
Efficient Sparse Voxel Octrees

Samuli Laine Tero Karras
NVIDIA Research

Figure 1: Sibenik cathedral ray-traced using voxels. Voxel data was created with high-resolution surface displacement, and ambient occlu-
sion was calculated as a pre-process step. All geometry and shading data is stored on a per-voxel basis, i.e. there are no instantiated objects,
textures, or materials. The resolution is approximately 5mm throughout the entire building, including outer walls that are not visible from
the inside. The total size of the data in GPU memory is 2.7 GB. Our ray caster is able to cast 60.9 million primary rays per second for this
data, and 122.0 million rays per second for the non-displaced version of the same scene. For comparison, the fastest triangle-based GPU ray
caster to date ([Aila and Laine 2009]) achieves 107.1 million rays per second for the non-displaced variant on the same hardware.

Abstract

In this paper we examine the possibilities of using voxel represen-
tations as a generic way for expressing complex and feature-rich
geometry on current and future GPUs. We present in detail a com-
pact data structure for storing voxels and an efficient algorithm for
performing ray casts using this structure.

We augment the voxel data with novel contour information that
increases geometric resolution, allows more compact encoding of
smooth surfaces, and accelerates ray casts. We also employ a novel
normal compression format for storing high-precision object-space
normals. Finally, we present a variable-radius post-process filter-
ing technique for smoothing out blockiness caused by discrete sam-
pling of shading attributes.

Our benchmarks show that our voxel representation is competitive
with triangle-based representations in terms of ray casting perfor-
mance, while allowing tremendously greater geometric detail and
unique shading information for every voxel.

1 Introduction

Voxels can be seen as a simpler alternative to the triangle pipeline
that has become relatively complicated in the current GPUs. Tra-

ditionally, voxels have been used for representing volumetric data
such as MRI scans, but in this paper we concentrate on using them
as a densely sampled representation of opaque surfaces.

A compelling reason for using triangles has been their compactness
for representing planar surfaces. This advantage is less significant
today, because memory consumption is already dominated by color
textures and normal maps that are required for realistic look. Dis-
placement maps can be used to obtain true geometric detail, but
only the latest GPUs are able to rasterize them efficiently. Displaced
geometry is also more difficult to ray trace than flat triangles.

It is customary to use the same textures over and over to con-
serve GPU memory. Unfortunately, this results in repetitive look
for materials and makes it difficult to add variation in the scene,
although small details can be easily added using decal texture
patches. id Software pioneered the use of a single large texture
for terrain in its id Tech 4 engine, and the current id Tech 5 engine
extends the technique to all textures. Only a subset of this so-called
megatexture is kept in memory, and missing parts are streamed from
disk as they are needed.

Assuming that such megatexturing will become commonplace in
the future, we need to store a color value per resolution sample
for all surfaces. If megatextured displacement mapping is used to
achieve higher geometric complexity, we effectively need to also
store some amount of geometry data per sample. At this point, we
may quite reasonably ask why a separation between coarse geom-
etry (base mesh) and fine detail (color and displacement maps) is
necessary in the first place. If we have to store color and geometry
data per resolution sample anyway, why not use a simpler represen-
tation that utilizes the same data structure for both purposes?



2 Previous Work

There is a vast body of literature on visualizing volumetric struc-
tures, so we will focus on papers that are most directly related to
our work. We specifically omit methods that are restricted to height
fields (see e.g. [Dick et al. 2009] for a recent contribution) or are
based on a combination of rasterization and per-pixel ray casting
in shaders (see [Szirmay-Kalos and Umenhoffer 2008] for an ex-
cellent survey) because these are not capable of performing generic
ray casts.

Amanatides and Woo [1987] were the first to present the regular
grid traversal algorithm that is the basis of most derivative work,
including ours. The idea is to compute the t values of the next
subdivision planes along each axis and choose the smallest one in
every iteration to determine the direction for the next step.

Knoll et al. [2006] present an algorithm for ray tracing octrees con-
taining volumetric data that needs to be visualized using different
isosurface levels. Their method is conceptually similar to kd-tree
traversal, and it proceeds in a hierarchical fashion by first deter-
mining the order of the child nodes and then processing them re-
cursively. The algorithm is not as such well suited for GPU im-
plementation. An extension to coherent ray bundles is given by
Knoll et al. [2009].

Crassin et al. [2009] present a GPU-based voxel rendering algo-
rithm that combines two traversal methods. The first stage casts
rays against a regular octree using kd-restart algorithm to avoid the
need for a stack. The leaves of this octree are bricks, i.e. 3D grids,
that contain the actual voxel data. When a brick is found, its con-
tents are sampled along the ray. Bricks typically contain 163 or 323

voxels, yielding a lot of wasted memory except for truly volumetric
data. On the other hand, mipmapped 3D texture lookups supported
by hardware make the brick sampling very efficient, and the result is
automatically antialiased. An interesting feature of the algorithm is
the data management between CPU and GPU. The renderer detects
when data is missing in GPU memory and signals this to the CPU,
which then streams the needed data in. This way, only a subset of
nodes and bricks needs to reside in GPU memory at any time.

Ju et al. [2002] augment an octree structure with auxiliary data to
improve fine geometric details. While the Hermite data utilized by
their representation is flexible in its ability to support dynamic CSG
operations, a separate triangulation pass is required to render the
resulting surface. Our contour-based representation, on the other
hand, aims for efficient rendering and compact storage given the
assumption of static geometry.

3 Voxel Data Structure

We store voxel data in GPU memory using a sparse octree data
structure where each node represents a voxel, i.e. an axis aligned
cube that is intersected by surface geometry. Voxels may be further
subdivided into smaller ones, in which case both the parent voxel
and its children are included in the octree. The data structure has
been designed to minimize the memory footprint while supporting
efficient ray casts. Sometimes both can be achieved at the same
time, because more compact data layout also reduces the memory
bandwidth requirements.

To this end, we adopt a scheme where most of the data associated
with a voxel is stored in conjunction with its parent. This removes
the need to allocate storage for individual leaf voxels and makes
compression of shading attributes more convenient.

On the highest level, our octree data is divided into blocks. Blocks
are contiguous areas of memory that store the octree topology along
with voxel geometry and shading attributes for localized portions

valid maskchild pointer far
815 1

leaf mask
8

contour maskcontour pointer
824

Figure 2: 64-bit child descriptor stored for each non-leaf voxel.

A

B C D

E

F

010010100 00000000

000101000 00010100
000110010 00010001
001000000 00100000

010010101 01001000

far pointer

100000000 10000000

...

page header

page header
...

...
info section

A

B
C
D

E

F

Figure 3: Layout of the child descriptor array. Left: Example voxel
hierarchy. Right: Child descriptor array containing one descriptor
for each non-leaf voxel in the example hierarchy.

of the octree. All memory references within a block are relative,
making it easy to reorganize blocks in memory. This facilitates
dynamic memory management necessary for out-of-core rendering.

Each block consists of an array of child descriptors, an info section,
contour data, and a variable number of attachments. The child de-
scriptors (Section 3.1) and contour data (Section 3.2) encode the
topology of the octree and the geometrical shape of voxels, re-
spectively. Attachments (Section 3.5) are separate arrays that store
a number of shading attributes for each voxel. The info section
encompasses a directory of the available attachments as well as a
pointer to the first child descriptor.

We access child descriptors and contour data during ray casts. Once
a ray hits surface geometry, we execute a shader that looks up the
attachments contained by the particular block and decodes the shad-
ing attributes. For the datasets presented in this paper, we use a sim-
ple Phong shading model with a unique color and a normal vector
associated with each voxel.

3.1 Child Descriptors

We encode the topology of the octree using 64-bit child descrip-
tors, each corresponding to a single non-leaf voxel. Leaf voxels do
not require a descriptor of their own, as they are described by their
parents. As illustrated in Figure 2, the child descriptors are divided
into two 32-bit parts. The first part describes the set of child voxels,
while the second part is related to contours (Section 3.2).

Each voxel is subdivided spatially into 8 child slots of equal size.
The child descriptor contains two bitmasks, each storing one bit per
child slot. valid mask tells whether each of the child slots actually
contains a voxel, while leaf mask further specifies whether each of
these voxels is a leaf. Based on the bitmasks, the status of a child
slot can be interpreted as follows:

∙ Neither bit is set: the slot is not intersected by a surface.

∙ The bit in valid mask is set: the slot contains a non-leaf voxel.

∙ Both bits are set: the slot contains a leaf voxel.

If the voxel contains any non-leaf children, we store an unsigned
15-bit child pointer in order to reference their data. These children,



Level 1 Level 2 Level 3

Figure 4: Effect of contours on surface approximation. Top row:
cubical voxels. Bottom row: voxels enhanced with contours. The
resulting approximation follows the original surface much more
closely than in the top row. Sharp corners can be approximated
by taking contours on multiple levels into account simultaneously.

in turn, store their own child descriptors at consecutive memory
addresses, and the child pointer points to the first one of them as
illustrated in Figure 3. This way, we can find a particular child
by incrementing the pointer based on the bitmasks. The children
can reside either in the same block or in a different one, making
it possible to traverse the octree without having to consider block
boundaries.

In case the children are located far away from the referencing de-
scriptor, the 15-bit field may not be large enough to hold the relative
pointer. To indicate this, we include a far bit in the child descriptor.
If the bit is set, the child pointer is interpreted as an indirect refer-
ence to a separate 32-bit far pointer. The far pointer is interleaved
within the same array and has to be placed close enough to the refer-
encing descriptor. In practice, far pointers can be made very rare by
sorting child descriptors in an approximate depth-first order within
each block.

In addition to traversing the voxel hierarchy, we must also be able to
tell which block a given voxel resides in. This is accomplished us-
ing 32-bit page headers spread amongst the child descriptors. Page
headers are placed at every 8 kilobyte boundary, and each contains
a relative pointer to the block info section. By placing the begin-
ning of the child descriptor array at such a boundary, we can always
find a page header by simply clearing the lowest bits of any child
descriptor pointer.

3.2 Contours

The most straightforward way to visualize voxel data is to approx-
imate the geometry contained within each voxel as a cube. The
resulting visual quality is acceptable as long as the data is oversam-
pled, i.e. the projection of each voxel on the screen is smaller than a
pixel. However, if voxels are considerably larger due to undersam-
pling, the approximation produces very noticeable artifacts near the
silhouettes of objects. This is due to the fact that replacing each
intersection between a voxel and the actual surface with a full cube
effectively expands the surface. This introduces significant approx-
imation error as illustrated in top row of Figure 4.

To reduce the approximation error, we constrain the spatial extent
of each voxel by intersecting it with a pair of parallel planes match-
ing the orientation of the approximated surface. We refer to such
a pair of planes as a contour. The result is a collection of oriented

Figure 5: Left: cubical voxels. Right: the same voxels with
contours. In this kind of situation where surfaces are reasonably
smooth, contours can provide several hierarchy levels’ worth of
geometric resolution improvement. Note that the model has been
deliberately undersampled to illustrate the effect.

slabs that define a tight bounding volume for the surface, as illus-
trated in the bottom row of Figure 4. For flat and relatively smooth
surfaces, the planes can be oriented with the average surface nor-
mal to obtain a good fit. For curved and undersampled surfaces, the
planes can still be used to reduce the approximation error, as can be
seen in Figure 5. Previously, linear bounding volumes have been
constructed by e.g. Peters et al. [2004] for NURBS surfaces.

We use 32 bits to store the contour corresponding to one voxel. The
value is divided into five components: three 6-bit integers to define
the normal vector of the two planes, and two 7-bit integers to define
their positions within the voxel.

The mapping between voxels and their corresponding contours is
established by two fields in the child descriptor (Figure 2). contour
mask is an 8-bit mask telling whether the voxel in each child slot
has an associated contour. Storing a separate bitmask allows omit-
ting contours in voxels where they do not significantly reduce the
approximation error. Similar to the child pointer, the unsigned 24-
bit contour pointer references a list of consecutive contour values,
one for each bit in contour mask that is set.

3.3 Cooperation Between Contours

While using only one contour per leaf voxel would be enough to
represent smooth surfaces, it would also introduce distracting arti-
facts near sharp edges of objects. This is because the orientation of
the surface varies a lot within voxels containing such an edge, and
no single orientation can be chosen as a good representative for all
the points on the surface.

Fortunately, we can utilize the fact that we are storing a full hierar-
chy of overlapping voxels. To enable cooperation between multiple
contours, we define the final shape of a voxel as the intersection of
its cube with all the contours of its ancestors. This way, we can in-
crementally augment the set of representative surface orientations
by selecting different normal vectors for the contours on each level
of the octree, yielding significant quality increase. The effect can be
seen near the areas of high curvature in the bottom row of Figure 4.

3.4 Construction of Contours

To simplify the task of approximating a given surface with contours,
we observe that the result does not necessarily need to be smooth.
As long as we ensure that the original surface is fully enclosed by
each contour, we are guaranteed to get an approximation that con-
tains no holes. While discontinuities at voxel boundaries may in-
troduce problems such as false self-shadowing or interreflections in
ray tracing, these can be usually worked around by offsetting the
starting positions of secondary rays by a small amount. Thus, the
construction process can be defined in terms of minimizing the spa-
tial extent of each voxel, regardless of its neighbors.



We employ a greedy algorithm that constructs a contour for each
voxel in a hierarchical top-down manner. The construction is based
on the original surface contained within a given voxel, as well as the
ancestor contours that have already been determined. We first con-
struct a polyhedron by taking the intersection between the voxel’s
cube and each of its ancestor contours. We then pick a number of
candidate directions and determine how much the original surface
is being overestimated by the polyhedron in each direction. Overes-
timation is calculated as the difference between the spatial extents
of the polyhedron and the original surface along the given candidate
direction. Finally, we select the direction with the largest overesti-
mation and construct a contour perpendicular to it so that it encloses
the original surface as tightly as possible.

Due to the greedy nature of the construction process, the quality of
the resulting approximation depends heavily on the chosen set of
candidate directions. Since we have a limited number of hierarchy
levels, we want to avoid choosing directions that would only reduce
the spatial extent locally without contributing to the final shape of
leaf voxels. We thus restrict the set of candidate directions to nor-
mals of the original surface as well as perpendiculars of surface
boundaries, since these directions are most likely to contribute to
the final shape. In practice, we have found that it is enough to con-
sider only a relatively small subset of these directions in order to
speed up the processing.

In addition to constructing contours, we also want to detect the
case where the shape of the voxel as defined by its ancestor con-
tours already approximates the original surface well enough. This
is a common situation with smooth input geometry, and omitting
unnecessary contours generally yields significant memory savings.
One way to perform the test is to check whether the distance from
every point within the polyhedron to the original surface is below
a fixed threshold. In practice, an efficient approximation can be
obtained by considering only the vertices of the polyhedron.

3.5 Shading Attributes

Assuming an average branching factor of four, the child descrip-
tor array takes approximately 2 bytes per voxel (taking leaf voxels
into account), which is quite compact. However, raw encoding of
shading attributes could easily ruin this compactness. Since the
majority of rendering time is spent in ray casts which do not access
the attribute data at all, it makes sense to trade attribute decoding
performance for reduced memory footprint.

We employ a block-based compression scheme that spends an aver-
age of 1 byte for colors and 2 bytes for normals per voxel, yielding
a total of 5 bytes including geometry. As in DXT (see e.g. [van
Waveren and Castaño 2008]), each compression block is able to
represent 16 values. Since voxels have 8 child slots, we assign
the voxels described by two consecutive child descriptors to the
same compression block to establish a direct correspondence be-
tween compressed values and child slots. Roughly half of the child
slots are empty on average, resulting in 8 used and 8 unused val-
ues per block. We avoid placing values from different parts of the
hierarchy into the same compression block by simply leaving gaps
in the child descriptor array to ensure that we only pair descriptors
having the same parent voxel.

Even though our scheme wastes approximately half of the capacity
available in the compression blocks, it avoids the cost of an addi-
tional indirection table. It also has the benefit that individual values
can be represented more accurately, since there is less competition
within each compression block.

Colors. Voxel colors are encoded using a simplified variant of
DXT1 that omits the semantics related to transparency. The first
32 bits of a compression block store two reference colors, c0 and

Figure 6: Illustration of our normal compression scheme. Base
normal nb specifies a point on a unit cube, and two axis vectors
nu and nv define an arbitrary 4× 4 grid around this point. There
are no orthogonality requirements between the three vectors, and
the axis vectors are not constrained to lie on the face of the cube,
allowing maximal flexibility. The dashed arrows indicate two of the
16 normals defined by this set of vectors.

c1, using 16-bit RGB-565 encoding. The remaining 32 bits store
two-bit interpolation factors to choose each of the 16 colors from
the set {c0,c1,

2
3 c0 +

1
3 c1,

1
3 c0 +

2
3 c1}.

Normals. Most of the existing literature on normal compression
considers only tangent-space normals (e.g. [ATI 2005; Munkberg
et al. 2006; Munkberg et al. 2007]), and therefore is not applicable
in our case because no tangent frame can be implicitly derived. For
voxel normals, one could utilize existing normal map compression
techniques such as object-space DXT5 [van Waveren and Castaño
2008]. Unfortunately, the 8-bit precision provided by such methods
is insufficent for smooth highlights and reflections. We thus employ
a novel compression scheme that provides up to 14 bits of precision
for smoothly varying normals.

Our normal compression scheme is based on placing a linear 4×4
grid of points in the 3-dimensional normal space and selecting each
individual normal from the 16 candidates. The grid is defined using
a base normal nb and two axis vectors nu and nv, as illustrated in
Figure 6. Each candidate normal is defined as nb + cunu + cvnv,
with cu and cv selected independently from the set {−1,− 1

3 ,
1
3 ,1}.

For better adaptation to various kinds of data, we do not make any
orthogonality requirements for nb, nu, and nv.

The base normal nb is encoded as a point on a cube. The face is
identified using 3 bits, and the coordinates on the face are stored
using two fixed-point integers, one with 14 bits and one with 15
bits, totalling 32 bits. Axis vector nu is stored using three signed 4-
bit integers and a single 4-bit exponent, i.e. a floating-point vector
with common exponent. The nv axis is stored in a similar fash-
ion, yielding a total of 32 bits for the axis vectors. The remainder
of the compression block contains two u-axis bits and two v-axis
bits for each individual normal specifying the values of cu and cv,
respectively.

The compression scheme is flexible in its ability to handle differ-
ent kinds of cases. If the variance of the normals within a block
is small, nb can be used to store the average normal with a high
precision while using small exponents for nu and nv to minimize
quantization errors. If the normals vary only in one direction, nu
and nv can be set to have the same direction but different length
in order to maximize the precision along that particular direction.
Finally, if the normals are oriented in entirely different directions,
one of the directions can be selected as nb while using nu and nv to
approximate two other directions.

4 Rendering

The regularity of the octree data structure is the key factor in en-
abling efficient ray casts. As most of the data associated with a
voxel is actually stored within its parent, we need to express the



current voxel using its parent voxel parent and a child slot index
idx ranging from 0 to 7. Since we do not store information about
the spatial location of voxels, we also need to maintain a cube cor-
responding to the current voxel. The cube is expressed using po-
sition vector pos ranging from 0 to 1 in each dimension, and a
non-negative integer scale that defines the extent of the cube as
exp2(scale− smax). The entire octree is contained within a cube
of scale smax positioned at the origin.

Basics. Let our ray be defined as pt(t) = p+ td. Solving t for an
axis-aligned plane gives tx(x) = (1/dx)x+(−px/dx) for the x-axis,
and similar formulas for the y and z axes. With precomputed ray co-
efficients this amounts to a single multiply-add instruction per axis.
We can represent an axis-aligned cube as a pair of opposite corners
(x0,y0,z0) and (x1,y1,z1) so that tx(x0) ≤ tx(x1), ty(y0) ≤ ty(y1),
and tz(z0) ≤ tz(z1). Using this definition, the span of t-values in-
tersected by the cube is given by tcmin = max(tx(x0), ty(y0), tz(z0))
and tcmax = min(tx(x1), ty(y1), tz(z1)).

Traversing voxels along the ray, we can determine the next voxel
of the same scale by comparing tx(x1), ty(y1), and tz(z1) against
tcmax and advancing the cube position along each axis for which
the values are equal. Assuming that the two voxels share the same
parent, we obtain the new child slot index idx′ by flipping the bits
of idx corresponding to the same axes.

Hierarchy traversal. We will now extend the idea of incremen-
tal traversal to a hierarchy of voxels. This is necessary since our
octree data structure is sparse in the sense that we do not include
the subtrees corresponding to empty space. Doing the traversal in
a hierarchical fashion also has the benefit of being able to improve
the performance by using contours as bounding volumes of their
corresponding subtrees.

Our algorithm traverses the set of voxels intersected by the ray in
depth-first order. In each iteration, there are three distinct cases for
selecting the next voxel:

∙ PUSH: Proceed to the child voxel that the ray enters first.

∙ ADVANCE: Proceed to the next sibling voxel.

∙ POP: Otherwise, proceed to the next sibling of the highest
ancestor that the ray exits.

The algorithm incorporates a stack of parent voxels and contour
t values associated with the ancestors of the current voxel. The
depth of the stack is smax, making it possible to address its entries
directly using cube scale values. Whenever the algorithm descends
the hierarchy by executing PUSH, it potentially stores the previous
parent into the stack at scale based on a conservative check. When
the ray exits the current parent voxel, the algorithm ascends the
hierarchy by executing POP. It first uses the current position pos to
determine the new pos′, scale′, and idx′ as described below. It then
reads the stack at scale′ to restore the previous parent.

Determining the child voxel that the ray enters first in the case of
PUSH is similar to selecting the next sibling in ADVANCE. We eval-
uate tx, ty, and tz at the center of the voxel and compare them against
tcmin to determine each bit of the new idx′.

To differentiate between ADVANCE and POP, we need to find out
whether the ray stays within the same parent voxel. We start by
assuming that it does, and compute candidate position pos∗ and
child slot index idx∗. We then check whether the resulting idx∗ is
actually valid considering the direction of the ray. As described
previously, we obtain idx∗ by flipping one or more bits of idx, each
corresponding to an axis-aligned plane crossed by the ray. For idx∗

to be valid, the direction of the flips must agree with sign of the
corresponding component of ray direction d. For example if dx > 0,
the bit corresponding to the x-axis is only allowed to increase. If all
of the flips agree with the ray direction, we execute ADVANCE by

pos.x
pos.y
pos.z
idx

. 1 0 1 1 0 0 1 0 0 0

. 0 0 0 1 1 1 0 0 0 0

. 0 1 1 1 0 1 1 0 0 0

scale 9 8 7 6 5 4 3 2 1 0

1 4 5 7 2 6 5

0
0
0

Figure 7: Connection between pos and child slot indices. Each
bit position of pos corresponds to a cube scale value. Interpreting
the bit triplet corresponding to scale as an integer yields idx. Bits
above scale define a progression of child slot indices that forms a
path from the root to the current voxel. Bits below scale are zero.

using pos∗ and idx∗ as the new pos′ and idx′, respectively. If we
encounter any conflicting flips, we proceed with POP.

In the case of POP, we can determine the next voxel by looking at
the bit representations of pos and pos∗. Figure 7 illustrates the con-
nection between cube positions and child slot indices. Each triplet
of bits at a given bit position forms a child slot index corresponding
to a particular cube scale. Starting from the highest bit position,
the child slot indices define a path in the octree from the root to the
current voxel.

Let us denote the paths corresponding to pos and pos∗ with p and
p∗, respectively. We know that the traversal must have visited all the
voxels along p in order to reach the current voxel, and that p∗ must
diverge from this set of voxels at some point along the path. The
fact that a ray can never re-enter a voxel after exiting it implies that
the first differing voxel in p∗ is necessarily unvisited. In a depth-
first traversal it is also the voxel that we should visit next.

Therefore, we determine the next voxel as follows. We first obtain
the new scale′ by finding the highest bit that differs between pos
and pos∗. We then find child slot index idx′ by extracting the bit
triplet of pos∗ corresponding to scale′. To obtain pos′, we take pos∗
but clear the bits below scale′. This yields a cube with the correct
scale that contains pos∗. Finally, we restore the parent voxel from
the stack entry at scale′.

4.1 Ray Cast Implementation

Pseudocode for the complete ray cast algorithm is given in Figure 8.
The code consists of initialization phase followed by a loop travers-
ing each individual voxel along the ray.

The algorithm starts by initializing state variables on lines 1–7. The
active span of the ray is stored as an interval between two t-values,
tmin and tmax, and is initialized to the intersection of the ray with
the root. h is a threshold value for tmax used to prevent unnecessary
writes to the stack. The current voxel in the octree is identified using
parent and child slot index idx. It is initialized to a child of the root
by comparing tmin against tx, ty, and tz at the center of the octree.
Finally, pos and scale are initialized to represent the corresponding
cube.

The loop on lines 8–39 is iterated until the ray either hits a voxel or
leaves the octree. Each iteration intersects the current voxel against
the active span on lines 11–16 and potentially descends to its chil-
dren on lines 18–25. If the voxel is not intersected by the ray, the
algorithm executes ADVANCE on lines 28–30, potentially followed
by POP on lines 32–37.

Line 9 computes the span tc corresponding to the current cube to be
used by INTERSECT and ADVANCE, and line 10 checks whether to
process the current voxel or skip it. If the bit corresponding to the
voxel in valid mask is not set, or the active span t is empty, the code
determines that the ray cannot intersect the voxel and skips directly
to ADVANCE. Otherwise, the voxel may intersect the ray and is thus
processed further.



⎡⎢⎢⎢⎢⎢⎢⎢⎣INITI
A

L
IZ

E

⎡⎢⎢⎢⎢⎢⎣

IN
T

E
R

S
E

C
T

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣P
U

S
H

[

A
D

V
A

N
C

E

⎡⎢⎢⎢⎢⎢⎣PO
P

1: (tmin, tmax)← (0,1)
2: t ′← project cube(root,ray)
3: t← intersect(t, t ′)
4: h← t ′max
5: parent← root
6: idx← select child(root,ray, tmin)
7: (pos,scale)← child cube(root, idx)
8: while not terminated do
9: tc← project cube(pos,scale,ray)

10: if voxel exists and tmin ≤ tmax then
11: if voxel is small enough then return tmin
12: tv← intersect(tc, t)
13: if voxel has a contour then
14: t ′← project contour(pos,scale,ray)
15: tv← intersect(tv, t ′)
16: end if
17: if tvmin ≤ tvmax then
18: if voxel is a leaf then return tvmin
19: if tcmax < h then stack[scale]← (parent, tmax)
20: h← tcmax
21: parent← find child descriptor(parent, idx)
22: idx← select child(pos,scale,ray, tvmin)
23: t← tv
24: (pos,scale)← child cube(pos,scale, idx)
25: continue
26: end if
27: end if
28: oldpos← pos
29: (pos, idx)← step along ray(pos,scale,ray)
30: tmin← tcmax
31: if idx update disagrees with ray then
32: scale← highest differing bit(pos,oldpos)
33: if scale≥ smax then return miss
34: (parent, tmax)← stack[scale]
35: pos← round position(pos,scale)
36: idx← extract child slot index(pos,scale)
37: h← 0
38: end if
39: end while

Figure 8: Pseudocode for the ray cast algorithm.

Line 11 checks whether the voxel is small enough to justify termi-
nation of the traversal. This provides a way to pre-filter the geom-
etry by dynamically adapting voxel resolution to match the screen
resolution, and is accomplished by comparing exp2(scale) against
a linear function of tcmax. The check can be executed before it is
known for sure whether the voxel actually intersects the ray, since
the exactness of the result is not relevant for very small voxels.

Lines 12–16 compute the span tv as the intersection of the current
cube with the active span and voxel contour. The effect of the con-
tours corresponding to the ancestor voxels is included in the ac-
tive span, so tv represents the exact intersection with the geometric
shape of the current voxel. Line 17 checks whether the intersection
is non-empty, and if so, proceeds to execute PUSH. Otherwise, the
voxel is skipped by executing ADVANCE.

If the current voxel is a leaf, as seen from the leaf mask of parent,
line 18 terminates the traversal because the desired intersection has
been found. Line 19 stores the old values of parent and tmax to the
stack if necessary. The decision is based on the limit h as follows:

∙ Normally, h corresponds to the t value at which the ray exits
parent. tcmax = h means that the ray exits both the voxel and
its parent at the same time, in which case we do not need to
store parent as it will not be accessed again.

∙ If parent has already been stored to the stack, we set h to 0.
As tcmax ≥ 0 is always true, this has the effect of preventing
the same parent from being stored again.

Figure 9: Illustration of the effect of beam optimization on itera-
tion counts. Left: SIBENIK-D with no beam optimization. Right:
with beam optimization in 8×8 blocks. White corresponds to 64
iterations in both images.

Descending the hierarchy, lines 20–24 replace parent with the cur-
rent voxel and set idx, pos, and scale to match the first child voxel
that the ray enters. Finally, line 25 restarts the loop to process the
child voxel.

Lines 28–30 execute ADVANCE. The current cube position is first
stored into a temporary variable. pos and idx are then advanced to
the next cube of the same scale along the ray. All t values required
for deciding the axes to advance along have already been computed
on line 9, and can be reused here. Finally, the active span of the ray
is shortened by replacing tmin with the value at which the ray enters
the new cube. Line 31 checks whether the child index bit flips agree
with the direction of the ray, i.e. whether the traversal stays in the
same parent voxel. If so, the loop restarts. Otherwise, the algorithm
proceeds to execute POP.

Lines 32–36 execute POP as described previously. If the new scale
exceeds smax, line 33 determines that the ray exits the octree and
terminates the traversal with a miss. Finally, line 37 sets h to 0
to prevent the parent that was just read from the stack from being
stored again.

Alternate coordinate system. The algorithm contains multiple
operations that have to explicitly check the signs of the ray direc-
tion. These checks can be avoided by mirroring the entire octree
to redefine the coordinate system so that each component of d be-
comes negative. In practice, we accomplish this by determining an
octant bitmask based on the ray direction during initialization. We
then use this mask to flip the bits of idx whenever we interpret the
fields of a child descriptor. In the same vein, we can also offset the
origin of pos to make its components range within [1,2] instead of
[0,1]. This has the benefit of enabling us to operate directly on the
corresponding floating point bit representations in POP.

4.2 Beam Optimization

There is a relatively simple way to accelerate the ray casting pro-
cess for primary rays. With cubical voxels, it is possible to render
a coarse, conservative distance image and then use it to adjust the
starting positions of individual rays. This has the effect of making
the individual rays skip majority of the empty space at their begin-
ning before intersecting a surface.

For many acceleration structures this kind of approach is not feasi-
ble, because it is generally impossible to guarantee that the coarse
grid of rays does not miss features that would be important for the
individual rays. However, with voxel data we can make this guar-
antee by terminating the traversal as soon as we encounter a voxel
that is not large enough to certainly cover at least one ray in the
coarse grid. Note that contour tests must be disabled in the coarse
pass in order for this to work.

In practice, we divide the image into 4×4 or 8×8 pixel blocks and
cast a distance ray for the corners of these blocks in the coarse pass.



Figure 10: The problem with varying blur filter radii. The image
shows a closeup of FAIRY’s hand built with aggressive pruning and
few voxel levels. Left: Filtering each pixel with a radius deduced
from the size of the corresponding voxel. Seams are visible at hi-
erarchy level changes. Right: Our method adjusts the filter radius
while accumulating neighboring colors, yielding smooth transition
between levels.

For each ray in the actual rendering pass, we identify the corre-
sponding block and fetch the distance values for the four corners.
We then subtract an appropriate constant from their minimum to
determine the starting point of the ray. Figure 9 illustrates the effect
of beam optimization on iteration counts.

4.3 Post-process Filtering

To smooth out the blockiness caused by discrete sampling of shad-
ing attributes, we apply an adaptive blur filter on the rendered im-
age as a post-processing step. Without filtering, the result would
resemble the effect of nearest-sampled texture lookups. Note that
silhouette edges are generally represented well by contours, so we
want to avoid excess blurring around them.

The most reliable way to estimate the proper filter radius is to look
at the size of the intersected voxel on the screen. However, adjacent
voxels on the same surface may reside on different hierarchy levels
due to the fact that the voxel resolution is allowed to vary depend-
ing on the local geometrical complexity and variance in shading
attributes. As a result, the desired filter radius also varies across the
surface. This can cause rendering artifacts due to abrupt changes in
the filter radius at voxel boundaries, as illustrated in Figure 10.

Our method is based on a sparse set of sampling points, stored in
a look-up table in ascending order according to distance from the
center. We use a set of 96 samples distributed in a disc with radius
of 24 pixels. The density of the samples falls as the square root of
distance from the center, and each sample has an associated weight
corresponding to the area of the disc it represents. Algorithms that
smooth out undersampled data such as single-sample shadows or
reflections tend to require two passes (e.g. [Fernando 2005; Robi-
son and Shirley 2009]), but the ordered look-up table allows us to
perform the computation in a single pass.

Pseudocode of the algorithm is given in Figure 11. To process a
pixel, we start by determining the desired filter radius r based on
the voxel in the pixel itself. If the radius is one pixel or less, there
is no need for filtering, and we return the original color. Otherwise,
we start processing sampling points in the order determined by the
look-up table until their distance from the center exceeds r. For
each sample, color c′ and blur radius r′ of the corresponding pixel
are fetched. To adapt blur radius to the neighborhood, we clamp r
to min(r,r′). This prevents visible seams from forming by making
filter radius agree between nearby regions. Accumulation weight is
calculated by taking sample weight and adjusting it so that it tapers
off to zero linearly between r−1 and r. This ensures smooth tran-
sition between different filter radii. Finally, color is accumulated
according to the computed weight.

1: (c,r)← fetch(x,y)
2: if r ≤ 1 then return c
3: accum← (0,0,0,0)
4: for each sample s in kernel do
5: (c′,r′)← fetch(x+s.x, y+s.y)
6: r←min(r,r′)

7: if s.dist > r then break
8: w← s.weight ⋅min(r− s.dist,1)
9: accum.rgb← accum.rgb+ c′ ⋅w

10: accum.w← accum.w+w
11: end for
12: return accum.rgb/accum.w

Figure 11: Pseudocode for the post-process filtering algorithm.

In practice, we store the logarithm of the voxel size into the alpha
channel of the result image when casting the rays. One byte is
sufficient when the value is stored as 3.5 fixed point, yielding range
from 1 (no blur) to about 128 pixels.

5 Results

All tests were performed on an NVIDIA Quadro FX 5800
with 4 GB of RAM installed in a PC with 2.5 GHz Q9300 Intel
Core2 Quad CPU and 4 GB of RAM. The operating system was
64-bit edition of Windows XP Professional. The public CUDA 2.1
driver and compiler was used. Figure 12 shows the test scenes used
in this paper along with their triangle counts. Due to general lack of
large-scale high-resolution voxel datasets, all of our voxel datasets
were built from triangle meshes.

Table 1 lists the memory usage and construction time of the voxel
representation for each test scene with a varying limit on the num-
ber of octree levels. The rightmost column in the table shows the
average number of bytes consumed by a single voxel in the highest-
resolution representation, including all overhead. We can see that
the actual values are mostly near the theoretical optimum of 5 bytes
per voxel (Section 3.5). The differences are explained by variance
in branching factor, gaps in child descriptor array, and variance in
the amount of contour data.

5.1 Rendering Performance

Arguably the most interesting piece of information is the rendering
performance using voxel data. In our case, the dominant factor
is the efficiency of ray casts, as shading costs are negligible and
post-process filtering is one to two magnitudes faster than the ray
casting. Table 2 summarizes the ray cast performance in our test
scenes at various resolutions. The values in the table have been
measured as averages over several viewpoints, repeating each frame
several times to amortize startup and flush delays. The increase in
performance as the resolution grows is therefore explained solely
by better ray coherence.

The triangle caster column refers to the fastest GPU ray caster de-
scribed in our previous paper [Aila and Laine 2009]. The cubi-
cal voxels column shows voxel ray cast performance with cubical
voxel data, while the contours column shows the results for voxel
data that includes contours. It should be noted that the two datasets
are different in terms of their average depth, as the improved ap-
proximation provided by contours makes it possible to prune the
hierarchy more aggressively. Finally, the last column shows the re-
sult with the beam optimization enabled (Section 4.2). It can be
seen that the voxel ray caster consistently outperforms the triangle
ray caster in the test scenes.

Obviously, the comparison between triangle and voxel ray cast per-
formance is between apples and oranges because of the different
type of data we are casting against. The triangle-based representa-
tion is able to discern every edge and corner perfectly, whereas the
voxel representation may be inaccurate in such places. On the other
hand, the voxel representation contains unique, i.e. non-repetitive,
color and normal information on a per-sample basis, and allows
representing unique high-resolution geometry.



CITY, 879K tris SIBENIK-D, 77K tris + disp. HAIRBALL, 2.88M tris FAIRY, 93K tris CONFERENCE, 283K tris

Figure 12: Test scenes used in measurements. SIBENIK is the same as SIBENIK-D but with flat triangles.

Scene 10 11 12 13 14 15 16 bytes

CITY
13 39 131 432 1368 – – 5.4414 23 48 115 311

SIBENIK
41 141 440 1034 1857 – – 5.6810 31 90 194 336

SIBENIK-D 79 314 1192 2806 – – – 8.1070 274 1342 2541

HAIRBALL
442 1552 – – – – – 7.48294 628

FAIRY
11 35 99 239 376 639 1109 5.626 15 38 86 121 178 282

CONFERENCE
17 40 96 220 512 1328 – 5.167 13 24 51 115 288

Table 1: GPU memory usage and construction times of the test
scenes with different voxel level counts. All four CPU cores were
utilized. For each scene, the upper row denotes memory consump-
tion in MB and the lower row shows the construction time in sec-
onds. The bytes column on the right tells the average memory con-
sumption per voxel for the largest datasets.

triangle cubical con- cont.
Scene resolution caster voxels tours w/beam

(Mrays/s) (Mrays/s)

CITY
512×384 46.7 45.1 79.9 88.6

1024×768 68.5 54.3 89.1 106.0
2048×1536 77.1 63.9 97.4 123.8

SIBENIK
512×384 64.3 38.7 80.0 82.5

1024×768 94.1 46.5 94.1 103.6
2048×1536 107.1 55.1 103.9 122.0

SIBENIK-D
512×384 – 24.8 32.6 37.5

1024×768 – 30.2 38.7 48.3
2048×1536 – 37.1 43.6 60.9

HAIRBALL
512×384 11.6 22.4 24.1 24.1

1024×768 20.5 22.5 27.9 28.4
2048×1536 31.2 29.2 36.5 38.2

FAIRY
512×384 63.9 62.1 128.2 132.6

1024×768 125.1 69.4 145.4 150.9
2048×1536 155.8 78.6 160.4 169.2

CONFERENCE
512×384 69.1 35.8 97.9 104.4

1024×768 111.9 43.8 110.3 124.3
2048×1536 134.0 52.3 120.2 140.8

Table 2: Ray cast performance for primary rays at various screen
resolutions. Values are in millions of rays per second. The largest
datasets that could be fit in 4 GB were used in the voxel tests.

6 Future Work

We would like to experiment with truly volumetric effects such as
fog or partially transparent materials. Our data structure is readily
able to represent them, and we assume that it would be reasonably
efficient to e.g. accumulate extinction coefficients or collect illumi-
nation during ray casts.

While the proposed data structure is demonstrably efficient for ren-
dering purposes, it still requires a fair amount of storage. The mem-

ory capacity available in GPUs today is adequate for rendering pur-
poses, but storing large amounts of high-resolution content on an
optical disk or streaming it over network seems impossible without
some form of compression. Finding efficient—presumably lossy—
compression algorithms would make voxel-based content more fea-
sible for practical applications.

In our benchmarks we load the entire scenes in full resolution into
GPU memory, while only a small portion would be required for
rendering any single image due to occlusions and resolution re-
quirements falling with distance. Our system already supports on-
demand streaming based on distance to camera, but it would be
interesting to see how much visibility-based streaming (in spirit of
Crassin et al. [2009]) would further reduce the memory footprint.

Acknowledgments. We thank Timo Aila and David Luebke for
discussions and helpful suggestions. Sibenik model courtesy of
Marko Dabrovic. Fairy model courtesy of University of Utah.

References

AILA, T., AND LAINE, S. 2009. Understanding the efficiency
of ray traversal on GPUs. In Proc. High-Performance Graphics
2009, 145–149.

AMANATIDES, J., AND WOO, A. 1987. A fast voxel traversal
algorithm for ray tracing. In In Eurographics 87, 3–10.

ATI. 2005. Radeon X800: 3Dc white paper. http://www.ati.
com/products/radeonx800/3DcWhitePaper.pdf .

CRASSIN, C., NEYRET, F., LEFEBVRE, S., AND EISEMANN, E.
2009. Gigavoxels: ray-guided streaming for efficient and de-
tailed voxel rendering. In Proc. I3D ’09, 15–22.

DICK, C., KRÜGER, J., AND WESTERMANN, R. 2009. GPU
ray-casting for scalable terrain rendering. In Proc. Eurographics
2009–Areas Papers, 43–50.

FERNANDO, R. 2005. Percentage-closer soft shadows. In SIG-
GRAPH ’05: ACM SIGGRAPH 2005 Sketches, ACM, New
York, NY, USA, 35.

JU, T., LOSASSO, F., SCHAEFER, S., AND WARREN, J. 2002.
Dual contouring of hermite data. In Proc. SIGGRAPH ’02, 339–
346.

KNOLL, A., WALD, I., PARKER, S. G., AND HANSEN, C. D.
2006. Interactive Isosurface Ray Tracing of Large Octree Vol-
umes. In Proceedings of the 2006 IEEE Symposium on Interac-
tive Ray Tracing, 115–124.

KNOLL, A. M., WALD, I., AND HANSEN, C. D. 2009. Coherent
multiresolution isosurface ray tracing. Vis. Comput. 25, 3, 209–
225.

MUNKBERG, J., AKENINE-MÖLLER, T., AND STRÖM, J. 2006.
High quality normal map compression. In Proc. Graphics Hard-
ware 2006, 95–102.



MUNKBERG, J., OLSSON, O., STRÖM, J., AND AKENINE-
MÖLLER, T. 2007. Tight frame normal map compression. In
Proc. Graphics Hardware 2007, 37–40.

PETERS, J., AND WU, X. 2004. Sleves for planar spline curves.
Computer Aided Geometric Design 21, 6, 615–635.

ROBISON, A., AND SHIRLEY, P. 2009. Image space gathering. In
Proc. High Performance Graphics 2009, 91–98.

SZIRMAY-KALOS, L., AND UMENHOFFER, T. 2008. Displace-
ment mapping on the GPU - State of the Art. Computer Graphics
Forum 27, 1.

VAN WAVEREN, J. M. P., AND CASTAÑO, I. 2008. Real-time nor-
mal map DXT compression. http://developer.nvidia.com
/object/real-time-normal-map-dxt-compression.html.


