
Single-pass Parallel Prefix Scan with Decoupled Look-back

Duane Merrill

NVIDIA Corporation

dumerrill@nvidia.com

Michael Garland

NVIDIA Corporation

mgarland@nvidia.com

Abstract

We describe a work-efficient, communication-avoiding, single-
pass method for the parallel computation of prefix scan. When
consuming input from memory, our algorithm requires only ~2n
data movement: n inputs are read, n outputs are written. Our
method embodies a decoupled look-back strategy that performs
redundant work to dissociate local computation from the latencies
of global prefix propagation. Implemented by the CUB library of
parallel primitives for GPU architectures, the performance
throughput of our parallel prefix scan approaches that of copy
operations. Furthermore, the single-pass nature of our method
allows it to be adapted for (1) in-place compaction behavior, and
(2) in-situ global allocation within computations that
oversubscribe the processor.

1. Introduction

Parallel prefix scan is a fundamental parallel computing primitive.
Given a list of input elements and a binary reduction operator, a
prefix scan produces a corresponding output list where each
output is computed to be the reduction of the elements occurring
earlier in the input. A prefix sum connotes a prefix scan with the
addition operator, i.e., each output number is the sum of the
corresponding numbers occurring previously in the input list. An
inclusive scan indicates that the ith output reduction incorporates
the ith input element. An exclusive scan indicates the ith input is
not incorporated into the ith output reduction. Applications of
scan include adder design, linear recurrence and tridiagonal
solvers, parallel allocation and queuing, list compaction and
partitioning, segmented reduction, etc. For example, an exclusive
prefix sum across a list of allocation requirements [8,6,7,5,3,0,9]
produces a corresponding list of allocation offsets
[0,8,14,21,26,29,29].

In this report, we describe the decoupled-lookback method of
single-pass parallel prefix scan and its implementation within the
open-source CUB library of GPU parallel primitives [21]. For
highly parallel architectures, prefix sum is a scalable mechanism
for cooperative allocation within dynamic and irregular data
structures [4, 20]. Contemporary GPUs are at the leading edge of
the current trend of increased parallelism in computer
architecture, provisioning tens of thousands of data parallel
threads. As such, prefix scan plays an important role in many
GPU algorithms.

In modern computer systems, the performance and power
consumption of prefix scan is typically bound by the cost of data
movement: reading inputs and writing results to memory is
generally more expensive than computing the reduction
operations themselves. Therefore communication avoidance
(minimizing last-level data movement) is a practical design
objective for parallel prefix scan. The sequential prefix scan
algorithm requires only a single pass through the data to
accumulate and progressively output the running total. As such, it
incurs the optimal 2n data movement: n reads and n writes.

Contemporary GPU scan parallelization strategies such as
reduce-then-scan are typically memory-bound, but impose ~3n
global data movement [2, 16, 22]. Furthermore, they perform
two full passes over the input, which precludes them from serving
as in-situ global allocation mechanisms within computations that
oversubscribe the processor. Finally, these scan algorithms
cannot be modified for in-place compaction behavior (selection,
run-length-encoding, duplicate removal, etc.) because the
execution order of thread blocks within the output pass is
unconstrained. Separate storage is required for the compacted
output to prevent race conditions where inputs might otherwise be
overwritten before they can be read.

Alternatively, the chained-scan GPU parallelization [11, 27]
operates in a single pass, but is hindered by serial prefix
dependences between adjacent processors that prevent memory
I/O from fully saturating [27]. In comparison, our decoupled-
lookback algorithm elides these serial dependences at the expense
of bounded redundant computation. As a result, our prefix scan
computations (as well as adaptations for in-place compaction
behavior and in-situ allocation) are typically capable of saturating
memory bandwidth in a single pass.

2. Background

Parallel solutions to scan problems have been investigated for
decades. In fact, the earliest research predates the discipline of
Computer Science itself: scan circuits are fundamental to the
operation of fast adder hardware (e.g., carry-skip adder, carry-
select adders, and carry-lookahead adder) [8, 24]. As such, many
commonplace scan parallelizations are presented as recursively-
defined, acyclic dataflow networks in the circuit model [7, 26] of
parallel computation. In this model, prefix scan can be thought of
as a forest of reduction trees, one for each output. Network size is
reduced when reduction trees share intermediate partial sums. For
practical use in computer software, scan networks are typically
encoded as imperative algorithms in the PRAM model [13, 14].

The minimum circuit depth and size for a parallel scan
network are log2n steps and n-1 operators, respectively. However,
there are no known O(n) work-efficient networks having depth
log2n. Snir provides a lower-bound regarding depth+size
optimality (DSO) for parallel prefix networks: for a given network
of size s gates and depth d levels, d + s ≥ 2n – 2 [25]. His research

NVIDIA Technical Report NVR-2016-002, March 2016.

CUB v1.0.1, August 2013

(c) NVIDIA Corporation. All rights reserved.

This research was developed, in part, with funding from the Defense Advanced Research

Projects Agency (DARPA). The views, opinions, and/or findings contained in this

article/presentation are those of the author(s)/presenter(s) and should not be interpreted as

representing the official views or policies of the Department of Defense or the U.S.

Government.

2

suggests that as circuit depth is increasingly constrained, DSO
networks no longer exist and the size of the networks increases
rapidly.

Fig. 1 presents commonplace scan networks relevant to
contemporary prefix scan algorithms. Although the serial, or
chained scan, construction in Fig. 1a has maximal n-1 depth and
no concurrent computations, its minimal n-1 size makes it an
attractive subcomponent of scan networks designed for
oversubscribed processors. Increasing the computational
granularity (i.e., items per thread) is a common technique for
improving processor utilization by reducing inter-thread
communication.

The Kogge-Stone construction [19] in Fig. 1b (and
corresponding Hillis-Steele algorithm [17]) is a well-known,
minimum-depth network that uses a recursive-doubling approach
for aggregating partial reductions. Despite having inefficient
O(nlog2n) work complexity, its shallow depth and simple shared
memory address computations make it an attractive strategy for
SIMD architectures (e.g., GPU warps) where inactive processor
resources cannot be scavenged1.

The Sklansky construction [24] in Fig. 1c employs a recursive,
scan-then-fan approach that also achieves minimum depth log2n at
the expense of O(nlog2n) work complexity. Compared to Kogge-
Stone constructions, these networks exhibit high-radix fan-out
when propagating partial prefixes computed by recursive
subgraphs. This improved sharing leads to smaller circuit sizes
and reduced memory bandwidth overheads.

1
 Kogge-Stone “warpscans” are typical of GPU implementations where

(1) SIMD-synchronicity has historically enabled efficient barrier-free

communication, and (2) the hardware provisions a “shuffle” crossbar for
efficient inter-warp communication.

Whereas minimum-depth circuits are fast when the input size
is less than or equal to the width of the underlying multiprocessor,
minimum-size networks are important for larger problems. Many
parallel programming models virtualize the underlying physical
processors, causing overall runtime to scale with circuit size
instead of depth. Therefore work-efficiency is often a practical
design objective for general-purpose prefix scan algorithms.

The Brent-Kung construction [8] in Fig. 1d (and corresponding
Blelloch algorithm [4, 5]) is a work-efficient strategy having
2log2n depth and O(n) size. Visually, the data flow resembles an
“hourglass” shape comprising (1) an upsweep accumulation tree
having progressively less parallelism, and (2) a downsweep
propagation tree exhibiting progressively more parallelism.
Generalizing the binary operators in the upsweep with radix-b
scans and those in the downsweep with radix-b fans, the Brent-
Kung strategy exhibits a more pronounced scan-then-propagate
behavior (as illustrated in Fig. 2a).

For programming models that virtualize an unlimited number
of processors, a concern with scan-then-propagate data flow is
that ~n live values are spilled and filled through last-level memory
between upsweep and downsweep phases when the input exceeds
on-chip memory. To eliminate the writes, we can simply
rematerialize the intermediates during the downsweep phase at the
expense of O(n) redundant calculations, as shown in Fig. 1e [9,
12, 22]. This has the effect of converting downsweep behavior
from propagation to scan. We refer to this adaptation as the
reduce-then-scan strategy.

In general, an important property of recursive network design
is the ability to mix-and-match different strategies at different
levels. Further variation is also possible through operator
generalization: whereas these binary operators compute radix-2
scans and fans, network height can be reduced using radix-b
subcomponents as building blocks [18]. This flexibility allows for

(a) serial (chained scan) (b) Kogge-Stone (c) Sklansky

(d) Brent-Kung (e) Reduce-then-scan

Fig. 1. Commonplace scan constructions for n = 16.

Dashed boxes illustrate recursive construction.

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15

x0:x0

x0:x1

x0:x2

x0:x3

x0:x4

x0:x5

x0:x6

x0:x7

x0:x8

x0:x9

x0:x10

x0:x11

x0:x12

x0:x13

x0:x14

x0:x15

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15

x0: x0

x0: x1

x0: x2

x0: x3

x0: x4

x0: x5

x0: x6

x0: x7

x0: x8

x0: x9

x0: x10

x0: x11

x0: x12

x0: x13

x0: x14

x0: x15

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15

x0: x0

x0: x1

x0: x2

x0: x3

x0: x4

x0: x5

x0: x6

x0: x7

x0: x8

x0: x9

x0: x10

x0: x11

x0: x12

x0: x13

x0: x14

x0: x15

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15

x0:x0

x0:x1

x0:x2

x0:x3

x0:x4

x0:x5

x0:x6

x0:x7

x0:x8

x0:x9

x0:x10

x0:x11

x0:x12

x0:x13

x0:x14

x0:x15

U
p
s
w

e
e
p

D
o
w

n
s
w

e
e
p

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15

x0:x0

x0:x1

x0:x2

x0:x3

x0:x4

x0:x5

x0:x6

x0:x7

x0:x8

x0:x9

x0:x10

x0:x11

x0:x12

x0:x13

x0:x14

x0:x15

3

hybrid design strategies that efficiently utilize the entire hierarchy
of multiprocessor and memory organization.

3. Contemporary GPU scan strategies

Every GPU kernel is executed by a hierarchically-organized
collection of threads. The individual threads executing the kernel
function are grouped into thread blocks, and these blocks are
grouped into kernel grids. The GPU uses thread blocks to
efficiently manage the population of running threads on hardware
multiprocessors (processor cores). Threads within the same block
can cooperate through fast on-chip scratch memory and barrier
synchronization.

Prefix scan implementations designed for GPUs are typically
constructed from two levels of organization: (1) a global, coarse-
grained strategy for computing a device-wide scan using radix-b
sub-networks for {reduction | scan | propagation}; and (2) a set of
local, fine-grained strategies for computing b-input {reduction |
scan | propagation} within each thread block. We discuss the
latter first.

3.1 Block-wide scan strategies

The blocking factor b is a function of thread block size and thread
grain size, both of which are constrained by the physical resources
of the multiprocessor and can be considered tunable constants. In
practice, the tiles of block input are typically several thousand
items each (e.g., b = 2048 items for 128 threads with 16 items per
thread). Thus tile size b is uncorrelated to global input size n, and
the asymptotic work-(in)efficiency of any particular block-wide
scan construction will not affect that of the global strategy.

Because we desire memory-bound kernels, the primary
performance goal of any underlying block-wide strategy is to be
efficient enough such that the local computational overhead (inter-
thread communication, synchronization, and scan operators) can
be absorbed by an oversubscribed memory subsystem. In other
words, the computational overhead for block-wide scan must be
less than the I/O overhead for the thread block. Improving block-
wide scan efficiency beyond this point may reduce power
consumption, but will not affect overall performance. For
traditional prefix-sum kernels, the block’s I/O overhead is dictated
by 2b data movement: b items read and written. For allocation
and compaction scenarios, this efficiency constraint can be twice
as tight if no output items are actually produced. In CUB, we
treat the selection of local scan algorithm as a tuning parameter.

Fig. 2 illustrates several commonplace hybrid strategies for
block-wide scan. Their different circuit sizes and depths make

each suitable for different-sized data types and scan operators of
different complexities. For illustrative purposes, we depict blocks
of 16 threads comprised of 4-thread SIMD warps, with one item
per thread. Increasing the thread-granularity would entail
wrapping the constructs with an outer layer of serial intra-thread
reductions and scans. Dotted lines indicate barrier-synchronized
communication through shared-memory.

Fig. 2a presents a radix-4 Brent-Kung scan-then-propagate
strategy that embeds 4-item Kogge-Stone warpscans and
propagation fans. At the root of the hourglass, one of the warps is
repurposed to warpscan the partial totals from each warp2. Only
two block-wide barriers are needed if the width of the SIMD warp
is greater than the number of warps in the block. This block-wide
scan technique was first demonstrated in CUDPP [23] and is one
of several block-scan components available in CUB [21]. In this
example, the depth is 5 levels and size is 37 operators.

Fig. 2b presents a radix-4 “raking” reduce-then-scan strategy
in which the entire computation is delegated to a single warp3.
With 4 items per thread, the delegate warp performs efficient
serial upsweep and downsweep networks within the registers of
each thread. The root of the hourglass comprises a Kogge-Stone
warpscan. Only two block-wide barriers are needed. This type of
raking block-wide scan technique was first demonstrated in
MatrixScan [12] and is one of several block-scan components
available in CUB [21]. Although the network is relatively deep
(9 levels), this approach exhibits minimal inter-thread
communication and is very efficient (only 29 operators).

Fig. 2c presents a radix-4 Sklansky strategy in which 4-input
Kogge-Stone warpscans are coupled with 4-output Sklansky fan
propagation. It is also provided as a block-scan component within
CUB [21]. Unlike the previous two strategies, the number of
block-wide barriers increases with the log of the number of warps.
In this example, the depth is 4 levels and size is 36 operators.

3.2 Global scan strategies

Historically, GPU scan implementations have primarily embodied
one of three radix-b strategies at the global level: scan-then-
propagate, reduce-then-scan, or chained-scan.

2
 This can also be considered a variation of the Han-Carlson network

construction [15] in which the root of a Brent-Kung construction is simply
replaced with a Kogge-Stone network.
3
 “Raking” is a parallel decomposition in which each thread consumes a

non-overlapping partition of consecutive items. It is visually reminiscent
of the tines of a rake being dragged at an angle along the ground [6].

(a) A radix-4 Brent-Kung scan-then-propagate

strategy embedding Kogge-Stone warpscans

and propagation fans

(b) A raking radix-4 reduce-then-scan strategy

embedding serial reductions, serial scans, and

a Kogge-Stone warpscan at the root

 (c) A radix-4 Sklansky strategy embedding

Kogge-Stone warpscans and propagation

fans

Fig. 2. GPU hybrid block-scan strategies for n = 16 and SIMD warp size 4.

Rounded boxes illustrate warp assignments.

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15

x0:x0

x0:x1

x0:x2

x0:x3

x0:x4

x0:x5

x0:x6

x0:x7

x0:x8

x0:x9

x0:x10

x0:x11

x0:x12

x0:x13

x0:x14

x0:x15

barrier

barrier

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15

x0:x0

x0:x1

x0:x2

x0:x3

x0:x4

x0:x5

x0:x6

x0:x7

x0:x8

x0:x9

x0:x10

x0:x11

x0:x12

x0:x13

x0:x14

x0:x15

x12 x13 x14 x15
barrier

barrier

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15

x0:x0

x0:x1

x0:x2

x0:x3

x0:x4

x0:x5

x0:x6

x0:x7

x0:x8

x0:x9

x0:x10

x0:x11

x0:x12

x0:x13

x0:x14

x0:x15

barrier

barrier

4

Scan-then-propagate. The global scan implementations
within CUDPP [10, 23] and Thrust [3] are examples of high-radix
Brent-Kung data flow, recursively dispatching kernels of block-
sized scan networks followed by kernels of block-sized fan
propagation. Discounting the negligible I/O of inner levels, they
incur ~4n global data movement, with the outermost kernels
reading and writing ~n items each.

Reduce-then-scan. The global scan implementations within
MatrixScan [12], B40C [1], MGPU [2], and by Ha and Han [16]
are examples of reduce-then-scan dataflow, dispatching kernels of
block-sized reduction networks followed by kernels of block-
sized scan networks. MatrixScan does this recursively, whereas
the other implementations employ a raking strategy in which the
upsweep and downsweep thread blocks process multiple input
tiles each, necessitating only a single root scan kernel.

As illustrated in Fig. 3, the input is partitioned evenly among
G thread blocks, where G is the number of blocks that can be

actively resident on the processor (and is uncorrelated to n). In
the first kernel, each thread block reduces the tiles of its partition
in an iterative, serial fashion. Then the small list of G block-
aggregates is itself scanned. In the third kernel, each thread block
iteratively computes a prefix scan across the tiles of its partition,
seeded with the appropriate block-prefix computed by the scan of
block-aggregates. By switching the behavior of the first upsweep
thread block from reduction to scan, Ha and Han are able to elide
the last block of the upsweep kernel and the first block of the
downsweep kernel. The global data movement is ~3n (~2n items
read, ~n items written).

Chained-scan. As an alternative, the chained-scan
parallelization [27] is a single-pass approach in which thread
blocks are each assigned a tile of input, and a serial dependence
chain exists between thread blocks. Each thread block will wait
on the inclusive prefix of its predecessor to become available.
The global data movement is ~2n (n items read, n items written).

Fig. 3. Three-kernel reduce-then-scan parallelization among G thread blocks (~3n global data movement)

Fig. 4. Single-pass chained-scan prefix scan among G thread blocks (~2n global data movement)

Fig. 5. Single-pass adaptive look-back prefix scan among G thread blocks (~2n global data movement)

reduce

reduce

x0 xb-1 xb…

B0

…reduce reduce reduce

…

reduce

…

B1

reduce reduce reduce

…

reduce

…

B2

reduce reduce reduce

…

reduce

…

BG-1

reduce reduce reduce

…

reduce

…

B1

…

scan

… …

reduce

…

B2

…

scan scan scan

… …

reduce

x0 xb-1 xb…

B0

…

scan scan scan

… …

y0 yb-1 yb

B0

reduce

…

BG-1

…

scan scan scan

… …

scan

…

u
p
s
w

e
e
p

p
a
s
s

d
o
w

n
s
w

e
e
p

p
a
s
s

ro
o
t
s
c
a
n

scan scan

B0
B1

B2

BG-1

x0 x1 x2

y0 y1 y2

…

…

…

prefix0:0

prefix0:1

prefix0:2

prefix0:p-2

reduce

reduce
reduce

reduce

scan
scan

scan

scan

BG-1B2B1B0

x0 x1 x2

y0 y1 y2

…

…

aggregate0

incl-prefix0

decoupling

look-back

aggregate1

incl-prefix1

aggregate2

incl-prefix2

reduce reduce reduce reduce

scan scan scan scan

Status flag: {P|A|X} Status flag: {P|A|X} Status flag: {P|A|X} Status flag: {P|A|X}

5

As illustrated in Fig. 4, the local block-wide scans are typically
implemented using a parallel reduce-then-scan strategy. This
allows the thread blocks to perform local upsweep and
downsweep work in parallel, each core only having to wait at its
phase-transition for the required prefix to be produced by its
predecessor. The running prefix is then aggregated into the block-
wide downsweep.

Chained-scan’s performance is limited by the latency of signal
propagation between thread blocks. For example, suppose a
NVIDIA Tesla C2050 GPU processor with 144GB/sec memory
bandwidth, processor cores operating at 1.15GHz, and a latency of
600 clock cycles to pass a message from one core to another
through the memory hierarchy. This signaling latency limits the
system to a scan throughput of 1.9M partitions/sec. If each core is
assigned a partition of 256 inputs (32-bits each), the maximum-
achievable scan throughput will be limited to 490M inputs/sec.
This is well short of the theoretical memory bandwidth limitation
of limit of 18B inputs/sec for simply reading and writing the data.

When limited by partition-signaling, one solution is to increase
the partition size. (In the previous example, a partition size of
9000 inputs per thread block would be required to saturate
memory bandwidth.) However, it may be impractical to increase
the partition size arbitrarily. Many processor designs have limited
storage capacity per core. For example, GPU processors provide
virtualized cores whose performance is optimized when the
working set fits completely within on-chip register file and shared
memory resources. Our method, however, is insensitive to
partition size and is therefore amenable to diverse architectural
configurations.

4. Decoupled Lookback

4.1 Operation

Our method is a generalization of the chained-scan approach with
dramatically reduced prefix propagation latencies. The idea is to
decouple the singular dependence of each processor on its
immediate predecessor at the expense of progressively redundant
computation. Whereas the chained-scan approach has a fixed
“look-back” of one partition, our method allows processors to
inspect the status of predecessors that are increasingly further
away. This is illustrated in Fig. 5.

As each partition is processed, its status is updated with the
partition-wide aggregate. Each aggregate is simply the reduction
of items within partition, and can be computed independently
from other partitions. Because the aggregates are readily
available, each processor is generally free to peruse the aggregates
recorded for preceding partitions, progressively accumulating
them until complete exclusive prefix is known (the running total
across all prior partitions). The partition’s status is then updated
with the inclusive prefix, which is computed from the exclusive
prefix and the partition-wide aggregate. The exclusive prefix is
then used to begin the partition’s downsweep scan phase.
Furthermore, an opportunistic encounter with a predecessor’s
inclusive prefix permits early-termination of the look-back phase.

More specifically, each parallel processor within our method
operates as follows:

1. Initialize the partition descriptor. Each processor’s
partition is allocated a status descriptor having the
following fields:

 aggregate. Used to record the partition-wide
aggregate as computed by the upsweep phase of
partition-scan.

 inclusive_prefix. Used to record the partition’s
inclusive prefix as computed by reducing aggregate
with the accumulated look-back from preceding
partitions.

 status_flag. The flag describes the partition’s current
status as one of the following:

A – aggregate available. Indicates the aggregate
field has been recorded for the associated partition.

P – prefix available. Indicates the inclusive_prefix
field has been recorded for the associated partition.

X – invalid. Indicates no information about the
partition is available to other processors. All
descriptors are initialized with status X.

2. Synchronize. All processors synchronize to ensure a
consistent view of initialized partition descriptors.

3. Compute and record the partition-wide aggregate. Each
processor computes and records its partition-wide
aggregate to the corresponding partition descriptor. It
then executes a memory fence and updates the descriptor’s
status_flag to A. Furthermore, the processor owning the
first partition copies aggregate to the inclusive_prefix
field, updates status_flag to P, and skips to Step 6 below.

4. Determine the partition’s exclusive prefix using
decoupled look-back. Each processor initializes and
maintains a running exclusive_prefix as it progressively
inspects the descriptors of increasingly antecedent
partitions, beginning with the immediately preceding
partition. For each predecessor, the processor will
conditionally perform the following based upon the
predecessor’s status_flag:

X -- Block (or continue polling) until the status_flag is
not X.

A -- The predecessor’s aggregate field is added to
exclusive_prefix and the processor continues on to
inspect the preceding tile.

P -- The predecessor’s inclusive_prefix field is added to
exclusive_prefix and the look-back phase is terminated.

5. Compute and record the partition-wide inclusive
prefixes. Each processor adds exclusive_prefix to
aggregate and records the result to the descriptor’s
inclusive_prefix field. It then executes a memory fence
and updates the descriptor’s status_flag to P.

6. Perform a partition-wide scan seeded with the partition’s
exclusive prefix. Each processor completes the scan of its
partition, incorporating exclusive_prefix into every output
value.

The computation of each processor can proceed independently
and in parallel with other processors throughout steps 1, 3, 5, and
6. In Step 4 (decoupled look-back), each processor must wait on
its predecessor(s) to finish Step 3 (record partition-wide
reduction).

4.2 Properties

Our method has the following properties:

 Safety. The algorithm will run to completion if the system
guarantees forward-progress for all processors. Forward
progress ensures that no processor will wait indefinitely in
Step 4: every predecessor is free to record its aggregate in

6

Step 3. (And aggregates are sufficient to compute an
exclusive prefix.)

 Minimal waiting. Blocking will be minimal for systems
that provide fair or nearly-fair scheduling. Fairness ensures
that all processors will have recorded their aggregates in
roughly the same amount of time. This includes the
inclusive_prefix of the first block. As a result, processors
are generally to freely accumulate all of their predecessor
aggregates with minimal blocking or waiting.

 Constant-bound look-back. The amount of look-back is
constant given a finite number processing elements. (All
physically-realizable computer systems have a finite
number of processors.) A constant amount of look-back
ensures an optimal overall work-complexity of O(n). This
property is true regardless whether processors are assigned:

o A single partition of size n/p. There are only a finite
number of preceding partitions for each processor to
inspect

o Multiple partitions of constant size. The
assignment of n/p partitions is striped across the
processors and partitions are processed one at a time
to completion, i.e., processor0 scans partition0,
partitionP, partition2P, partition3P, etc. Each partition
may inspect at most p predecessors before it reaches
the prefix recorded for a partition previously
processed by the same processor.

 Accelerated signal propagation. Under the chained-scan
strategy, the act of sharing an inclusive_prefix is only
capable able of releasing the processor’s immediate
decedent from blocking look-back. Under our strategy, the
recording of a partition’s inclusive_prefix is capable of
releasing all decedent processors.

 Support for non-commutative scan operators. Our method
only applies the reduction operator to consecutive inputs (or
consecutive partial reductions).

4.3 An Example

Suppose a small prefix sum problem computed by eight
processors over eight partitions where, for illustrative purposes,
the sum of each partition equals 2. The snapshot of execution
state in Fig. 6 illustrates many of the relative processor schedules
and short-circuiting opportunities that may manifest under our
method. The state of each processor is as follows:

 processor0 is finished. It has computed and recorded its
aggregate, copied it to the inclusive_prefix field, and set its
flag to P.

 processor1 has computed and recorded its aggregate, set its
flag to A, computed and recorded its inclusive_prefix, but
has not yet updated its flag to P. Its exclusive_prefix was
obtained from its immediate predecessor’s inclusive_prefix.

 processor2 has computed and recorded its aggregate, set its
flag to A, but has not started inspecting predecessors.

 processor3 is finished. It has computed and recorded its
aggregate , set its flag to A, computed and recorded its
inclusive_prefix, and set its flag to P. It used a look-back
window of three predecessors to determine its
exclusive_prefix.

 processor4 has computed and recorded its aggregate, set its
flag to A, but has not started inspecting predecessors.

 processor5 is finished. It has computed and recorded its
aggregate , set its flag to A, computed and recorded its
inclusive_prefix, and set its flag to P. It used a look-back
window of two predecessors to determine its
exclusive_prefix.

 processor6 has not yet started.

 processor7 has computed and recorded its aggregate, set its
flag to A, and is waiting on its immediate predecessor to
valid.

4.4 Adaptations and Optimizations

This section describes various adaptations and optimizations that
we have applied to our basic method.

Virtual processors. Many programming models such as
CUDA employ an abstraction of virtual processors that are
dynamically scheduled on the hardware’s physical processors4.
Each processor is given a numeric rank by which it can index its
corresponding input partition. However, the runtime that
schedules virtual processors may run them arbitrary order and
without preemption. As a result, our original method is
susceptible to deadlock in Step 4: the machine may be occupied
with a set of virtual processors that will wait indefinitely for the
results of predecessors that cannot be scheduled until the active
set retires. This can be remedied by providing each virtual
processor with an identifier that guarantees every preceding
partition has been actively scheduled. For example, each virtual
processor can obtain such an identifier upon activation by
atomically-incrementing a global counter.

Fence-free descriptor updates. The descriptor updates in
Steps 3 and 5 each require three memory operations: (1) an update
to aggregate or inclusive_prefix; (2) a memory fence; and (3) an
update to status_flag. The memory fences preserve a valid,
consistent view of descriptors across all processors. Otherwise
the compiler or the memory subsystem may reorder the updates to
these fields (e.g., by first writing A to status_flag and then
updating aggregate). Such orderings would invite a small
window of time between write operations in which peer
processors would be susceptible to a view of invalid state.

Memory fences can incur a performance penalty, however.
This occurs when the fence implementation prevents write

4
 By oversubscribing physical hardware with an abundance of virtual

processors, parallel programs can be made portable across computers
having different processor configurations. Furthermore, “over-

partitioning” is often a useful technique for mitigating transient load
imbalances between partition workloads.

Partition ID 0 1 2 3 4 5 6 7

Flag P A A P A P X A

Aggregate 2 2 2 2 2 2 - 2
Inclusive Prefix 2 4 - 8 - 12 - -

Fig. 6. “Snapshot” of execution state during a small prefix sum problem computed by eight processors over eight intput partitions.

7

operations from being pipelined or overlapped, i.e., the first write
must complete before the latter can be made. This can result in
unwanted signaling latency.

The fence can be eliminated if the status flag and the
corresponding value being updated can be combined into a single
architectural word. Consider prefix sum over 32-bit integers. If
the architecture supports 64-bit loads and stores, a single 64-bit
write of {A, 2} is sufficient to guarantee all peer processors will
have a consistent view of partition status and the corresponding

aggregate value of 2. Furthermore, these scenarios obviate the
need for partition descriptors to maintain separate fields for
aggregate and inclusive prefix; a simple value field will suffice.

Parallelized look-back. The latency of variable look-back can
be further reduced by inspecting predecessors in parallel. A
parallelization of Step 4 can be quite advantageous for processors
having a SIMD style of parallelism. Compared to a single thread,
the incremental memory and computational workload from having
an entire SIMD group of threads participate is often negligible.
The procedure of Step 4 is modified so that a set of t threads can
simultaneously inspect a window of t preceding partitions, with
each thread being assigned it to monitor its own predecessor:

 Threads poll (or block) until their respective predecessor is
no longer flagged X (invalid).

 Once all threads have observed valid predecessors, the
thread-set will conditionally perform one of the following
based upon their status flags:

o All predecessors have status A. Each thread reads its
predecessor’s aggregate. A local reduction of these
aggregates is computed and added to the running
exclusive_prefix. The entire window is slid back p
partitions and threads return the previous step to
inspect the preceding block of predecessors.

o At least one predecessor has status P. Each thread
reads the corresponding aggregate or inclusive_prefix
from its predecessor’s partition descriptor. A local
segmented-reduction of these values is computed in
which each thread is flagged as being a segment-head
if its predecessor has status P. The last segment’s
total is added to the running exclusive_prefix and the
look-back phase is terminated.

In-place compaction behavior. This one-pass scan strategy is
also amenable for implementing parallel algorithms that exhibit
compaction behavior (i.e., sequence transformations where only
some of the data items are retained). Examples include select-if,
reduce-value-by-key, run-length-encode, etc. Underlying these
methods is a prefix sum over an array of binary flags, where a
given flag is set if the corresponding data item is to be kept within
the compacted output. For each data item, the prefix sum of the
preceding flags equals the scatter offset for which that data item is
to be written within the compacted output.

A beneficial consequence of using our single-pass design is
that these compaction operations can operate in-place, i.e.,
without requiring a separate storage for the compacted output.
Because of the signaling, each processor is guaranteed that all
preceding processors have at least read their inputs. This allows a
given processor to write its outputs to their compacted locations
without risking overwriting a predecessor's inputs before it has
had an opportunity to read them itself. For traditional three-pass
versions of these algorithms, the parallel processors in
downsweep stage operate independently of each other, and
therefore have no guarantee regarding the safety of overwriting
the inputs of preceding processors. To our knowledge, we are the
first to present in-place solutions for these algorithms for the GPU
machine model.

5. Evaluation

5.1 Comparison with contemporary GPU implementations

In this subsection, we evaluate 32-bit device-wide prefix sum
performance as a function of problem size for the following GPU-
based scan implementations:

Fig. 7. 32-bit device-wide prefix sum throughput

(NVIDIA Tesla M40, ECC off)

Fig. 8. 32-bit device-wide prefix sum throughput

(NVIDIA Tesla K40, ECC off)

Fig. 9. 32-bit device-wide prefix sum throughput

(NVIDIA Tesla C2050, ECC off)

31.0
30.830.3

21.0

14.7

0

5

10

15

20

25

30

35

40

Th
ro

u
gh

p
u

t
(b

ill
io

n
s

it
e

m
s/

se
c)

Input size

Memcpy
CUB v1.5.2
StreamScan
MGPU
Thrust v1.8.2

26.8
26.7

21.5

18.3

9.8

0

5

10

15

20

25

30

Th
ro

u
gh

p
u

t
(b

ill
io

n
s

it
e

m
s/

se
c)

Input size

Memcpy
CUB v1.5.2
StreamScan
MGPU
Thrust v1.8.2

14.4

13.0

10.5

6.9

0

2

4

6

8

10

12

14

16

18

Th
ro

u
gh

p
u

t
(b

ill
io

n
s

it
e

m
s/

se
c)

Input size

Memcpy
CUB v1.5.2
StreamScan
MGPU
Thrust v1.8.2

8

 CUB [21]: Our single-pass decoupled-lookback
parallelization with ~2n data movement (including the
adaptations and optimizations described in the previous
sections).

 StreamScan [27]: A single-pass chained-scan
parallelization with ~2n data movement. StreamScan is a
32-bit implementation (OpenCL), which precludes very
large problem sizes. Furthermore, it is auto-tuned per
problem size.

 MGPU [2]: A three-kernel reduce-then-scan parallelization
with ~3n data movement.

 Thrust [3]: A recursive scan-then-propagate parallelization
with ~4n data movement.

We also measure the throughput performance of CUDA’s
global memcpy operation. Copy serves as an ideal performance
ceiling for prefix scan because it shares the same minimum I/O
workload, is completely data-parallel, and has no computational
overhead.

We conducted our evaluation using the three most recent
generations of NVIDIA Tesla GPU processors (all with ECC
disabled): Maxwell-based M40 (Fig. 7), Kepler-based K40 (Fig.
8), and Fermi-based C2050 (Fig. 9). Our CUB performance
meets or exceeds that of the other implementations for all
architectures and problem sizes. For Kepler and Maxwell
platforms, CUB throughput is able to match the performance
ceiling of memcpy for large problems, and cannot be improved
upon nontrivially.

Despite extensive per-input auto-tuning, StreamScan
performance is hindered by the latencies of serial prefix
propagation. This is manifest in two ways: (1) the roofline
saturation of StreamScan throughput occurs at relatively higher
problem sizes on all architectures, and (2) StreamScan is unable to
match memcpy throughput on Fermi and Kepler architectures
where on-chip resources (register file and shared memory)
preclude blocking factors large enough to cover roundtrip L2
cache latency.

Furthermore, these results largely match our performance
speedup expectations. If were to assume memory-bound operation
for all implementations, we would expect speedups 1x, 1.5x, and
2x versus StreamScan, MGPU, and Thrust, respectively. In
practice, for very large problems (capable of saturating the
processor), we achieve harmonic mean speedups of 1.1x, 1.4x,
and 2.3x, respectively. Fig. 10 further enumerates saturated CUB
speedup per architecture, and Fig. 11 enumerates harmonic-mean
CUB speedup for all problem sizes.

5.2 Adaptation for compaction behavior

Using CUB collective primitives for data movement, we have
applied this single-pass scan strategy to construct very fast,
performance-portable implementations of various compaction
algorithms:

 select-if: applies a binary selection functor to selectively
copy items from input to output

 partition-if: applies a binary selection functor to split copy
items from input into separate partitions within the output

StreamScan MGPU Thrust

Saturated M40 1.00x 1.37x 2.08x

Saturated K40 1.23x 1.46x 2.73x

Saturated C2050 1.12x 1.47x 2.10x

H-mean saturated 1.11x 1.43x 2.27x

StreamScan MGPU Thrust

H-mean M40 1.62x 1.35x 2.99x

H-mean K40 1.67x 1.18x 2.87x

H-mean C2050 1.54x 1.20x 2.73x

H-mean all 1.60x 1.19x 2.80x

Fig. 10. CUB speedup for large inputs

Fig. 11. Average CUB speedup

(a) select_if()

int32 data w/ 50% uniform-random selection

(b) reduce_by_key()

{int32,fp32} pairs w/ average segment length 500

(c) partition_if()

int32 data w/ 50% uniform-random selection

(d) run_length_encode()

int32 data w/ average segment length 500

Fig. 12. Performance of compaction-like algorithms across 32M inputs

5.5

10.7

18.3

1.9

6.5

16.4

26.7

3.6
4.5 4.7

1.8
3.6

6.4 6.5

0

5

10

15

20

25

30

Tesla
C1060

Tesla
C2050

Tesla
K20C

GeForce
9800 GTX+

Geforce
GTX 285

Geforce
GTX 580

GeForce
GTX Titan

b
ill

io
n

s
o

f
in

p
u

t
 it

em
s

/
se

c

CUB Thrust v1.7.1

3.2

7.5

16.5

0.6

3.7

11.5

23.4

1.2

3.0

4.9

0.3
1.5

4.2

6.6

0

5

10

15

20

25

Tesla
C1060

Tesla
C2050

Tesla
K20C

GeForce
9800 GTX+

Geforce
GTX 285

Geforce
GTX 580

GeForce
GTX Titan

b
ill

io
n

s
o

f
in

p
u

t
 p

a
ir

s
/

se
c

CUB Thrust v1.7.1

4.2

8.6

16.4

1.1

4.9

13.1

23.6

1.7 2.2 2.4
0.9

1.8
3.2 3.3

0

5

10

15

20

25

Tesla
C1060

Tesla
C2050

Tesla
K20C

GeForce
9800 GTX+

Geforce
GTX 285

Geforce
GTX 580

GeForce
GTX Titan

b
ill

io
n

s
o

f
in

p
u

t
 it

em
s

/
se

c

CUB Thrust v1.7.1

3.5

9.3

18.7

0.8

4.0

14.3

26.6

1.2

3.2

5.3

0.4
1.5

5.0

7.0

0

5

10

15

20

25

30

Tesla
C1060

Tesla
C2050

Tesla
K20C

GeForce
9800 GTX+

Geforce
GTX 285

Geforce
GTX 580

GeForce
GTX Titan

b
ill

io
n

s
o

f
in

p
u

t
 it

em
s

/
se

c

CUB Thrust v1.7.1

9

 reduce-by-key: Reduces segments of values, where
segments are demarcated by corresponding runs of identical
keys

 run-length-encode. Computes a compressed representation
of a sequence of input elements such that each maximal
"run" of consecutive same-valued data items is encoded as a
single item along with a count of the elements in that run

These algorithms all make use of prefix sum as a method to
determine where output items should be placed. The scatter offset
for a given thread is the count of preceding items to be written by
lower-ranked threads. Not only is the Thrust scan algorithm less
efficient, but the process of item-selection must be either (a) be
memoized in off-chip temporary storage, which consumes extra
bandwidth; or (b) run twice, once during upsweep and again
during downsweep. In comparison, item-selection can be fused
with our prefix scan strategy without incurring additional I/O or
redundant selection computation.

Fig. 12 illustrates the throughput of our CUB-based primitives
versus the functionally-equivalent versions implemented by
Thrust. Our implementations of these operations are 4.1x, 7.1x,
3.5x, and 3.8x faster, respectively.

6. Conclusion

Our method is a novel generalization of the chained-scan
approach with dramatically reduced prefix propagation latencies.
The principal idea is for processors to progressively inspect the
status of predecessors that are increasingly further away. We
demonstrate that, unlike prior single-pass algorithms, our method
is capable of fully saturating DRAM bandwidth by overlapping
the propagation of prefix dependences with a small amount of
redundant computation. We have also shown this strategy to be
amenable for implementing parallel algorithms that exhibit in-
place compaction behavior, i.e., it does not require separate
storage for the compacted output.

Another important distinction between our method and prior
work is nondeterministic execution scheduling. Whereas
contemporary scan parallelizations are constructed from static
data flow networks (i.e., the order of operations is fixed for a
given problem setting), our method allows parallel processors to
perform redundant work as necessary to avoid delays from serial
dependences. An interesting implication is that scan results are
not necessarily deterministic for pseudo-associative operators.
For example, the prefix sum across a given floating point dataset
may vary from run to run because the number and order of scan
operators applied by CUB may vary from one run to the next.

Our CUDA-based implementation is freely available within
the open-source CUB library of GPU parallel primitives (v1.0.1
and later) [21].

References

[1] Back40 Computing: Fast and efficient software primitives for GPU

computing: http://code.google.com/p/back40computing/. Accessed:
2011-08-25.

[2] Baxter, S. 2013. Modern GPU. NVIDIA Research.

http://nvlabs.github.io/moderngpu/.

[3] Bell, N. and Hoberock, J. Thrust. http://thrust.github.io/. Accessed:
2011-08-25.

[4] Blelloch, G.E. 1990. Prefix Sums and Their Applications. Synthesis
of Parallel Algorithms.

[5] Blelloch, G.E. 1989. Scans as primitive parallel operations. IEEE

Transactions on Computers. 38, 11 (Nov. 1989), 1526–1538.

[6] Blelloch, G.E. et al. Solving linear recurrences with loop raking.

416–424.

[7] Borodin, A. 1977. On Relating Time and Space to Size and Depth.
SIAM Journal on Computing. 6, 4 (1977), 733–744.

[8] Brent, R.P. and Kung, H.T. 1982. A Regular Layout for Parallel

Adders. Computers, IEEE Transactions on. C-31, 3 (Mar. 1982), 260
–264.

[9] Chatterjee, S. et al. 1990. Scan primitives for vector computers.
Proceedings of the 1990 ACM/IEEE conference on Supercomputing

(Los Alamitos, CA, USA, 1990), 666–675.

[10] cudpp - CUDA Data Parallel Primitives Library - Google Project
Hosting: http://code.google.com/p/cudpp/. Accessed: 2011-07-12.

[11] CUSPARSE: https://developer.nvidia.com/cusparse. Accessed:

2013-06-05.

[12] Dotsenko, Y. et al. 2008. Fast scan algorithms on graphics

processors. Proceedings of the 22nd annual international conference
on Supercomputing (New York, NY, USA, 2008), 205–213.

[13] Fortune, S. and Wyllie, J. 1978. Parallelism in random access

machines. Proceedings of the tenth annual ACM symposium on
Theory of computing (New York, NY, USA, 1978), 114–118.

[14] Goldschlager, L.M. 1982. A universal interconnection pattern for

parallel computers. J. ACM. 29, 4 (Oct. 1982), 1073–1086.

[15] Han, T. and Carlson, D.A. 1987. Fast area-efficient VLSI adders.

Computer Arithmetic (ARITH), 1987 IEEE 8th Symposium on (May
1987), 49–56.

[16] Ha, S.-W. and Han, T.-D. 2013. A Scalable Work-Efficient and

Depth-Optimal Parallel Scan for the GPGPU Environment. IEEE
Transactions on Parallel and Distributed Systems. 24, 12 (2013),

2324–2333.

[17] Hillis, W.D. and Steele, G.L. 1986. Data parallel algorithms.
Communications of the ACM. 29, 12 (Dec. 1986), 1170–1183.

[18] Hinze, R. 2004. An Algebra of Scans. Mathematics of Program
Construction. D. Kozen, ed. Springer Berlin / Heidelberg. 186–210.

[19] Kogge, P.M. and Stone, H.S. 1973. A Parallel Algorithm for the

Efficient Solution of a General Class of Recurrence Equations. IEEE
Transactions on Computers. C-22, 8 (Aug. 1973), 786–793.

[20] Merrill, D. 2011. Allocation-oriented Algorithm Design with

Application to GPU Computing. University of Virginia.

[21] Merrill, D. 2013. CUB. 1.0.1. A library of warp-wide, block-wide,

and device-wide GPU parallel primitives. NVIDIA Research.
http://nvlabs.github.io/cub/. Accessed: 2013-08-08.

[22] Merrill, D. and Grimshaw, A. 2009. Parallel Scan for Stream

Architectures. Technical Report #CS2009-14. Department of
Computer Science, University of Virginia.

[23] Sengupta, S. et al. 2008. Efficient parallel scan algorithms for GPUs.

Technical Report #NVR-2008-003. NVIDIA.

[24] Sklansky, J. 1960. Conditional-Sum Addition Logic. IEEE

Transactions on Electronic Computers. EC-9, 2 (Jun. 1960), 226–
231.

[25] Snir, M. 1986. Depth-size trade-offs for parallel prefix computation.

Journal of Algorithms. 7, 2 (Jun. 1986), 185–201.

[26] Valiant, L.G. 1976. Universal circuits (Preliminary Report).
Proceedings of the eighth annual ACM symposium on Theory of

computing (New York, NY, USA, 1976), 196–203.

[27] Yan, S. et al. 2013. StreamScan: fast scan algorithms for GPUs

without global barrier synchronization. Proceedings of the 18th ACM
SIGPLAN symposium on Principles and practice of parallel

programming (New York, NY, USA, 2013), 229–238.

