4 5
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

m
ea

n
PS

N
R

 (d
B)

24

26

28

30

32

34

36

38

40

Figure S.9: Approximating retinal defocus blur using near-eye light field displays. Approximation PSNR is tabulated
as a function of virtual object distance and accommodation distance, expressed in centimeters (left) and diopters
(right). The dashed black line denotes “natural viewing”, for which accommodation distance equals virtual object
distance. Dashed white lines denote the boundary of the “zone of comfort” estimated by Shibata et al. [2011].
Labeled points define the conditions for the corresponding simulated retinal images shown in Figures S.11 and S.12.

Figure S.10: Target image set used to evaluate the approximation of retinal defocus blur in Figure S.9.

11

−0.2

−0.1

0

0.1

0.2

−0.2

−0.1

0

0.1

0.2

−0.2

−0.1

0

0.1

0.2

−0.2

−0.1

0

0.1

0.2

−0.2

−0.1

0

0.1

0.2

−0.2

−0.1

0

0.1

0.2

Ideal Retinal Image Simulated Prototype Retinal Image Approximation Error

accommodation distance (da) of 283.3 cm (0.35 diopters)

accommodation distance (da) of 107.9 cm (0.93 diopters): focused at “far” boundary of the zone of comfort

accommodation distance (da) of 66.7 cm (1.50 diopters): focused on virtual object plane

accommodation distance (da) of 46.8 cm (2.14 diopters): focused at “near” boundary of the zone of comfort

accommodation distance (da) of 36.1 cm (2.77 diopters)

accommodation distance (da) of 29.4 cm (3.41 diopters)

A

B

C

D

E

F

Figure S.11: Simulating retinal defocus blur. Ideal retinal images were simulated using Equation 14 from the pri-
mary text. A ray tracing model, implemented in Matlab, approximated retinal images for the OLED-based prototype
described in Appendix A and Section 4.3 of the primary text. Labels in the top-left corner of each row denote corre-
spondences with points in Figure S.9. For this example, the virtual object plane is located at a distance of 66.7 cm
(1.50 diopters). The third and fifth rows illustrate simulated retinal images for accommodation distances located at
the boundaries of the “zone of comfort” estimated by [2011].

12

−0.2

−0.1

0

0.1

0.2

−0.2

−0.1

0

0.1

0.2

−0.2

−0.1

0

0.1

0.2

−0.2

−0.1

0

0.1

0.2

−0.2

−0.1

0

0.1

0.2

−0.2

−0.1

0

0.1

0.2

Ideal Retinal Image Simulated Prototype Retinal Image Approximation Error

accommodation distance (da) of 283.3 cm (0.35 diopters)

accommodation distance (da) of 107.9 cm (0.93 diopters): focused at “far” boundary of the zone of comfort

accommodation distance (da) of 66.7 cm (1.50 diopters): focused on virtual object plane

accommodation distance (da) of 46.8 cm (2.14 diopters): focused at “near” boundary of the zone of comfort

accommodation distance (da) of 36.1 cm (2.77 diopters)

accommodation distance (da) of 29.4 cm (3.41 diopters)

A

B

C

D

E

F

Figure S.12: Magnified regions of the images in Figure S.11, centered on the eye of the bird. Retinal defocus blur
is accurately approximated by the near-eye light field display, here utilizing a maximum of 4×4 overlapping views,
following Sections 3.3 and 5.1 of the primary text. Note that, when the viewer is focused on the virtual object plane
(i.e., the example in the fourth row), approximation errors are predominated by pixelization artifacts due to the
limited spatial resolution of 146×78 pixels achieved by the near-eye light field display prototype.

13

E Microdisplay Defect Correction

This appendix expands on the discussion of microdisplay defect correction presented in Section 5.2 of the primary
text. To realize practical near-eye display applications, a viable path to large-format microdisplay fabrication is
required. We propose a manufacturing approach similar to that adopted with medium-format digital image sensors:
utilizing multiple photolithographic masks to overcome the current reticle area limitations. As with such medium-
format sensors, we further recognize fabrication costs can best be controlled by developing display algorithms that
are tolerant to defective pixels. Here we present one solution: utilizing a computationally-efficient tomographic
optimization framework to exploit redundancy within the elemental image array to compensate for defects.

As listed in Table S.1, the ISO 13406-2 standard identifies three types of flat panel display defects [ISO 2000]. A
type-1 defect corresponds to a “hot” pixel (i.e., a group of color subpixels that are continuously illuminated). A
type-2 defect is a so-called “dead” pixel (i.e., appearing continuously dark). Finally, a type-3 defect is a single
color subpixel that is either continuously on or off. ISO 13406-2 classifies flat panel displays by the maximum
allowed density of such defects, with additional constraints on the allowed spacing of clusters of various defect
types. Microdisplays with varying densities of simulated pixel defects are shown in Figures S.13 and S.14.

We recognize that near-eye light field displays present a unique opportunity to correct for defective pixels—a prop-
erty not shared with conventional HMD designs employing simple magnifiers. Each scene point appears in multiple
elemental images; for example, in the first row of Figure S.8, the tip of the man’s nose is reproduced in 24 elemental
images. Each of these microdisplay pixels produces a distinct ray of the emitted light field. This bundle of rays,
which passes through differing microlenses but within the viewing eye box, converges close to the position of the
virtual scene point. For a diffuse point, the radiances should be nearly identical; even for specular points, variation
will be moderate (due to the small solid angle defined by the viewing eye box and the virtual point). As a result,
redundancy in the elemental image array provides a simple mechanism to compensate for defects: distributing the
error due to any given defect among the microdisplay pixels corresponding with the same scene point.

To demonstrate the potential of microdisplay defect correction, we present an illustrative example: correcting defects
for planar scenes, such as those depicted using the “backward compatible” shader program presented in Appendix B.
In the following discussion, the microdisplay pixels are represented as a column vector m of length N , with each
element mn representing the radiant emittance of a pixel. Similarly, the ideal retinal image is modeled as a column
vector r of length M . We assume, under ideal circumstances, that the position and size of the viewer’s pupil is
known. As a result, the irradiance rm at a given point in the retinal image is modeled as a weighted summation of
microdisplay pixel emittances (corresponding with the integration of the set of optical rays entering the pupil and
impinging on the retinal image point). This image formation model is formally expressed as:

rm =
N∑

n=1

Pmnmn, (S.3)

where P is an M×N projection matrix defining the contributions of microdisplay pixels to each retinal image point.

A defect correction algorithm provides a defect-corrected microdisplay image m̂ such that the retinal image is
“optimally” reproduced. In practice, optimality should be defined using a perceptual error metric. However, in this

Defect Type Class I Class II Class III Class IV Figure S.13 Figure S.14
Type 1 (“hot” pixel) 0 2 5 50 500 5,000
Type 2 (“dead” pixel) 0 2 15 150 1,500 15,000
Type 3 (“stuck” subpixel) 0 5 50 500 5,000 50,000

Table S.1: The ISO 13406-2 standard classifies displays by the maximum number of various defects (per 1 million
pixels). Defect densities in Figures S.13 and S.14 exceed “class IV” panels by factors of 10 and 100, respectively.

s

14

Figure S.13: Correcting microdisplay defects. Defect densities are 10 times greater than allowed for a “class IV”
display, as defined in Table S.1. (Top) Simulated microdisplay images, corresponding with the HMD prototype. Zoom
in to inspect alterations made by the defect correction algorithm. Note that corrections occur within circular regions,
corresponding to the projections of the viewer’s pupil. (Bottom) Ideal and simulated prototype retinal images.

appendix, we demonstrate a proof-of-concept correction scheme employing a least-squares criterion. As a result, we
propose the following constrained linear least-squares formulation:

arg min
m̂

‖Pm̂− r‖22, such that Dm̂ = d and 0≤m̂≤1, (S.4)

where d is a column vector of length L, defining the radiant emittance of defective pixels, and D is an L×N binary
matrix specifying the position of defects (i.e., row k of D has a single non-zero element identifying the defect).

Similar to Lanman et al. [2011], we recognize that Equation S.4 can be efficiently solved using the simultaneous
algebraic reconstruction technique (SART) [Andersen and Kak 1984]. Under this framework, the corrected mi-
crodisplay image m̂(k) at iteration k is given by the following update rule:

m̂(k) = m̂(k−1) − v ◦ (P>(w ◦ (Pm̂(k−1) − r))), (S.5)

where ◦ defines the Hadamard (element-wise) matrix product and the weight vectors w and v are defined as follows.

wm =
1∑N

n=1 Pmn

and vn =
1∑M

m=1 Pmn

(S.6)

15

Figure S.14: Correcting microdisplay defects. Defect densities are 100 times greater than allowed for a “class IV”
display, as defined in Table S.1. (Top) Simulated microdisplay images, corresponding with the HMD prototype. Zoom
in to inspect alterations made to compensate for defects. (Bottom) Ideal and simulated prototype retinal images.

Equality and inequality constraints are enforced after each iteration (i.e., fixing and clamping values, respectively).
We emphasize that this framework was selected due to the prior demonstration by Lanman et al., in a different
application context, that such update rules can be implemented using GPUs for real-time optimization on high-
resolution images. However, our current solver comprises a Matlab-based implementation.

Figures S.13 and S.14 include simulated defect correction results. The bottom left-hand side of each figure illus-
trates the visual impact of defects on a conventional HMD design using a simple magnifier; without redundancy,
no compensation is possible. In contrast, the bottom right-hand side shows that near-eye light field displays are
robust to profound defect densities. Although only a proof-of-concept implementation, near-eye light field displays
appear particularly well-suited for economical fabrication of large-format microdisplays; even if multi-reticle man-
ufacturing is required, yield and cost can be controlled by exploiting redundancy within element images. Yet, a
full development of microdisplay defect correction remains a promising direction for future work. This appendix as-
sumes that eye tracking will be available in order to determine the set of rays impinging on the retina in Equation S.3.
Future research may explore alternative optimization criteria localizing corrections to elemental images neighboring
a defect—mitigating artifacts that are otherwise introduced for pupil positions not observing the defective element.
In addition, simplified heuristic correction schemes may reduce computational overhead.

16

Supplementary References

ANDERSEN, A., AND KAK, A. 1984. Simultaneous Algebraic Reconstruction Technique (SART): A superior
implementation of the ART algorithm. Ultrasonic Imaging 6, 1, 81–94.

BOURKE, P., 1999. Calculating stereo pairs. http://paulbourke.net/stereographics/.

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION (ISO), 2000. ISO 13406-2: “Ergonomic requirements
for work with visual displays based on flat panels – Part 2: Ergonomic requirements for flat panel displays”.
https://en.wikipedia.org/wiki/ISO_13406-2.

IVES, F. E., 1903. Parallax stereogram and process of making same. U.S. Patent 725,567.

JAIN, A., TRAN, L., KHOSHABEH, R., AND NGUYEN, T. 2011. Efficient stereo-to-multiview synthesis. In
Acoustics, Speech and Signal Processing (ICASSP), 889–892.

JIN, C., AND JEONG, H. 2008. Intermediate view synthesis for multi-view 3D displays using belief propagation-
based stereo matching. In Convergence and Hybrid Information Technology (ICCIT), vol. 1, 919–924.

LANMAN, D., WETZSTEIN, G., HIRSCH, M., HEIDRICH, W., AND RASKAR, R. 2011. Polarization fields:
dynamic light field display using multi-layer LCDs. ACM Trans. Graph. 30, 6, 186:1–186:10.

LEVOY, M., AND HANRAHAN, P. 1996. Light field rendering. ACM SIGGRAPH, 31–42.

LIPPMANN, G. 1908. Épreuves réversibles donnant la sensation du relief. Journal of Physics 7, 4, 821–825.

PAMPLONA, V. F., OLIVEIRA, M. M., ALIAGA, D. G., AND RASKAR, R. 2012. Tailored displays to compensate
for visual aberrations. ACM Trans. Graph. 31, 4, 81:1–81:12.

PARKER, S. G., BIGLER, J., DIETRICH, A., FRIEDRICH, H., HOBEROCK, J., LUEBKE, D., MCALLISTER, D.,
MCGUIRE, M., MORLEY, K., ROBISON, A., AND STICH, M. 2010. OptiX: a general purpose ray tracing
engine. ACM Trans. Graph. 29, 4, 66:1–66:13.

RAMACHANDRAN, G., AND RUPP, M. 2012. Multiview synthesis from stereo views. In Systems, Signals, and
Image Processing (IWSSIP), 341–345.

SHIBATA, T., KIM, J., HOFFMAN, D. M., AND BANKS, M. S. 2011. The zone of comfort: Predicting visual
discomfort with stereo displays. Journal of Vision 11, 8.

17

http://paulbourke.net/stereographics/
https://en.wikipedia.org/wiki/ISO_13406-2

	Photographs of the Head-Mounted Display Prototype
	Backward Compatibility: Resampling Existing Stereoscopic Content
	Resampling Shader Program
	Anti-aliasing Shader Program

	Case Study: Modifying Doom 3 to Support Near-Eye Light Field Displays
	Extended PSNR Analysis of Retinal Defocus
	Microdisplay Defect Correction

