
Megakernels Considered Harmful: Wavefront Path Tracing on GPUs

Samuli Laine Tero Karras Timo Aila

NVIDIA∗

Abstract

When programming for GPUs, simply porting a large CPU program
into an equally large GPU kernel is generally not a good approach.
Due to SIMT execution model on GPUs, divergence in control flow
carries substantial performance penalties, as does high register us-
age that lessens the latency-hiding capability that is essential for the
high-latency, high-bandwidth memory system of a GPU. In this pa-
per, we implement a path tracer on a GPU using a wavefront formu-
lation, avoiding these pitfalls that can be especially prominent when
using materials that are expensive to evaluate. We compare our per-
formance against the traditional megakernel approach, and demon-
strate that the wavefront formulation is much better suited for real-
world use cases where multiple complex materials are present in
the scene.

CR Categories: D.1.3 [Programming Techniques]: Concurrent
Programming—Parallel programming; I.3.7 [Computer Graphics]:
Three-Dimensional Graphics and Realism—Raytracing; I.3.1
[Computer Graphics]: Hardware Architecture—Parallel processing

Keywords: GPU, path tracing, complex materials

1 Introduction

General-purpose programming on GPUs is nowadays made easy by
programming interfaces such as CUDA and OpenCL. These inter-
faces expose the GPU’s execution units to the programmer and al-
low, e.g., general read/write memory accesses that were severely re-
stricted or missing altogether from the preceding, graphics-specific
shading languages. In addition, constructs that assist in parallel pro-
gramming, such as atomic operations and synchronization points,
are available.

The main difference between CPU and GPU programming is the
number of threads required for efficient execution. On CPUs that
are optimized for low-latency execution, only a handful of simul-
taneously executing threads are needed for fully utilizing the ma-
chine, whereas on GPUs the required number of threads runs in
thousands or tens of thousands.1 Fortunately, in many graphics-
related tasks it is easy to split the work into a vast number of in-
dependent threads. For example, in path tracing [Kajiya 1986] one
typically processes a very large number of paths, and assigning one
thread for each path provides plenty of parallelism.

However, even when parallelism is abundant, the execution char-
acteristics of GPUs differ considerably from CPUs. There are two
main factors. The first is the SIMT (Single Instruction Multiple
Threads) execution model, where many threads (typically 32) are
grouped together in warps to always run the same instruction. In

∗e-mail: {slaine,tkarras,taila}@nvidia.com

order to handle irregular control flow, some threads are masked out
when executing a branch they should not participate in. This in-
curs a performance loss, as masked-out threads are not performing
useful work.

The second factor is the high-bandwidth, high-latency memory sys-
tem. The impressive memory bandwidth in modern GPUs comes at
the expense of a relatively long delay between making a memory
request and getting the result. To hide this latency, GPUs are de-
signed to accommodate many more threads than can be executed in
any given clock cycle, so that whenever a group of threads is wait-
ing for a memory request to be served, other threads may be exe-
cuted. The effectiveness of this mechanism, i.e., the latency-hiding
capability, is determined by the threads’ resource usage, the most
important resource being the number of registers used. Because the
register files are of limited size, the more registers a kernel uses, the
fewer threads can reside in the GPU, and consequently, the worse
the latency-hiding capabilities are.

On a CPU, neither of these two factors is a concern, which is why
a naı̈vely ported large CPU program is almost certain to perform
badly on a GPU. Firstly, the control flow divergence that does not
harm a scalar CPU thread may cause threads to be severely under-
utilized when the program is run on a GPU. Secondly, even a single
hot spot that uses many registers will drive the resource usage of the
entire kernel up, reducing the latency-hiding capabilities. Addition-
ally, the instruction caches on a GPU are much smaller than those
on a CPU, and large kernels may easily overrun them. For these
reasons, the programmer should be wary of the traditional megak-
ernel formulation, where all program code is mashed into one big
GPU kernel.

In this paper, we discuss the implementation of a path tracer on a
GPU in a way that avoids these pitfalls. Our particular emphasis is
on complex, real-world materials that are used in production ren-
dering. These can be almost arbitrarily expensive to evaluate, as
the complexity depends on material models constructed by artists
who prefer to optimize for visual fidelity instead of rendering per-
formance. This problem has received fairly little attention in the
research literature so far. Our solution is a wavefront path tracer
that keeps a large pool of paths alive at all times, which allows exe-
cuting the ray casts and the material evaluations in coherent chunks
over large sets of rays by splitting the path tracer into multiple spe-
cialized kernels. This reduces the control flow divergence, thereby
improving SIMT thread utilization, and also prevents resource us-
age hot spots from dominating the latency-hiding capability for the
whole program. In particular, ray casts that consume a major por-
tion of execution time can be executed using highly optimized, lean
kernels that require few registers, without being polluted by high
register usage in, e.g., material evaluators.

Pre-sorting work in order to improve execution coherence is a well-
known optimization for traditional feed-forward rendering, where
the input geometry can be easily partitioned according to, e.g., the

1If the CPU is programmed as a SIMT machine using, e.g., the ispc
compiler [Pharr and Mark 2012], the number of threads is effectively multi-
plied by SIMD width. For example, a hyperthreading 8-core Intel processor
with AVX SIMD extensions can accommodate 128 resident threads with
completely vectorized code. In contrast, the NVIDIA Tesla K20 GPU used
for benchmarks in this paper can accommodate up to 26624 resident threads.



fragment shader program used by each triangle. This lets each
shader to be executed over a large batch of fragments, which is more
efficient than changing the shader frequently. In path tracing the
situation is trickier, because it cannot be known in advance which
materials the path segments will hit. Similarly, before the mate-
rial code has been executed it is unclear whether the path should
be continued or terminated. Therefore, the sorting of work needs
to happen on the fly, and we achieve this through queues that track
which paths should be processed by each kernel.

We demonstrate the benefits of the wavefront formulation by com-
paring its performance against the traditional megakernel approach.
We strive to make a fair comparison, and achieve this by having
both variants thoroughly optimized and encompassing essentially
the same code, so that the only differences are in the organization
of the programs.

2 Previous Work

Purcell et al. [2002] examined ray tracing on early programmable
graphics hardware. As the exact semantics of the hardware that
was then still under development were unknown, they considered
two architectures: one that allows conditional branching and loop
structures, and one without support for them. In the former case,
the kernels were combined into a single program which allowed
for shorter overall code. In the latter case, a multipass strategy was
used with multiple separate kernels for implementing the loops nec-
essary for ray casts and path tracing. The splitting of code into
multiple kernels was performed only to work around architectural
limitations.

OptiX [Parker et al. 2010] is the first general-purpose GPU ray trac-
ing engine supporting arbitrary material code supplied by the user.
In the implementation presented in the paper, all of the ray cast
code, material code, and other user-specified logic is compiled into
a single megakernel. Each thread has a state specifying which block
of code (e.g., ray-box intersection, ray-primitive intersection, etc.)
it wishes to execute next, and a heuristic scheduler picks the block
to be executed based on these requests [Robison 2009].

Because each task, e.g., a path in a path tracer, is permanently con-
fined to a single thread, the scheduler cannot combine requests over
a larger pool of threads than those in a single group of 32 threads.
If, for example, each path wishes to evaluate a different material
next, the scheduler has no other choice but to execute them sequen-
tially with only one active thread at a time. However, as noted by
Parker et al. [2010], the OptiX execution model does not prescribe
an execution order of individual tasks or between pieces of code
in different tasks, and it could therefore be implemented using a
streaming approach with a similar rewrite pass that was used for
generating the megakernel.

Van Antwerpen [2011] describes methods for efficient GPU execu-
tion of various light transport algorithms, including standard path
tracing [Kajiya 1986], bi-directional path tracing [Lafortune and
Willems 1993; Veach and Guibas 1994] and primary sample-space
Metropolis light transport [Kelemen et al. 2002]. Similar to our
work, paths are extended one segment at a time, and individual
streams for paths to be extended and paths to be restarted are formed
through stream compaction. In the more complex light transport al-
gorithms, the connections between path vertices are evaluated in
parallel, avoiding the control flow divergence arising from some
paths having to evaluate more connections than others. In contrast
to our work, the efficient handling of materials is explicitly left out
of scope.

Path regeneration was first introduced by Novák et al. [2010],
and further examined with the addition of stream compaction by

Wald [2011], who concluded that terminated threads in a warp incur
no major performance penalties due to the remaining threads exe-
cuting faster. Efficient handling of materials was not considered,
and only simple materials were used in the tests. Our results indi-
cate that—at least with more complex materials—the compaction
of work can have substantial performance benefits.

Hoberock et al. [2009] use stream compaction before material eval-
uation in order to sort the requests according to material type, and
examine various scheduling heuristics for executing the material
code. Splitting distinct materials into separate kernels, or separating
the ray cast kernels from the rest of the path tracer is not discussed.
Due to the design, performance benefits are reported to diminish as
the number of materials in the scene increases. In our formulation,
individual materials are separated to their own kernels, and com-
paction is performed implicitly through queues, making our perfor-
mance practically independent of the number of materials as long
as enough rays hit each material to allow efficient bulk execution.

Performing fast ray casts on GPU, and constructing efficient ac-
celeration hierarchies for this purpose, have been studied more ex-
tensively than the execution of full light transport algorithms, but
these topics are both outside the scope of our paper. Our path tracer
utilizes the ray cast kernels of Aila et al. [2009; 2012] unmodi-
fied, and the acceleration hierarchies are built using the SBVH al-
gorithm [Stich et al. 2009].

3 Complex Materials

The materials commonly used in production rendering are com-
posed of multiple BSDF layers. The purpose of the material code,
generated by the artist either programmatically or through tools, is
to output a stack of BSDFs when given a surface point. The pos-
sible BSDFs are supplied by the underlying renderer, and typically
cannot be directly modified. This ensures that the renderer is able
to evaluate extension directions, light connection weights, sampling
probabilities, etc., as required by the light transport algorithm used.

While the individual BSDFs are generally not overly complicated to
evaluate, the process of producing the BSDF stack can be arbitrarily
expensive. Common operations in the material code include texture
coordinate calculations, texture evaluations, procedural noise eval-
uations, or even ray marching in a mesostructure.

Figure 1 shows a closeup rendering of a relatively simple four-layer
car paint material derived from one contained in Bunkspeed, a com-
mercial rendering suite. The bottom layer is a Fresnel-weighted
diffuse layer where the albedo depends on the angles of incoming
and outgoing rays, producing a reddish tint at grazing angles. On
top of the base layer there are two flake layers with procedurally
generated weights and normals. The BSDF of the flakes is a stan-
dard Blinn-Phong BSDF with proper normalization to ensure en-
ergy conservation. The top layer is a Fresnel-weighted coat layer
with mirror BSDF.

A major part of code related to this material is the evaluation of
the procedural noise functions for the flake layers. Two noise eval-
uations are required per layer: the first noise perturbs the given
surface position slightly, and this perturbed position is then quan-
tized and used as an input to the second noise evaluation to obtain
flake weight and normal. To produce two flake layers, four noise
evaluations are therefore required in total. The proprietary noise
evaluation function consists of 80 lines of C++ code compiling to
477 assembly instructions on an NVIDIA Kepler GPU. When com-
bining the construction of the BSDF stack, evaluating the resulting
BSDFs, performing importance sampling, etc., the total amount of
code needed for evaluating the material amounts to approximately
4200 assembly instructions.



Figure 1: A closeup of a four-layer car paint material with proce-
dural glossy flakes, rendered using our path tracer. See Section 3
for details.

It should be noted that four noise evaluations is a relatively mod-
est number compared to multi-octave gradient noise required in,
e.g., procedural stone materials. Also, further layers for dirt, de-
cals, etc. could be added on top of the car paint, each with their
own BSDFs. The takeaway from this example is that material eval-
uations can be very expensive compared to other work done during
rendering, and hence executing them efficiently is highly impor-
tant. For reference, casting a path extension ray in the conference
room scene (Figure 3, right) executes merely 2000–3000 assembly
instructions.

4 Wavefront Path Tracing

In order to avoid a lengthy discussion of preliminaries, we assume
basic knowledge of the structure of a modern path tracer. Many
publicly available implementations exist, including PBRT [Pharr
and Humphreys 2010], Mitsuba [Jakob 2010], and Embree [Ernst
and Woop 2011]. We begin by discussing some of the specifics
of our path tracer and in Section 4.1 analyze the weaknesses of
the megakernel variant. Our wavefront formulation is described in
Section 4.2, followed by optimizations and implementation details
related to memory layout of path state and queue management.

In our path tracer, light sources can be either directly sampled (e.g.,
area lights or distant angular light sources like the sun), or not (e.g.,
“bland” environment maps, extremely large area lights), as spec-
ified in the scene data. A light sample is generated out of the
directly sampled light sources, and a shadow ray is cast between
the path vertex and light sample. Multiple importance sampling
(MIS) [Veach and Guibas 1995] with the power heuristic is used
for calculating the weights of the extended path and the explicit
light connection, which requires knowing the probability density of
the light sampler at the extension ray direction, and vice versa, in
addition to the usual sampling probabilities.

Russian roulette is employed for avoiding arbitrarily long paths.
In our tests, the roulette starts after eight path segments, and the

continuation probability is set to path throughput clamped to 0.95,
as in the Mitsuba renderer [Jakob 2010].

The material evaluator produces the following outputs when given
a surface point, outgoing direction (towards the camera), and light
sample direction:

• importance sampled incoming direction,
• value of the importance sampling pdf,
• throughput between incoming and outgoing directions,
• throughput between light sample direction and outgoing di-

rection,
• probability of producing the light sample direction when sam-

pling incoming direction (for MIS), and
• medium identifier in the incoming direction.

For generating low-discrepancy quasirandom numbers needed in
the samplers, we use Sobol sequences [Joe and Kuo 2008] for the
first 32 dimensions, and after that revert to purely random numbers
generated by hashing together pixel index, path index, and dimen-
sion. The Sobol sequences for the first 32 dimensions are precom-
puted on the CPU and shared between all pixels in the image. In
addition, each pixel has an individual randomly generated scram-
ble mask for each Sobol dimension that is XORed together with the
Sobol sequence value, ensuring that each pixel’s paths are well dis-
tributed in the path space but uncorrelated with other pixels. Gen-
erating a quasirandom number on the GPU therefore involves only
two array lookups, one from the Sobol sequence buffer and one
from the scramble value buffer, and XORing these together. Be-
cause the Sobol sequences are shared between pixels, the CPU only
has to evaluate a new index in each of the 32 Sobol dimensions be-
tween every N paths, where N is the number of pixels in the image,
making this cost negligible.

4.1 Analysis of a Megakernel Path Tracer

Our baseline implementation is a traditional megakernel path tracer
that serves both as a correctness reference and as a performance
comparison point. The megakernel always processes a batch of
paths to completion, and includes path generation, light sampling,
ray casters for both extension rays and shadow rays, all material
evaluation code, and general path tracing logic. Path state is kept in
local variables at all times.

There are three main points where control flow divergence occurs.
The first and most obvious is that paths may terminate at different
lengths, and terminated paths leave threads idling until all threads
in the 32-wide warp have been terminated. This can be alleviated
by dynamically regenerating paths in the place of terminated ones.
Path regeneration is not without costs, however. Initializing path
state and generating the camera ray are not completely negligible
pieces of code, and if regeneration is done too often, these are run
at low thread utilization. More importantly, path regeneration de-
creases the coherence in the paths being processed by neighboring
threads. Some 1–5% improvement was obtained by regenerating
paths whenever more than half of the threads in a warp are idling,
and this optimization is used in the benchmarks.

The second major control flow divergence occurs at the material
evaluation. When paths in a warp hit different materials, the execu-
tion is serialized over all materials involved. According to our tests,
this is the main source of performance loss in scenes with multiple
complex materials.

The third source of divergence is a little subtler. For materials where
the composite BSDF (comprising all layers in the BSDF stack) is
discrete, i.e., consists solely of Dirac functionals, it makes no sense
to cast the shadow ray to the light sample because the throughput
between light sample direction and outgoing direction is always



zero. This happens only for materials such as glass and mirror,
but in scenes with many such materials the decrease in the number
of required shadow rays may be substantial.

Another drawback of the megakernel formulation is the high regis-
ter usage necessitated by hot spots in the material code where many
registers are consumed in, e.g., noise evaluations and math in the
BSDF evaluations. This decreases the number of threads that can
remain resident in the GPU, and thereby hurts the latency hiding ca-
pability. Ray casts suffer from this especially badly, as they perform
relatively many memory accesses compared to math operations.

Finally, the instruction caches on a GPU, while being adequate for
moderately sized or tightly looping kernels such as ray casts, can-
not accommodate the entire megakernel. Because the instruction
caches are shared among all warps running in the same streaming
multiprocessor (SM), a highly divergent, large kernel that executes
different parts of code in different warps is likely to overrun the
cache.

4.2 Wavefront Formulation

Our wavefront path tracer formulation is based on keeping a pool
of 1M (= 220) paths alive at all times. On each iteration, every
path is advanced by one segment, and if a path is terminated, it is
regenerated during the same iteration. Path state is stored in global
memory on the GPU board (DRAM), and consumes 212 bytes per
path, including extension and shadow rays and space for the results
of ray casts. The total path state therefore consumes 212 MB of
memory. If higher memory usage is allowed, a slight performance
increase can be obtained by enlarging the pool size (∼5% when
going from 1M to 8M paths consuming 1.7 GB). However, as a
high memory consumption is usually undesirable, all of our tests
are run with the aforementioned pool size of 1M paths.

The computation is divided into three stages: logic stage, material
stage, and ray cast stage. We chose not to split the light sampling
and evaluation into a separate stage, as light sources that are com-
plex enough to warrant having an individual stage are not as com-
mon as complex materials. However, should the need arise, such
separation would be easy to carry out. Each stage consists of one
or multiple individual kernels. Figure 2 illustrates the design.

Communication between stages is carried out through the path state
stored in global memory, and queues that are similarly located in
global memory. Each kernel that is not executed for all paths in the
pool has an associated queue that is filled with requests by the pre-
ceding stage. The logic kernel, comprising the first stage, does not
require a queue because it always operates on all paths in the pool.
The queues are of fixed maximum size and they are preallocated in
GPU memory. The memory consumption of each queue is 4 MB.

Logic stage The first stage contains a single kernel, the logic
kernel, whose task is to advance the path by one segment. Material
evaluations and ray casts related to the previous segment have been
performed during the previous iteration by the subsequent stages. In
short, the logic kernel performs all tasks required for path tracing
besides the material evaluations and ray casts. These include:

• calculating MIS weights for light and extension segments,
• updating throughput of extended path,
• accumulating light sample contribution in the path radiance if

the shadow ray was not blocked,
• determining if path should be terminated, due to

– extension ray leaving the scene,
– path throughput falling to zero, or
– Russian roulette,

• for a terminated path, accumulating pixel value,

Queue Queue 

Queue Queue Queue 

Extension ray cast Shadow ray cast 

Logic 

Material 1 Material n New path 

Figure 2: The design of our wavefront path tracer. Each green
rectangle represents an individual kernel, and the arrows indicate
queue writes performed by kernels. See Section 4.2 for details.

• producing a light sample for the next path segment,
• determining material at extension ray hit point, and
• placing a material evaluation request for the following stage.

As illustrated in Figure 2, we treat the generation of a new path in
the same fashion as evaluating a material. This is a natural place for
this operation, because as for materials, we want to cast an exten-
sion ray (the camera ray) right afterwards, and cannot perform any
other path tracing logic before this ray cast has been completed.

Material stage After the logic stage, each path in the pool is ei-
ther terminated or needs to evaluate the material at extension ray hit
point. For terminated paths, the logic kernel has placed a request
into the queue of the new path kernel that initializes path state and
generates a camera ray. This camera ray is placed into the extension
ray cast queue by the new path kernel. For non-terminated paths,
we have multiple material kernels whose responsibilities were listed
in Section 4.

Each material present in the scene is assigned to one of the material
kernels. In a megakernel-like assignment, all materials would go
into the same kernel that chooses the relevant piece of code using
a switch-case statement. In the opposite extreme, every material
could have its own kernel in this stage. The former option has the
control flow divergence problem that we are trying to avoid, so this
is clearly not viable. The latter option has overheads with materials
that are cheap to evaluate, because kernel launches and managing
multiple queues have nonzero costs. In practice, we place each
“expensive” material into its own material kernel, and combine the
“simple” materials into one kernel. This choice is currently done
by hand, but automated assigment could be done, e.g., based on the
amount of code in the individual material evaluators. It is not ob-
vious that this is the best strategy, and optimizing the assignment
of materials into kernels is an interesting open problem requiring
more detailed analysis of the costs associated with control flow di-
vergence versus kernel switching.

The kernels in the material stage place ray cast requests for the fol-
lowing ray cast stage. The new path kernel always generates an ex-
tension ray but never a shadow ray. In the common case, materials
generate both an extension ray and a shadow ray, but some materi-
als such as mirrors and dielectrics may choose not to generate the
shadow ray, as mentioned above. It is also possible that extension
ray generation fails (e.g., glossy reflection direction falling below
horizon), in which case extension ray is not generated and the path
is flagged for termination by setting its throughput to zero.

Ray cast stage In this stage, the collected extension and shadow
rays are cast using the ray cast kernels from Aila et al. [2009; 2012].



CITY CONFERENCE

Figure 3: Two of the test scenes used in evaluating the performance of the wavefront path tracer.

The kernels place results into result buffers at indices corresponding
to the requests in the input buffers. Therefore, the path state has to
record the indices in the ray buffers in order to enable fetching the
results in the logic stage.

4.3 Memory Layout

The main drawback of the wavefront formulation compared to the
megakernel is that path state has to be kept in memory instead of
local registers. However, we argue that with a suitable memory
layout this is not a serious problem.

The majority of the path state is accessed in the logic kernel that
always operates on all paths. Therefore, the threads in a warp in the
logic kernel operate on paths with consecutive indices in the pool.
By employing a structure-of-arrays (SOA) memory layout, each ac-
cess to a path state variable in the logic kernel results in a contigu-
ous read/write of 32 32-bit memory words, aligned to a 1024-bit
boundary. The GPU memory architecture is extremely efficient for
these kinds of memory accesses. In the other kernels, the threads do
not necessarily operate on consecutive paths, but memory locality
is still greatly improved by the SOA layout.

When rendering Figure 1, the SOA memory layout provides a to-
tal speedup of 80% over the simpler array-of-structures (AOS) lay-
out. The logic kernel speedup is 147%, new path kernel speedup
is a whopping 790% (presumably due to high number of memory
writes), and material kernel speedup is 68%. The ray cast time is
not affected by the memory layout, as the ray cast kernels do not
access path state.

4.4 Queues

By producing compact queues of requests for the material and ray
cast stages, we ensure that each launched kernel always has useful
work to perform on all threads of a warp. Our queues are simple
preallocated global memory buffers sized so that they can contain
indices of every path in the pool. Each queue has an item counter
in global memory that is increased atomically when writing to the
queue. Clearing a queue is achieved by setting the item counter to
zero.

At queue writes, it would be possible for each thread in a warp to

individually perform the atomic increment and the memory write,
but this has two drawbacks. First, the individual atomics are not
coalesced, so increments to the same counter are serialized which
hurts performance. Second, the individual atomics from different
warps become intermixed in their execution order. While this does
not affect the correctness of the results, it results in decreased co-
herence. For example, if the threads in a logic kernel warp all have
paths hitting the same material, placing each of them individually in
the corresponding material queue does not ensure that they end up
in consecutive queue entries, as other warps can push to the queue
between them.

To alleviate this, we coalesce the atomic operations programmati-
cally within each warp prior to performing the atomic operations.
This can be done efficiently using warp-wide ballot operations
where each thread sets a bit in a mask based on a predicate, and
this mask is communicated to every thread in the warp in one cy-
cle. The speedup provided by atomic coalescing is 40% in the total
rendering speed of Figure 1. The logic kernel speedup is 75%, new
path kernel speedup is 240%, and material kernel speedup is 35%.
The effect of improved coherence is witnessed by the speedup of
ray cast kernels by 32%, which can be attributed entirely to im-
proved ray coherence.

5 Results

We analyze the performance of the wavefront path tracer in three
test scenes. Real-world test data is hard to integrate to an experi-
mental renderer, so we have attempted to construct scenes and ma-
terials with workloads that could resemble actual production ren-
dering tasks. Instead of judging the materials by their looks, we
wish to focus our attention to their composition, detailed below.

The simplest test scene, CARPAINT (Figure 1), contains a geomet-
rically simple object with the four-layer car paint material (Sec-
tion 3), illuminated by an HDR environment map. This scene is
included in order to illustrate that the overheads of storing the path
state in GPU memory do not outweigh the benefits of having spe-
cialized kernels even in cases where just a single material is present
in the scene.

The second test scene, CITY (Figure 3, left), is of moderate geomet-
ric complexity (879K triangles) and has three complex materials.



The asphalt is made of repurposed car paint material with adjusted
flake sizes and colors. The sidewalk is a diffuse material with a tiled
texture. We have added procedural noise-based texture displace-
ment in order to make the appearance of each tile different. Finally,
the windows are tinted mirrors with low-frequency noise added to
normals, producing the wobbly look caused by slight nonplanarity
of physical glass panes. The rest of the materials are simple diffuse
or diffuse+glossy surfaces with optional textures. The scene is illu-
minated by a HDR environment map of the sky without sun, and an
angular distant light source representing the sun.

The third test scene, CONFERENCE (Figure 3, right) has 283K trian-
gles and also contains three expensive materials. The yellow chairs
are made of the four-layer car paint material, and the floor features
a procedural Voronoi cell approximation that controls the reflective
coating layer. The base layer also switches between two diffuse
colors based on single-octave procedural noise. The Mandelbrot
fractals on the wall are calculated procedurally, acting as a proxy
for a complex iterative material evaluator. A more realistic situa-
tion where such iteration might be necessary is, e.g, ray marching
in a mesosurface for furry or displaced surfaces. The rest of the
materials are simple dielectrics (table), or two-layer diffuse+glossy
materials. The scene is illuminated by the two quadrilateral area
light sources on the ceiling.

Our test images are rendered in 1024×1024 (CARPAINT) and
1024×768 resolution (CITY, CONFERENCE) on an NVIDIA Tesla
K20 board containing a GK110 Kepler GPU and 5 GB of memory.
For performance measurements, the wavefront path tracer was run
until the execution time had stabilized due to path mixture reach-
ing a stationary distribution—in the beginning, the performance is
higher due to startup coherence. The megakernel batch size was
set to 1M paths, and path regeneration was enabled as it yielded a
small performance benefit. Both path tracer variants contain essen-
tially the same code, and the differences in performance are only
due to the different organization of the computation.

Table 1 shows the performance of the baseline megakernel and our
wavefront path tracer. Notably, even in the otherwise very simple
CARPAINT scene, we obtain a 36% speedup by employing sepa-
rate logic, new path, material, and ray cast kernels. The overhead
of storing the path state in GPU memory is more than compen-
sated for by the faster ray casts enabled by running the ray cast
kernels with low register counts and hence better latency hiding
capability, while the entire ray cast code fits comfortably in the in-
struction caches. For the other two test scenes with several materi-
als, our speedups are even higher. Especially in the CONFERENCE
scene, the traditional megakernel suffers greatly from the control
flow divergence in the material evaluation phase, exacerbated by
highly variable evaluation costs of different materials. Analysis
with NVIDIA Nsight profiler reveals that in this scene the thread
utilization of the megakernel is only 23%, whereas the wavefront
variant has 53% overall thread utilization (60% in logic, 99% in
new path generation, 71% in materials, lowered by variable itera-
tion count in Mandelbrot shader, and 35% in ray casts). The ray
cast kernel utilization is lower than the numbers reported by Aila
and Laine [2009] for two reasons. First, our rays are not sorted in
any fashion, whereas in the previous work they were assigned to
threads in a Morton-sorted order. Second, the rays produced dur-
ing path tracing are even less coherent than the first-bounce diffuse
interreflection rays used in the previous measurements.

Table 2 shows the execution time breakdown for the wavefront
path tracer in each of the test scenes. It is apparent that the ray
casts still constitute a major portion of the rendering time: 44% in
CARPAINT, 56% in CITY, and 49% in CONFERENCE. However,
in every scene approximately half of the overall rendering time is
spent in path tracing related calculations and material evaluations,

scene #tris performance (Mpaths/s) speedupmegakernel wavefront
CARPAINT 9.5K 42.99 58.38 36%
CITY 879K 5.41 9.70 79%
CONFERENCE 283K 2.71 8.71 221%

Table 1: Path tracing performance of the megakernel path tracer
and our wavefront path tracer, measured in millions of completed
paths per second.

scene logic new path materials ray cast
CARPAINT 2.40 0.86 2.31 4.31
CITY 3.42 0.86 5.47 12.53
CONFERENCE 3.01 0.79 6.37 9.62

Table 2: Execution time breakdown for one iteration (1M path seg-
ments) of the wavefront path tracer. All timings are in milliseconds.

validating the concern that fast ray casts do not alone ensure good
performance. The time spent in ray casts is largely unaffected by
the materials in the scene, and conversely, the material evaluation
time is independent on the geometric complexity of the scene. As
the materials in the scenes are arguably still not of real-world com-
plexity, we can expect the relative cost of materials to increase, fur-
ther stressing the importance of their efficient evaluation. Another
interesting finding is the relatively high cost of new path genera-
tion compared to other path tracing logic, which favors separating
it into a separate kernel for compact execution so that all threads
can perform useful work.

6 Conclusions and Future Work

Our results show that decomposing a path tracer into multiple spe-
cialized kernels is a fruitful strategy for executing it on a GPU.
While there are overheads associated with storing path data in
memory between kernel launches, management of the queues, and
launching the kernels, these are well outweighed by the benefits.
Although all of our tests were run on NVIDIA hardware, we expect
similar gains to be achievable on other vendors’ GPUs as well due
to architectural similarities.

Following the work of van Antwerpen [2011], augmenting more
complex rendering algorithms such as bi-directional path trac-
ing [Lafortune and Willems 1993; Veach and Guibas 1994] and
Metropolis light transport [Veach and Guibas 1997; Kelemen et al.
2002] with a multikernel material evaluation stage is an interest-
ing avenue for future research. In some predictive rendering tasks,
the light sources may also be very complex (e.g., [Kniep et al.
2009]), and a similar splitting into separate evaluation kernels might
be warranted. Monte Carlo rendering of participating media (see,
e.g., [Raab et al. 2008]) is another case where the execution, con-
sisting of short steps in a possibly separate data structure, differs
considerably from the rest of the computation, suggesting that a
specialized volume marching kernel would be advantageous.

On a more general level, our results provide further validation to the
notion that GPU programs should be approached differently from
their CPU counterparts, where monolithic code has always been
the norm. In the case of path tracing, finding a natural decom-
position could be based on the easily identifiable pain points that
clash with the GPU execution model, and this general approach is
equally applicable to other application domains as well. Similar
issues with control flow divergence and variable execution charac-
teristics are likely to be found in any larger-scale program, and we
expect our analysis to give researchers as well as production pro-



grammers valuable insights on how to deal with them and utilize
more of the computational power offered by the GPUs.

Interestingly, programming CPUs as SIMT machines has recently
gained traction, partially thanks to the release of Intel’s ispc com-
piler [Pharr and Mark 2012] that allows easy parallelization of
scalar code over multiple SIMD lanes. CPU programs written this
way suffer from control flow divergence just like GPU programs do,
albeit perhaps to a lesser degree due to narrower SIMD. Using our
techniques for improving the execution coherence should therefore
be useful in this regime as well.

Acknowledgments

We thank Carsten Wächter and Matthias Raab for illuminating dis-
cussions about materials used in professional production render-
ing. Original CONFERENCE scene geometry by Anat Grynberg and
Greg Ward.

References

AILA, T., AND LAINE, S. 2009. Understanding the efficiency of
ray traversal on GPUs. In Proc. High Performance Graphics,
145–149.

AILA, T., LAINE, S., AND KARRAS, T. 2012. Understanding the
efficiency of ray traversal on GPUs – Kepler and Fermi adden-
dum. Tech. Rep. NVR-2012-02, NVIDIA.

ERNST, M., AND WOOP, S., 2011. Embree: Photo-realistic ray
tracing kernels. White paper, Intel.

HOBEROCK, J., LU, V., JIA, Y., AND HART, J. C. 2009. Stream
compaction for deferred shading. In Proc. High Performance
Graphics, 173–180.

JAKOB, W., 2010. Mitsuba renderer. http://www.mitsuba-
renderer.org.

JOE, S., AND KUO, F. Y. 2008. Constructing Sobol sequences
with better two-dimensional projections. SIAM J. Sci. Comput.
30, 2635–2654.

KAJIYA, J. T. 1986. The rendering equation. In Proc. ACM SIG-
GRAPH 86, 143–150.

KELEMEN, C., SZIRMAY-KALOS, L., ANTAL, G., AND
CSONKA, F. 2002. A simple and robust mutation strategy for
the Metropolis light transport algorithm. Comput. Graph. Forum
21, 3, 531–540.

KNIEP, S., HÄRING, S., AND MAGNOR, M. 2009. Efficient and
accurate rendering of complex light sources. Comput. Graph.
Forum 28, 4, 1073–1081.

LAFORTUNE, E. P., AND WILLEMS, Y. D. 1993. Bi-directional
path tracing. In Proc. Compugraphics, 145–153.

NOVÁK, J., HAVRAN, V., AND DASCHBACHER, C. 2010. Path
regeneration for interactive path tracing. In Eurographics 2007,
short papers, 61–64.

PARKER, S. G., BIGLER, J., DIETRICH, A., FRIEDRICH, H.,
HOBEROCK, J., LUEBKE, D., MCALLISTER, D., MCGUIRE,
M., MORLEY, K., ROBISON, A., AND STICH, M. 2010.
OptiX: A general purpose ray tracing engine. ACM Trans.
Graph. 29, 4, 66:1–66:13.

PHARR, M., AND HUMPHREYS, G. 2010. Physically Based Ren-
dering, 2nd ed. Morgan Kaufmann.

PHARR, M., AND MARK, W. 2012. ispc: A SPMD compiler
for high-performance CPU programming. In Proc. InPar 2012,
1–13.

PURCELL, T. J., BUCK, I., MARK, W. R., AND HANRAHAN, P.
2002. Ray tracing on programmable graphics hardware. ACM
Trans. Graph. 21, 3, 703–712.

RAAB, M., SEIBERT, D., AND KELLER, A. 2008. Unbiased
global illumination with participating media. In Monte Carlo
and Quasi-Monte Carlo Methods 2006. 591–605.

ROBISON, A. 2009. Hot3D talk: Scheduling in NVIRT.
HPG ’09, http://www.highperformancegraphics.org/previous/
www 2009/presentations/nvidia-rt.pdf.

STICH, M., FRIEDRICH, H., AND DIETRICH, A. 2009. Spatial
splits in bounding volume hierarchies. In Proc. High Perfor-
mance Graphics, 7–13.

VAN ANTWERPEN, D. 2011. Improving SIMD efficiency for par-
allel Monte Carlo light transport on the GPU. In Proc. High
Performance Graphics, 41–50.

VEACH, E., AND GUIBAS, L. 1994. Bidirectional estimators
for light transport. In Proc. Eurographics Rendering Workshop,
147–162.

VEACH, E., AND GUIBAS, L. J. 1995. Optimally combining sam-
pling techniques for Monte Carlo rendering. In Proc. ACM SIG-
GRAPH 95, 419–428.

VEACH, E., AND GUIBAS, L. J. 1997. Metropolis light transport.
In Proc. ACM SIGGRAPH 97, 65–76.

WALD, I. 2011. Active thread compaction for GPU path tracing.
In Proc. High Performance Graphics, 51–58.


