
Online Adaptation for Consistent Mesh
Reconstruction in the Wild

1 Overview

In the supplementary material, we provide additional details, discussions, and experiments to support
the original submission. In the following, we first discuss our self-supervised setting in Sec. 2. We
then describe evaluation of keypoint re-projection accuracy on videos in Sec. 3. Next, we show more
ablation studies in Sec. 4. More qualitative results on both bird and zebra image reconstructions
are present in Sec. 5. Details of the network design and implementation are discussed in Sec. 6 and
Sec. 7, respectively. Finally, we describe failure cases and limitations in Sec. 8.

2 Self-supervised Mesh Reconstruction

We train the self-supervised image reconstruction model with only silhouettes and single-view
images in a category. To this end, we also learn a template from scratch as in the self-supervised
3D mesh reconstruction approach [7]. Essentially, we do not apply the semantic parts from the
SCOPS method [2], which means that no additional modules are required for training. After training
the image model, we adapt it to each unlabeled video using the method discussed in Sec.3.2 in
the submission. Since neither keypoints annotations, nor additional self-supervised blocks such as
SCOPS are adopted, the results of this self-supervised single-view image reconstruction model do
not outperform those of existing methods, i.e., [4] and [7], and of the proposed ACMR model (see
Sec. 4.3 for the quantitative results). However, the test-time training improves the fidelity and the
robustness of the reconstruction results as shown in Fig. 1. The reconstructions are more plausible
after online adaptation, especially from unobserved views.
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Figure 1: Comparison of the self-supervised image model and the test-time tuned self-supervised model.
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Table 1: Keypoint re-projection evaluation on videos. “(T)” indicates the model is test-time trained on the given
video., Lc, Lt, Ls are defined in Eq.4, 5 and 6 of the main paper, respectively.

(a) Metric (b) CMR [4] (c) ACMR (d) ACMR (T) (e) ACMR-vid (T),
no Lc, Lt, Ls

(f) ACMR-vid (T)

PCK@0.1 ↑ 0.514 0.751 0.424 0.644 0.794

3 Keypoint Re-projection Accuracy on Videos

Figure 2: Keypoints annotation using the Labelme [12] toolkit.

Video Keypoints Annotation. We
evaluate the keypoint re-projection ac-
curacy (see Sec 4.1 in the paper) on
the 22 videos we collected. To create
the ground truth keypoints, we follow
the protocol of the CUB dataset [13]
to annotate 15 semantic keypoints ev-
ery five frames in each video, via the
Labelme [12] toolkit (see Fig. 2 for
the annotation interface.) Visualiza-
tions of the re-projected keypoints by
different methods are visualized and
compared in Fig. 3.

Details of Keypoint Re-projection. Since we do not have the keypoint assignment matrix proposed
in [4], we employ the canonical keypoint UV map to obtain the 3D keypoints (Sec. 3.1 in the paper).
The keypoint re-projection is done by (i) warping the canonical keypoint UV map to each individual
predicted mesh surface; (ii) projecting the canonical keypoint back to the 2D space via the predicted
camera pose; (iii) comparing against the ground truth keypoints in 2D. This evaluation implicitly
reveals the correctness of both the predicted shape and camera pose for the mesh reconstruction
algorithm, especially for objects that do not have 3D ground truth annotations.

Compared to frame-wisely applying CMR [4] (Table 1 (b)) or ACMR (Table 1 (c)) discussed in Sec.
3.1 in the main paper, the test-time tuned model achieves higher PCK score, as shown in Table 1 (f).
It verifies the effectiveness of the proposed test-time training procedure and the invariance constraints.
Essentially, as we noted in Sec 4.1, although the original ACMR, i.e., using the ResNet-18 [1] as
the image encoder with batch normalization layers [3] in Table 1 (c), achieves relatively promising
results, it is hard to adapt this model to new domains like low-quality videos (e.g., when switching
from the .eval() mode to the .train() mode in PyTorch [10]). The performance drops significantly
after test-time tuning as shown in Table 1 (d).

4 Ablation Studies

4.1 The Role of Shape Base

Table 2: Quantitative comparison of the single base
model with the proposed ACMR model.

(a) Metric (b) Single base (c) ACMR
Mask IoU ↑ 0.605 0.708
PCK@0.1 ↑ 0.655 0.855

To demonstrate the superiority of using a set of
shape bases versus using a single template, we train
a baseline model where we replace the shape com-
bination branch with the template obtained by the
CMR approach [4]. This setting is equivalent to a
using a single shape base (denoted as single base).
We show quantitative and qualitative comparisons
with the proposed ACMR model in Table 2 and
Fig. 4, respectively. As shown in Table 2(b) vs. (c), the model trained with a single base template
struggles to fit the final shape when the instance is largely different from the given template (also
shown in Fig. 4). In contrast, the proposed ACMR model with 8 shape bases performs favorably
against the single base model.

4.2 ARAP Constraint in Online Adaptation
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Figure 3: Visualization of re-projected keypoints on videos. We use white circles to highlight the keypoints for
better visualization.

Table 3: Ablation study on the ARAP constraint in online
adaptation.

(a) Metric (b) without ARAP (c) ACMR-vid (T)
J (Mean) ↑ 0.875 0.868
F(Mean) ↑ 0.782 0.756
PCK@0.1↑ 0.815 0.794

To verify the effectiveness of using the
ARAP constraint in the online adaptation
process, we test-time tune on the videos
without this constraint. Although perform-
ing online adaptation without the ARAP
constraint yields better quantitative evalu-
ations as shown in Table 3, the reconstructed
meshes are not plausible from unobserved views, as shown in Fig.6 in the submission.

5 Qualitative Evaluations

5.1 Camera Pose Stability

To visually demonstrate the effectiveness of the test-time training procedure that stabilizes camera
pose prediction, we visualize the differences in camera pose predictions between adjacent frames in
Fig. 6. Compared to the model that is only trained on images, the proposed method predicts more
stable camera poses that change smoothly over time.

5.2 Keypoints Re-projection for Image-based Reconstruction

We visualize re-projected keypoints on test images in Fig. 7, where the corresponding quantitative
results are presented in Sec. 4.3, Table 1 of the main paper. The proposed ACMR model is able to
predict more accurate keypoints compared to the CMR [4] method, especially when the bird performs
an asymmetric pose, e.g. first row in Fig. 7.
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Figure 4: Qualitative comparison of the single base model with the proposed ACMR model with multiple shape
bases. The single base model suffers when the instance is largely different from the template, e.g. flying bird or
a duck.

5.3 Single-view Image Reconstructions

In Fig. 5, we show more visualizations of reconstructions from single-view images of the test dataset
of CUB birds [13] as well as comparisons with the baseline method [4]. By removing the symmetric
assumption, our model is able to reconstruct objects in the input images more faithfully versus the
baseline method [4] (Fig. 5(g)).

We also demonstrate the effectiveness of the ARAP constraint, as discussed in Sec.3.1 in the paper.
Without this constraint, the reconstructed meshes contain unnatural spikes, as shown in Fig. 5(f).

Finally, we show reconstruction results of zebra images of the test dataset [11] in Fig. 8. Our ACMR
model successfully captures motions such as head bending or walking for zebras.

6 Network Architecture

6.1 Bases Visualization

+

…

…

…

…

(a)

(b)

(c)

(d)

(e)

(f)

correspondence 
invariance

renderer renderer renderer
…

Figure 9: Part correspondence constraint. (a) Input frame and
part propagations. (b) Predicted texture flows. (c) Part UV map.
(d) Aggregated video-level part UV map. (e) Base shape and
differentiable renderer. (f) Part rendering.

We visualize the eight shape bases ob-
tained by applying KMeans clustering on
all reconstructed meshes by the CMR [4]
method for birds in Fig. 10(a). We also
show the bases obtained by applying PCA
to the bottleneck features of the image en-
coder. Note that the latter fails to discover
rare shape modes (e.g., duck and flying
bird) in the dataset as shown in Fig. 10(b).
Thus we choose to use KMeans to obtain
shape bases.

6.2 Part Correspondence Constraint

We illustrate the part correspondence con-
straint in details in Fig. 9. Given the prop-
agated parts in each frame in Fig. 9(a), we
map them to the UV space with the pre-
dicted texture flow in Fig. 9(b) and obtain
part UV maps in Fig. 9(c). By aggregating these part UV maps, i.e., averaging, we minimize noise in
each individual part UV map and obtain a video-level part UV map in Fig. 9(d). This video-level
part UV map is shared by all frames in the video. Thus, for each frame, we wrap the video-level
part UV map onto the base shape prediction and render it under the predicted camera pose as shown
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in Fig. 9(f). Finally, we encourage consistency between part renderings and part propagations, as
shown by the red arrow in Fig. 9. Through the differentiable renderer, the loss implicitly improves
the predicted camera pose.

6.3 Single-view Reconstruction Network

In Fig. 11(a), we show details of our single-view reconstruction network. Given an input image, the
network jointly predicts texture, shape and camera pose. By utilizing a differentiable renderer [9], we
are able to utilize 2D supervision, i.e. silhouettes and input images.

6.4 Sliding Window Scheme

We show the proposed test-time tuning process in Fig. 11(b). Within each sliding window, we
encourage the consistency of UV texture, UV parts as well as base shape of all frames.

7 Implementation Details

7.1 Objectives for Image Reconstruction Model

We summarize the objectives used in the single-view reconstruction model (Fig. 11(a)) discussed in
Sec.3.1 in the submission as follows: (i) foreground mask loss: a negative intersection over union
objective between rendered and ground truth silhouettes [4, 7, 5]; (ii) foreground RGB texture loss:
a perceptual metric [4, 7, 14] between rendered and input RGB images; (iii) mesh smoothness: a
Laplacian constraint [4, 7] to encourage smooth mesh reconstruction; (iv) keypoint re-projection loss:
as discussed in Sec.3.1 in the paper; and (v) the ARAP constraint: described in Sec.3.1 in the paper.
The weight for each objective is set to 3.0, 3.0, 0.0008, 5.0 and 10.0.

7.2 Objectives for Online Adaptation

We summarize the objectives used in the online adaptation process (Fig. 11(b)) in the following. Since
it is feasible to predict a segmentation mask via a pretrained segmentation model, we make use of the
predicted foreground mask and compute the (i), (ii), and (iii) losses (mentioned above) similarly to
the image-based training. We also adopt the the ARAP constraint described in Sec.3.1 in the paper,
and the three invariance constraints as discussed in Sec.3.2 for online adaptation. The weight for each
objective is set to 0.1, 0.5, 0.0006, 2.0 and 2.0 (texture invariance), 1.0 (part correspondence), 1.0
(base shape invariance).

7.3 Training Details

We implement the proposed method in PyTorch [10] and use the Adam optimizer [6] with a learning
rate of 0.0001 for both the image reconstruction model training and online adaptation. The weight
of each objective for the image reconstruction model as well as the online adaptation process is
discussed in Sec. 7.1 and Sec. 7.2, respectively.

7.4 Training on Zebra Images and Videos

We adopt a different scheme to train a single-view reconstruction model on zebras: (i) since natural
zebra images labeled with keypoints are not publicly available, we adopt a synthetic dataset [11], (ii)
zebras have more complex shapes with large concavities. Therefore, it is not suitable to learn the
shape by deforming from a sphere primitive. Instead, we utilize a readily available zebra mesh as a
template and learn motion deformation on top of it. We first train an image reconstruction model
using the synthetic dataset provided by [11]. Similarly as [11], we utilize the silhouettes, keypoints,
texture maps as well as partially available UV texture flow as supervision. For shape reconstruction,
instead of the utilizing the SMAL parametric model [15], we use the proposed shape module, i.e.
combination of base shapes and motion deformation. Due to the limited motion of zebras, we only
use one base shape, which is a readily available zebra mesh with 3889 vertices and 7774 faces. For
camera pose prediction, we use the perspective camera pose discussed in Sec.3 in the submission as
well as in [4]. Due to the limited capacity of a single UV texture map, we also model the texture map
by cutting the UV texture map into four pieces and stitch them together similarly as in [11]. We note
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that this “cutting and stitching” operation does not influence the mapping and aggregation of the part
UV maps discussed in Sec.3.2 in the submission.

8 Failure Cases

Our work is the first to explore the challenging task of reconstructing 3D meshes of deformable
object instances from videos in the wild. Impressive as the performance is, this challenging task is
far from being fully solved. We discuss failure cases and limitations of the proposed method in the
following. To begin with, we focus on genus-0 objects such as birds and zebras in this work. Thus
our model suffers when it is generalized to objects with large concave holes such as chairs, humans
etc. Second, our work struggles to reconstruct meshes from videos with large motion and lighting
changes as well as occlusion, (see Fig. 12). This is mainly due to the failure in correctly propagating
parts by the self-supervised UVC model [8], which is out of scope of this work. We leave all these
failure cases and limitations to future works.
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Figure 5: More qualitative reconstruction results on CUB birds [13].
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Figure 6: Camera stability visualization. We visualize differences between adjacent camera pose predictions.
The blue and red lines represent the model trained only with images and the test-time tuned model, respectively.

CMR [13] Ours GT CMR [13] Ours GT

Figure 7: Visualization of re-projected keypoints of the single-view image reconstruction model.
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Input Observed View Other views

Figure 8: Visualization of reconstructed zebras.
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(a) Applying KMeans to reconstructed meshes by CMR [13]

(b) Applying PCA to feature space of CMR [13]

Figure 10: Bases visualization.

camera: !

texture:
""#$%($)

"&'

coefficients
{$%}%&'

(!

deformation
∇'

' =)
%&'

(!
$%'% + ∇'

Soft Rasterizer

..

.

… …

(a) Image reconstruction model (b) Illustration of the sliding window scheme

Figure 11: Frameworks. For the purposes of illustration only, we show the test-time tuning procedure in (b)
with a sliding widow size of 3 and sliding stride of 2. In all our experiments, we use a sliding window size of
50 and stride of 10. The gray dashed box shows the previous sliding window while the orange box shows the
current sliding window.

t=10 t=20

t=30 t=40

t=50 t=60

Figure 12: Failure cases. Our model fails when there is occlusion (e.g., t = 50, t stands for frame number) or
large lighting changes (e.g., t = 60).
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