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ABSTRACT
We present a real-time deep learning framework for video-based
facial performance capture—the dense 3D tracking of an actor’s
face given a monocular video. Our pipeline begins with accurately
capturing a subject using a high-end production facial capture
pipeline based on multi-view stereo tracking and artist-enhanced
animations. With 5–10 minutes of captured footage, we train a
convolutional neural network to produce high-quality output, in-
cluding self-occluded regions, from a monocular video sequence
of that subject. Since this 3D facial performance capture is fully
automated, our system can drastically reduce the amount of la-
bor involved in the development of modern narrative-driven video
games or films involving realistic digital doubles of actors and po-
tentially hours of animated dialogue per character. We compare our
results with several state-of-the-art monocular real-time facial cap-
ture techniques and demonstrate compelling animation inference
in challenging areas such as eyes and lips.
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Figure 1: Our deep learning-based facial performance cap-
ture framework is divided into a training and inference
stage. The goal of our system is to reduce the amount of
footage that needs to be processed using labor-intensive
production-level pipelines.

1 INTRODUCTION
The use of visually compelling digital doubles of human actors is
a key component for increasing realism in any modern narrative-
driven video game. Facial performance capture poses many chal-
lenges in computer animation and due to a human’s innate sensitiv-
ity to the slightest facial cues, it is difficult to surpass the uncanny
valley, where otherwise believable renderings of a character appear
lifeless or unnatural.

Despite dramatic advancements in automated facial performance
capture systems and their wide deployment for scalable production,
it is still not possible to obtain a perfect tracking for highly complex
expressions, especially in challenging but critical areas such as lips
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and eye regions. In most cases, manual clean-up and corrections by
skilled artists are necessary to ensure high-quality output that is free
from artifacts and noise. Conventional facial animation pipelines
can easily result in drastic costs, especially in settings such as video
game production where hours of footage may need to be processed.

In this paper, we introduce a deep learning framework for real-
time and production-quality facial performance capture. Our goal is
not to fully eliminate the need for manual work, but to significantly
reduce the extent to which it is required. We apply an offline, multi-
view stereo capture pipeline with manual clean-up to a small subset
of the input video footage, and use it to generate enough data to
train a deep neural network. The trained network can then be used
to automatically process the remaining video footage at rates as
fast as 870 fps, skipping the conventional labor-intensive capture
pipeline entirely.

Furthermore, we only require a single view as input during
runtime which makes our solution attractive for head cam-based
facial capture. Our approach is real-time and does not even need
sequential processing, so every frame can be processed indepen-
dently. Furthermore, we demonstrate qualitatively superior results
compared to state-of-the-art monocular real-time facial capture
solutions. Our pipeline is outlined in Figure 1.

1.1 Problem Statement
We assume that the input for the capture pipeline is multiple-view
videos of the actor’s head captured under controlled conditions
to generate training data for the neural network. The input to the
neural network at runtime is video from a single view. The posi-
tions of the cameras remain fixed, the lighting and background are
standardized, and the actor is to remain at approximately the same
position relative to the cameras throughout the recording. Naturally,
some amount of movement needs to be allowed, and we achieve
this through data augmentation during training (Section 4.1).

The output of the capture pipeline is the set of per-frame posi-
tions of facial mesh vertices, as illustrated in Figure 2. Other face
encodings such as blendshape weights or joint positions are in-
troduced in later stages of our pipeline, mainly for compression
and rendering purposes, but the primary capture output consists of
the positions of approximately 5000 animated vertices on a fixed-
topology facial mesh.

1.2 Offline Capture Pipeline
The training data used for the deep neural network was generated
using Remedy Entertainment’s in-house capture pipeline based on
a cutting edge commercial DI4D PRO system [Dimensional Imaging
2016] that employs nine video cameras.

First, an unstructured mesh with texture and optical flow data
is created from the images for each frame of an input video. A
fixed-topology template mesh is created prior to the capture work
by applying Agisoft [Photoscan 2014], a standard multi-view stereo
reconstruction software, on data from 26 DSLR cameras and two
cross polarized flashes. The mesh is then warped onto the unstruc-
tured scan of the first frame. The template mesh is tracked using
optical flow through the entire sequence. Possible artifacts are man-
ually fixed using the DI4DTrack software by a clean-up artist. The
position and orientation of the head are then stabilized using a few

Input video frame Output

Figure 2: Input for the conventional capture pipeline is a set
of nine images, whereas our network only uses a cropped
portion of the center camera image converted to grayscale.
Output of both the conventional capture pipeline and our
network consists of ∼5000 densely tracked 3D vertex posi-
tions for each frame.

key vertices of the tracking mesh. The system then outputs the
positions of each of the vertices on the fixed-topology template
mesh.

Additional automated deformations are later applied to the ver-
tices to fix remaining issues. For instance, the eyelids are deformed
to meet the eyeballs exactly and to slide slightly with motion of
the eyes. Also, opposite vertices of the lips are smoothly brought
together to improve lip contacts when needed. After animating
the eye directions the results are compressed for runtime use in
Remedy’s Northlight engine using 416 facial joints. Pose space de-
formation is used to augment the facial animation with detailed
wrinkle normal map blending. These ad-hoc deformations were not
applied in the training set.

2 RELATEDWORK
The automatic capture of facial performances has been an active
area of research for decades [Blanz and Vetter 1999; Mattheyses
and Verhelst 2015; Pughin and Lewis 2006; Williams 1990a], and
is widely used in game and movie production today. In this work
we are primarily interested in real-time methods that are able to
track the entire face, without relying on markers, and are based on
consumer hardware, ideally a single RGB video camera.

2.1 Production Facial Capture Systems
Classic high-quality facial capture methods for production settings
require markers [Bickel et al. 2008; Guenter et al. 1998; Williams
1990b] or other application specific hardware [Pighin and Lewis
2006]. Purely data-driven high-quality facial capture methods used
in a production setting still require complicated hardware and cam-
era setups [Alexander et al. 2009; Beeler et al. 2011; Bhat et al. 2013;
Borshukov et al. 2005; Fyffe et al. 2014; Vlasic et al. 2005; Weise
et al. 2009a; Zhang et al. 2004] and a considerable amount of com-
putation such as multi-view stereo or photometric reconstruction
of individual input frames [Beeler et al. 2011; Bradley et al. 2010;
Furukawa and Ponce 2009; Fyffe et al. 2011; Shi et al. 2014; Valgaerts
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et al. 2012] that often require carefully crafted 3D tracking model
[Alexander et al. 2009; Borshukov et al. 2005; Vlasic et al. 2005].
Many production setting facial performance capture techniques
require extensive manual post-processing as well.

Specialized techniques have also been proposed for various sub-
domains, including eyelids [Bermano et al. 2015], gaze direction
[Zhang et al. 2015], lips [Garrido et al. 2016], handling of occlusions
[Saito et al. 2016], and handling of extreme skin deformations [Wu
et al. 2016].

Our method is a “meta-algorithm” in the sense that it relies on
an existing technique for generating the training examples, and
then learns to mimic the host algorithm, producing further results
at a fraction of the cost. As opposed to the complex hardware setup,
heavy computational time, and extensive manual post-processing
involved in these production setting techniques, our method is
able to produce results with a single camera, reduced amounts of
manual labor, and at a rate of slightly more than 1 ms per frame
when images are processed in parallel. While we currently base our
system on a specific commercial solution, the same general idea
can be built on top of any facial capture technique taking video
inputs, ideally the highest-quality solution available.

2.2 Single-View Real-time Facial Animation
Real-time tracking from monocular RGB videos is typically based
either on detecting landmarks and using them to drive the facial
expressions [Cootes et al. 2001; Saragih et al. 2011; Tresadern et al.
2012] or on 3D head shape regression [Cao et al. 2015, 2014, 2013;
Hsieh et al. 2015a; Li et al. 2010; Olszewski et al. 2016; Thies et al.
2016; Weise et al. 2009b]. Of these methods, the regression approach
has delivered higher-fidelity results, and real time performance has
been demonstrated even on mobile devices [Weng et al. 2014]. The
early work on this area [Cao et al. 2013; Weng et al. 2014] require
an actor-specific training step, but later developments have relaxed
that requirement [Cao et al. 2014] and also extended the method to
smaller-scale features such as wrinkles [Cao et al. 2015; Ichim et al.
2015].

Most of these methods are targeting “in-the-wild" usage and thus
have to deal with varying lighting, occlusions, and unconstrained
head poses. Thus, these methods are typically lower quality in detail
and accuracy. These methods are also usually only able to infer low-
dimensional facial expressions—typically only a few blendshapes—
reliably. More problems also arise in appearance based methods
such as [Thies et al. 2016]. For example, relying on pixel constraints
makes it possible only to track visible regions, making it difficult
to reproduce regions with complex interactions such as the eyes
and lips accurately. Additionally, relying on appearance can lead
to suboptimal results if the PCA model does not accurately encode
the subject’s appearance such as in the case of facial hair.

In contrast, we constrain the setup considerably in favor of high-
fidelity results for one particular actor. In our setup, all of the
lighting and shading as well as gaze direction and head poses are
produced at runtime using higher-level procedural controls. Using
such a setup, unlike the other less constrained real-time regression-
based methods, our method is able obtain high quality results as
well as plausible inferences for the non-visible regions and other
difficult to track regions such as the lips and eyes.

Olszewski et al. [2016] use neural networks to regress eye and
mouth videos separately into blend shapeweights in a head-mounted
display setup. Their approach is closely related to ours with some
slight differences. First of all, their method considers the eye and
mouth separately while our method considers the whole face at
once. Also, they use blendshapes from FACS [Ekman and Friesen
1978] while our system produces vertex coordinates of the face
mesh based on a 160-dimensional PCA basis. Moreover, our system
can only process one user at a time without retraining while the
method of Olszewski et al. [2016] is capable of processing several
different identities. However, our method can ensure accurate face
tracking while theirs is only designed to track the face to drive a
target character.

2.3 Alternative Input Modalities
Alternatively, a host of techniques exists for audio-driven facial
animation [Brand 1999; Cohen and Massaro 1993; Edwards et al.
2016; Taylor et al. 2012], and while impressive results have been
demonstrated, these techniques are obviously not applicable to
non-vocal acting and also commonly require an animator to adjust
the correct emotional state. They continue to have important uses
as a lower-cost alternative, e.g., in in-game dialogue.

A lot of work has also been done for RGB-D sensors, such as
Microsoft Kinect Fusion, e.g., [Bouaziz et al. 2013; Hsieh et al. 2015b;
Li et al. 2013; Thies et al. 2015; Weise et al. 2011]. Recently Liu et
al. also described a method that relies on RGB-D and audio inputs
[Liu et al. 2015].

2.4 Convolutional Neural Networks (CNN)
We base our work on deep CNNs that have received significant
attention in the recent years, and proven particularly well suited
for large-scale image recognition tasks [Krizhevsky et al. 2012;
Simonyan and Zisserman 2014]. Modern CNNs employ various
techniques to reduce the training time and improve generalization
over novel input data, including data augmentation [Simard et al.
2003], dropout regularization [Srivastava et al. 2014], ReLU acti-
vation functions, i.e.,max(0, ·), and GPU acceleration [Krizhevsky
et al. 2012]. Furthermore, it has been shown that state-of-the-art
performance can be achieved with very simple network architec-
tures that consist of small 3×3-pixel convolutional layers [Simonyan
and Zisserman 2014] that employ strided output to reduce spatial
resolution throughout the network [Springenberg et al. 2014].

3 NETWORK ARCHITECTURE
Our input footage is divided into a number of shots, with each
shot typically consisting of 100–2000 frames at 30 FPS. Data for
each input frame consists of a 1200×1600 pixel image from each of
the nine cameras. As explained above, the output is the per-frame
vertex position for each of the ∼5000 facial mesh vertices.

As input for the network, we take the 1200×1600 video frame
from the central camera, crop it with a fixed rectangle so that
the face remains in the picture, and scale the remaining portion to
240×320 resolution. Furthermore, we convert the image to grayscale,
resulting in a total of 76800 scalars to be fed to the network. The
resolution may seem low, but numerous tests confirmed that in-
creasing it did not improve the results.



SCA ’17, July 28-30, 2017, Los Angeles, CA, USA Laine et al.

3.1 Convolutional Network
Our convolutional network is based on the all-convolutional ar-
chitecture [Springenberg et al. 2014] extended with two fully con-
nected layers to produce the full-resolution vertex data at output.
The input is a whitened version of the 240×320 grayscale image.
For whitening, we calculate the mean and variance over all pixels
in the training images, and bias and scale the input so that these
are normalized to zero and one, respectively.

Note that the same whitening coefficients, fixed at training time,
are used for all input images during training, validation, and pro-
duction use. If the whitening were done on a per-image or per-shot
basis, we would lose part of the benefits of the standardized lighting
environment. For example, variation in the color of the actor’s shirt
between shots would end up affecting the brightness of the face.
The layers of the network are listed in the table below.

Name Description
input Input 1 × 240 × 320 image
conv1a Conv 3 × 3, 1 → 64, stride 2 × 2, ReLU
conv1b Conv 3 × 3, 64 → 64, stride 1 × 1, ReLU
conv2a Conv 3 × 3, 64 → 96, stride 2 × 2, ReLU
conv2b Conv 3 × 3, 96 → 96, stride 1 × 1, ReLU
conv3a Conv 3 × 3, 96 → 144, stride 2 × 2, ReLU
conv3b Conv 3 × 3, 144 → 144, stride 1 × 1, ReLU
conv4a Conv 3 × 3, 144 → 216, stride 2 × 2, ReLU
conv4b Conv 3 × 3, 216 → 216, stride 1 × 1, ReLU
conv5a Conv 3 × 3, 216 → 324, stride 2 × 2, ReLU
conv5b Conv 3 × 3, 324 → 324, stride 1 × 1, ReLU
conv6a Conv 3 × 3, 324 → 486, stride 2 × 2, ReLU
conv6b Conv 3 × 3, 486 → 486, stride 1 × 1, ReLU
drop Dropout, p = 0.2
fc Fully connected 9720 → 160, linear activation
output Fully connected 160 → Nout, linear activation

The output layer is initialized by precomputing a PCA basis for
the output meshes based on the target meshes from the training
data. Allowing 160 basis vectors explains approximately 99.9% of the
variance seen in the meshes, which was considered to be sufficient.
If we fixed the weights of the output layer and did not train them,
that would effectively train the remainder of the network to output
the 160 PCA coefficients. However, we found that allowing the last
layer to be trainable as well improved the results. This would seem
to suggest that the optimization is able to find a slightly better
intermediate basis than the initial PCA basis.

4 TRAINING
For each actor, the training set consists of four parts, totaling approx-
imately 5–10 minutes of footage. The composition of the training
set is as follows.

Extreme Expressions. In order to capture the maximal extents
of the facial motion, a single range-of-motion shot is taken where
the actor goes through a pre-defined set of extreme expressions.
These include but are not limited to opening the mouth as wide
as possible, moving the jaw sideways and front as far as possible,
pursing the lips, and opening the eyes wide and forcing them shut.

FACS-Like Expressions. Unlike the range-of-motion shot that
contains exaggerated expressions, this set contains regular FACS-
like expressions such as squinting of the eyes or an expression of
disgust. These kind of expressions must be included in the training
set as otherwise the network would not be able to replicate them
in production use.

Pangrams. This set attempts to cover the set of possible facial
motions during normal speech for a given target language, in our
case English. The actor speaks one to three pangrams, which are
sentences that are designed to contain as many different phonemes
as possible, in several different emotional tones. A pangram fitting
the emotion would be optimal but in practice this is not always
feasible.

In-Character Material. This set leverages the fact that an ac-
tor’s performance of a character is often heavily biased in terms of
emotional and expressive range for various dramatic and narrative
reasons. This material is composed of the preliminary version of the
script, or it may be otherwise prepared for the training. Only the
shots that are deemed to support the different aspects of the char-
acter are selected so as to ensure that the trained network produces
output that stays in character even if the inference isn’t perfect or
if completely novel or out of character acting is encountered.

The training set is typically comprised of roughly 10% of range-
of-motion and expression shots, 30% of pangrams across emotional
states, and 60% of in-character performances of varying intensity
and scenario.

4.1 Data Augmentation
We perform several transformations to the input images during
training in order to make the network resistant to variations in
input data. These transformations are executed on CPU concur-
rently with network evaluation and training that occurs on the
GPU. Augmentation is not used when evaluating the validation loss
or when processing unseen input data in production use. Examples
of augmented input images are shown in Figure 3.

The main transformations are translation, rotation and zoom,
which account for the motion of the actor’s head during capture.
The magnitudes of these augmentations are set so that they cover
at least all of the variation expected in the input data. This kind of
image-based augmentation does not cover large-scale changes in
head pose, and thus our method does not tolerate that unless such
effects are present in the training data.

In addition to geometric transformations, we vary the brightness
and contrast of the input images during training, in order to account
for variations in lighting over the capture process. Our cameras pick
a slight periodic flicker from the 50 Hz LED lights in the capture
room, and it is possible that some of the bulbs degrade during the
capture period that may take place over several days or weeks.

4.2 Training Parameters
We train the network for 200 epochs using the Adam [Kingma
and Ba 2014] optimization algorithm with parameters set to values
recommended in the paper. The learning rate is ramped up using
a geometric progression during the first training epoch, and then
decreased according to 1/

√
t schedule. During the last 30 epochs

we ramp the learning rate down to zero using a smooth curve,
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Figure 3: Examples of augmented inputs presented to the
network during training. Top left image is the 240×320 crop
from the same input video frame as was shown in Figure 2,
and the remaining images are augmented variants of it.

and simultaneously ramp Adam β1 parameter from 0.9 to 0.5. The
ramp-up removes an occasional glitch where the network does not
start learning at all, and the ramp-down ensures that the network
converges to a local minimum. Minibatch size is set to 50, and each
epoch processes all training frames in randomized order. Weights
are initialized using the initialization scheme of He et al. [2015],
except for the last output layer which is initialized using a PCA
transformation matrix as explained in Section 3.1.

The strength of all augmentation transformations is ramped up
linearly during the first five training epochs, starting from zero.
This prevented a rare but annoying effect where the network fails
to start learning properly, and gets stuck at clearly sub-optimal
local minimum. The augmentation ramp-up process can be seen as
a form of curriculum learning [Bengio et al. 2009].

Our loss function is simply the mean square error between the
predicted vertex positions produced by the network and the target
vertex positions in the training data.

Our implementation is written in Python using Theano [Theano
Development Team 2016] and Lasagne [Dieleman et al. 2015]. On
a computer with a modern CPU and a NVIDIA Titan X GPU, the
training of one network with a typical training set containing
10000–18000 training frames (∼5–10 minutes at 30Hz) takes ap-
proximately 5–10 hours.

5 RESULTS
We tested the trained network using footage from a later session.
The lighting conditions and facial features exhibited in the training
set were carefully preserved. The inference was evaluated numer-
ically and perceptually in relation to a manually tracked ground
truth.

We will first evaluate our choices in the design and training
of our neural network, followed by examination of the numerical
results. We then turn to visual comparisons with recent monocular
real-time facial performance capture methods. Finally, we explore
the limitations of our pipeline.

The quality of the results can be best assessed from the accom-
panying video. In the video an interesting observation is that our
results are not only accurate but also perfectly stable temporally de-
spite the fact that we do not employ recurrent networks or smooth
the generated vertex positions temporally in any way. It is very
difficult for human operators to achieve similar temporal stability
as they inevitably vary in their work between sequences.

5.1 Network Architecture Evaluation
All results in this paper were computed using the architecture
described in Section 3.1. It should be noted that the quality of
the results is not overly sensitive to the exact composition of the
network. Changing the dimensions of the convolutional layers
or removing or adding the 1 × 1 stride convolution layers only
changed performance by a slight margin. The architecture described
in Section 3.1 was found to perform slightly better compared to
other all-convolutional architectures that could be trained in a
reasonable amount of time, so it was chosen for use in production.

In addition to using an all-convolutional neural network, we also
experimented with fully connected networks. When experimenting
with fully connected networks, we achieved the best results by
transforming the input images into 3000 PCA coefficients. The PCA
basis is pre-calculated based on the input frames from the training
set, and the chosen number of basis images captures approximately
99.9% of the variance in the data. The layers of the network are
listed in the table below.

Name Description
input Input 3000 image PCA coefficients
fc1 Fully connected 3000 → 2000, ReLU activation
drop1 Dropout, p = 0.2
fc2 Fully connected 2000 → 1000, tanh activation
drop2 Dropout, p = 0.2
fc3 Fully connected 1000 → 160, linear activation
output Fully connected 160 → Nout, linear activation

The position and the orientation of the head in the input images
varies, which in practice necessitates stabilizing the input images
prior to taking the PCA transformation. For this we used the facial
landmark detector of Kazemi and Sullivan [2014]. Rotation angle
and median line of the face were estimated from the landmark
points surrounding the eyes. Because these were found to shift
vertically during blinking of the eyes, the vertical position of the
face was determined from the landmark points on the nose. The
image was then rotated to a fixed orientation, and translated so that
the point midway between the eyes remained at a fixed position.

Even though the network may seem overly simplistic, similarly
to the all-convolutional architecture, we did not find a way to
improve the results by adding more layers or changing the widths
of the existing layers.We experimentedwith different regularization
schemes, but simply adding two dropout layers was found to yield
the best results. The output layer is initialized using a PCA basis
for the output meshes computed as in the convolutional network.

Ultimately, the only aspect in which the fully connected network
remained superior to the convolutional network was training time.
Whereas the convolutional network takes 8–10 hours to train in
a typical case, the fully connected network would converge in as
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Figure 4: Convergence of the convolutional network for
Character 1 during 200 training epochs. The effects of learn-
ing rate and β1 rampdown can be seen in the final 30 epochs.
This training run had 15173 training frames and 1806 vali-
dation frames and took 8 hours to finish.

little as one hour. Even though it was initially speculated that fast
training times could be beneficial in production use, it ended up not
mattering much as long as training could be completed overnight.

One disadvantage of using a fully connected network is that
stabilizing the input images for the fully connected network turned
out to be problematic because of residual motion that remained due
to inaccuracies in the facial landmark detection. This residual jitter
of input images sometimes caused spurious and highly distracting
motion of output vertices. We tried hardening the fully connected
network to this effect by applying a similar jitter to inputs during
training in order to present the same stabilized input image to the
network in slightly different positions, but this did not help.

We suspect that it may be too difficult for the fully connected
network to understand that slightly offset images should produce
the same result, perhaps partially due to the input PCA transform.
Nonetheless, the results with input PCA transform were better than
using the raw image as the input.

On the other hand, the convolutional network, when trained
with proper input augmentation (Section 4.1), is not sensitive to
the position and orientation of the actor’s head in the input images.
Hence the convolutional network carries an advantage in that no
image stabilization is required as a pre-process.

We see in Figures 4 and 5 that the fully connected network
often produced numerically better results than the convolutional
network, but visually the results were significantly worse as the
fully connected network appeared to generally attenuate the facial
motion. Even in individual shots where the fully connected network
produced a numerically clearly superior result, the facial motion
was judged to lack expressiveness and was not as temporally stable
compared to the results produced by the convolutional network.
We further discuss this general discrepancy between numerical and
visual quality below.

0
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1 200100
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M
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Figure 5: Convergence of the validation loss of the fully-
connected network. The training took approximately one
hour, and the training set was the same as for the convolu-
tional network. The dashed horizontal line shows the con-
verged validation loss of the convolutional network, and
we can see that with stabilized input images, the fully con-
nected network reaches slightly smaller loss than the all-
convolutional network. However, visually the results were
clearly inferior. Using non-stabilized input images yielded
much worse results both numerically and visually.

5.2 Training Process Evaluation
In Section 4.1 we described several data augmentations we per-
formed that made the network more resistant to variations in input
data and eliminated the need for stabilization as a pre-process for
our all-convolutional network. Additionally, we also tried augment-
ing the data by adding noise to the images and applying a variable
gamma correction factor to approximate varying skin glossiness.
However, both of these augmentations were found to be detrimen-
tal to learning. Similarly, small 2D perspective transformations—an
attempt to crudely mimic the non-linear effects of head rotations—
were not found to be beneficial.

5.3 Numerical Results
Figure 4 shows the convergence of the network for Character 1,
trained using 15173 input frames. The training set for Character 2
contained 10078 frames. As previously explained, our loss function
is the MSE between the network output and target positions from
the training/validation set. The vertex coordinates are measured
in centimeters in our data, so the final validation loss of 0.0028
corresponds to RMSE of 0.92 millimeters. With longer training the
training loss could be pushed arbitrarily close to zero, but this did
not improve the validation loss or the subjective quality of the
results.

Figure 7 illustrates the numerical accuracy of our trained network
on a selection of interesting frames in validation shots that were
not used in training. Note that the RMSE of the frames shown in
the figure are higher than average since the validation data mostly
consist of more neutral material than the frames shown in the
figure. Per-frame RMSE plot for the validation shots for Character 1
is shown in Figure 6.
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Figure 6: Per-frame RMSE in the first two validation shots of Character 1. Frame index advances from left to right. The orange
dots indicate frames used in the top four rows of Figure 7. These validation shots are included in the accompanying video.

We found that the neural networkwas very efficient in producing
consistent output even when there were variations in the input
data because of inaccuracies in the conventional capture pipeline.
In the first four rows of Figure 7, we can see that, especially in
the regions around the hairline and above the eyebrows, the target
data obtained from the conventional capture pipeline sometimes
contained systematic errors that the capture artists did not notice
and thus did not correct. Because a neural network only learns
the consistent features of the input-output mapping as long as
overfitting is avoided, our network output does not fluctuate in the
same way as the manual target positions do. In fact, visually it is
often not clear whether the manually tracked target positions or
the inferred positions are closer to the ground truth. We believe this
explains some of the numerical discrepancies between our output
and the validation data.

Given the inevitable variability in the manual work involved in
using the conventional capture pipeline, we could not hope that
our network would reach a numerically exact match with manually
prepared validation data. The goal of performance capture is to
generate believable facial motion, and therefore the perceptual qual-
ity of the results—as judged by professional artists—is ultimately
what determines whether a capture system is useful or not in our
production environment.

5.4 Comparison
We visually compare our method in Figure 8 to Thies et al. [2016]
and Cao et al. [2014], two state-of-the-art monocular real-time facial
performance capture methods that do not require a rig. Since the
comparison methods generalize to any identity and our method
assumes the identity of one user, in order to make the comparison
more fair, we use the method of Li et al. [2010] to fix the identity
mesh for the comparison methods and only track the expressions.
Visually our method appears to be more accurate than [Thies et al.
2016] and [Cao et al. 2014], but we note that they bear significant
advantages in that they do not require per-user calibration and
allow for less constrained head movements. We also note that if
we allowed the comparison methods to retrain for new identities
and restricted head movement in all their inputs, their accuracy

Method Cao et Thies et Our method Our method
al. [2014] al. [2016] (online) (batched)

Frames/s 28 28 287 870

Table 1: Throughput comparison with other facial perfor-
mance capture methods.

could be improved to more closely match our levels. An advantage
our method poses over the comparison methods is that it is capable
of inferring plausible animations for self-occluded or difficult to
track regions such as details surrounding the mouth and eyes. In a
production setting where we have resources to constrain the head
movement and perform per-user training and would like to capture
the user as accurately and plausibly as possible across all regions of
the head, our method is advantageous over other existing methods.

5.5 Performance
Our system runs comfortably in real-time. As seen in Table 1, we
achieve 287 frames per second when used online and up to 870
frames per second if batch processing is used offline with a batch
size of 200 frames. Meanwhile, other real-time methods are only
able to achieve 28 frames per second. This allows our system to
process a large amount of footage in a short amount of time.

5.6 Limitations
We have proposed a system that can achieve high levels of accu-
racy for facial performance capture while drastically reducing the
amount of manual work involved in a production setting. However,
we have observed several limitations in our system and suggest
future work we can explore.

Non-Optimal Loss Function. In validation shots for which nu-
merical quality results could be computed, the visual quality of the
network output did not always follow the value of the loss function.
For example, a shot with a low loss value might exhibit unnatural
movement of lips or eyes, whereas a shot with a higher loss value
may look more believable. This suggests that our current loss func-
tion does not get the optimal results possible from a deep neural
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Figure 7: A selection of frames from two validation shots. (a)
Crop of the original input image. (b) The target positions cre-
ated by capture artists using the existing capture pipeline at
Remedy Entertainment. (c) Our result inferred by the neu-
ral network based solely on the input image (a). (d) Differ-
ence between target and inferred positions. The RMSE is
calculated over the Euclidean distances between target and
inferred vertex positions with only the animated vertices
taken into account.

(a) Input (b) Cao et (c) Thies et (d) Our
video frame al. [2014] al. [2016] result

Figure 8:We compare ourmethod (d) with Thies et al. [2016]
(c) and Cao et al. [2014] (b) on various input images (a). We
see that our method is more accurate and able to better cap-
ture details around the difficult mouth and eye regions.

network, and it should be beneficial to design a more perceptually
oriented loss function for facial expressions similar in spirit of how
structural similarity metrics have been developed for comparing
images [Wang et al. 2004]. It seems clear that a better loss function
would result in a more capable network, as it would learn to focus
more on areas that require the highest precision.

Per-User Calibration. Despite our ability to capture details more
accurately than other methods, one strong limitation of our method
compared to other state-of-the-art monocular facial performance
capture methods is that we require performing a per-user calibra-
tion of retraining the network for each new identity. In the future,
we would like to further reduce the amount of manual labor in-
volved in our pipeline and create a system that can achieve the
same level of accuracy while also generalizing to all users.

6 CONCLUSION
We have presented a neural network based facial capture method
that has proven accurate enough to be applied in an upcoming game
production based on thorough pre-production testing while also
requiring much less labor than other current facial performance
capture pipelines used in game production. Another advantage our
method holds in the production setting is that building the dataset
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for the network enables tracking work to start any time, so pick-up
shoots and screenplay changes are much faster to deliver with high
quality.

We have evaluated our network architecture and training pipeline
against other network and pipeline variations, and we determined
the proposed architecture and augmentation methods to yield a
very good balance between optimal visual results and reasonable
training time for production purposes.

We have also shown our method to surpass other state-of-the-art
monocular real-time facial performance capture methods in our
ability to infer a plausible mesh around regions that are invisible or
difficult to track such as the area surrounding the eye and mouth.
However, our system has a significant drawback as we require
per-user calibration. The 5–10 minute dataset required for each
new identity for high-quality output typically means that the actor
needs an important enough role in the game to justify the cost.

Even though the convolutional networkmay seem like an opaque
building block, our approach retains all of the artistic freedom
because we output simple 3D point clouds that can be further edited
using standard tools, and compressed into standard character rigs.
We feel that many other aspects of the production pipelines of
modern games could benefit from similar, selective use of deep
learning for bypassing or accelerating manual processing steps that
have known but tedious or expensive solutions.

FutureWork. Future workmay include addressing the limitations
of our system mentioned earlier and developing a more accurate
pipeline that does not require per-user calibration. Additional work
will also focus on capturing datasets using helmet-mounted cam-
eras for true performance capture of the face and body simultane-
ously. Nevertheless, we have presented a system that has drastically
reduced the amount of manual work in high quality facial perfor-
mance capture, and our system represents an important step in the
direction of fully automated, high quality facial and body capture.
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