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Abstract  

We describe a work-efficient, communication-avoiding, single-
pass method for the parallel computation of prefix scan.  When 
consuming input from memory, our algorithm requires only ~2n 
data movement: n inputs are read, n outputs are written.  Our 
method embodies a decoupled look-back strategy that performs 
redundant work to dissociate local computation from the latencies 
of global prefix propagation.  Implemented by the CUB library of 
parallel primitives for GPU architectures, the performance 
throughput of our parallel prefix scan approaches that of copy 
operations.  Furthermore, the single-pass nature of our method 
allows it to be adapted for (1) in-place compaction behavior, and 
(2) in-situ global allocation within computations that 
oversubscribe the processor. 

1. Introduction 

Parallel prefix scan is a fundamental parallel computing primitive.  
Given a list of input elements and a binary reduction operator, a 
prefix scan produces a corresponding output list where each 
output is computed to be the reduction of the elements occurring 
earlier in the input. A prefix sum connotes a prefix scan with the 
addition operator, i.e., each output number is the sum of the 
corresponding numbers occurring previously in the input list.  An 
inclusive scan indicates that the ith output reduction incorporates 
the ith input element.  An exclusive scan indicates the ith input is 
not incorporated into the ith output reduction.  Applications of 
scan include adder design, linear recurrence and tridiagonal 
solvers, parallel allocation and queuing, list compaction and 
partitioning, segmented reduction, etc.  For example, an exclusive 
prefix sum across a list of allocation requirements [8,6,7,5,3,0,9] 
produces a corresponding list of allocation offsets 
[0,8,14,21,26,29,29].   

In this report, we describe the decoupled-lookback method of 
single-pass parallel prefix scan and its implementation within the 
open-source CUB library of GPU parallel primitives [21].  For 
highly parallel architectures, prefix sum is a scalable mechanism 
for cooperative allocation within dynamic and irregular data 
structures [4, 20].  Contemporary GPUs are at the leading edge of 
the current trend of increased parallelism in computer 
architecture, provisioning tens of thousands of data parallel 
threads. As such, prefix scan plays an important role in many 
GPU algorithms.   

In modern computer systems, the performance and power 
consumption of prefix scan is typically bound by the cost of data 
movement: reading inputs and writing results to memory is 
generally more expensive than computing the reduction 
operations themselves.  Therefore communication avoidance 
(minimizing last-level data movement) is a practical design 
objective for parallel prefix scan.  The sequential prefix scan 
algorithm requires only a single pass through the data to 
accumulate and progressively output the running total.  As such, it 
incurs the optimal 2n data movement: n reads and n writes. 

Contemporary GPU scan parallelization strategies such as 
reduce-then-scan are typically memory-bound, but impose ~3n 
global data movement  [2, 16, 22].  Furthermore, they perform 
two full passes over the input, which precludes them from serving 
as in-situ global allocation mechanisms within computations that 
oversubscribe the processor.  Finally, these scan algorithms 
cannot be modified for in-place compaction behavior (selection, 
run-length-encoding, duplicate removal, etc.) because the 
execution order of thread blocks within the output pass is 
unconstrained.  Separate storage is required for the compacted 
output to prevent race conditions where inputs might otherwise be 
overwritten before they can be read. 

Alternatively, the chained-scan GPU parallelization [11, 27] 
operates in a single pass, but is hindered by serial prefix 
dependences between adjacent processors that prevent memory 
I/O from fully saturating [27].  In comparison, our decoupled-
lookback algorithm elides these serial dependences at the expense 
of bounded redundant computation.  As a result, our prefix scan 
computations (as well as adaptations for in-place compaction 
behavior and in-situ allocation) are typically capable of saturating 
memory bandwidth in a single pass. 

2. Background 

Parallel solutions to scan problems have been investigated for 
decades.  In fact, the earliest research predates the discipline of 
Computer Science itself: scan circuits are fundamental to the 
operation of fast adder hardware (e.g., carry-skip adder, carry-
select adders, and carry-lookahead adder) [8, 24]. As such, many 
commonplace scan parallelizations are presented as recursively-
defined, acyclic dataflow networks in the circuit model [7, 26]  of 
parallel computation.  In this model, prefix scan can be thought of 
as a forest of reduction trees, one for each output.  Network size is 
reduced when reduction trees share intermediate partial sums.  For 
practical use in computer software, scan networks are typically 
encoded as imperative algorithms in the PRAM model [13, 14].    

The minimum circuit depth and size for a parallel scan 
network are log2n steps and n-1 operators, respectively.  However, 
there are no known O(n) work-efficient networks having depth 
log2n.  Snir provides a lower-bound regarding depth+size 
optimality (DSO) for parallel prefix networks: for a given network 
of size s gates and depth d levels, d + s ≥ 2n – 2 [25]. His research 
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suggests that as circuit depth is increasingly constrained, DSO 
networks no longer exist and the size of the networks increases 
rapidly. 

Fig. 1 presents commonplace scan networks relevant to 
contemporary prefix scan algorithms.  Although the serial, or 
chained scan, construction in Fig. 1a has maximal n-1 depth and 
no concurrent computations, its minimal n-1 size makes it an 
attractive subcomponent of scan networks designed for 
oversubscribed processors.  Increasing the computational 
granularity (i.e., items per thread) is a common technique for 
improving processor utilization by reducing inter-thread 
communication. 

The Kogge-Stone construction [19] in Fig. 1b (and 
corresponding Hillis-Steele algorithm [17]) is a well-known, 
minimum-depth network that uses a recursive-doubling approach 
for aggregating partial reductions.  Despite having inefficient 
O(nlog2n) work complexity, its shallow depth and simple shared 
memory address computations make it an attractive strategy for 
SIMD architectures (e.g., GPU warps) where inactive processor 
resources cannot be scavenged1. 

The Sklansky construction [24] in Fig. 1c employs a recursive, 
scan-then-fan approach that also achieves minimum depth log2n at 
the expense of O(nlog2n) work complexity.  Compared to Kogge-
Stone constructions, these networks exhibit high-radix fan-out 
when propagating partial prefixes computed by recursive 
subgraphs.  This improved sharing leads to smaller circuit sizes 
and reduced memory bandwidth overheads. 

                                                
1
 Kogge-Stone “warpscans” are typical of GPU implementations where 

(1) SIMD-synchronicity has historically enabled efficient barrier-free 

communication, and (2) the hardware provisions a “shuffle” crossbar for 
efficient inter-warp communication. 

Whereas minimum-depth circuits are fast when the input size 
is less than or equal to the width of the underlying multiprocessor, 
minimum-size networks are important for larger problems. Many 
parallel programming models virtualize the underlying physical 
processors, causing overall runtime to scale with circuit size 
instead of depth.  Therefore work-efficiency is often a practical 
design objective for general-purpose prefix scan algorithms. 

The Brent-Kung construction [8] in Fig. 1d (and corresponding 
Blelloch algorithm [4, 5]) is a work-efficient strategy having 
2log2n depth and O(n) size.  Visually, the data flow resembles an 
“hourglass” shape comprising (1) an upsweep accumulation tree 
having progressively less parallelism, and (2) a downsweep 
propagation tree exhibiting progressively more parallelism.  
Generalizing the binary operators in the upsweep with radix-b 
scans and those in the downsweep with radix-b fans, the Brent-
Kung strategy exhibits a more pronounced scan-then-propagate 
behavior (as illustrated in Fig. 2a). 

For programming models that virtualize an unlimited number 
of processors, a concern with scan-then-propagate data flow is 
that ~n live values are spilled and filled through last-level memory 
between upsweep and downsweep phases when the input exceeds 
on-chip memory.  To eliminate the writes, we can simply 
rematerialize the intermediates during the downsweep phase at the 
expense of O(n) redundant calculations, as shown in Fig. 1e [9, 
12, 22].  This has the effect of converting downsweep behavior 
from propagation to scan.  We refer to this adaptation as the 
reduce-then-scan strategy. 

In general, an important property of recursive network design 
is the ability to mix-and-match different strategies at different 
levels.  Further variation is also possible through operator 
generalization: whereas these binary operators compute radix-2 
scans and fans, network height can be reduced using radix-b 
subcomponents as building blocks [18].  This flexibility allows for 

 
  

 

(a) serial (chained scan) (b) Kogge-Stone (c) Sklansky 

 
 

 
 

 

(d) Brent-Kung (e) Reduce-then-scan 

 

 

Fig. 1.  Commonplace scan constructions for n = 16.   

Dashed boxes illustrate recursive construction. 
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hybrid design strategies that efficiently utilize the entire hierarchy 
of multiprocessor and memory organization. 

3. Contemporary GPU scan strategies   

Every GPU kernel is executed by a hierarchically-organized 
collection of threads. The individual threads executing the kernel 
function are grouped into thread blocks, and these blocks are 
grouped into kernel grids. The GPU uses thread blocks to 
efficiently manage the population of running threads on hardware 
multiprocessors (processor cores).  Threads within the same block 
can cooperate through fast on-chip scratch memory and barrier 
synchronization.   

Prefix scan implementations designed for GPUs are typically 
constructed from two levels of organization: (1) a global, coarse-
grained strategy for computing a device-wide scan using radix-b 
sub-networks for {reduction | scan | propagation}; and (2) a set of 
local, fine-grained strategies for computing b-input {reduction | 
scan |  propagation} within each thread block.  We discuss the 
latter first. 

3.1 Block-wide scan strategies 

The blocking factor b is a function of thread block size and thread 
grain size, both of which are constrained by the physical resources 
of the multiprocessor and can be considered tunable constants.  In 
practice, the tiles of block input are typically several thousand 
items each (e.g., b = 2048 items for 128 threads with 16 items per 
thread).  Thus tile size b is uncorrelated to global input size n, and 
the asymptotic work-(in)efficiency of any particular block-wide 
scan construction will not affect that of the global strategy. 

Because we desire memory-bound kernels, the primary 
performance goal of any underlying block-wide strategy is to be 
efficient enough such that the local computational overhead (inter-
thread communication, synchronization, and scan operators) can 
be absorbed by an oversubscribed memory subsystem. In other 
words, the computational overhead for block-wide scan must be 
less than the I/O overhead for the thread block.  Improving block-
wide scan efficiency beyond this point may reduce power 
consumption, but will not affect overall performance.  For 
traditional prefix-sum kernels, the block’s I/O overhead is dictated 
by 2b data movement: b items read and written.  For allocation 
and compaction scenarios, this efficiency constraint can be twice 
as tight if no output items are actually produced.  In CUB, we 
treat the selection of local scan algorithm as a tuning parameter. 

Fig. 2 illustrates several commonplace hybrid strategies for 
block-wide scan.  Their different circuit sizes and depths make 

each suitable for different-sized data types and scan operators of 
different complexities. For illustrative purposes, we depict blocks 
of 16 threads comprised of 4-thread SIMD warps, with one item 
per thread.  Increasing the thread-granularity would entail 
wrapping the constructs with an outer layer of serial intra-thread 
reductions and scans.  Dotted lines indicate barrier-synchronized 
communication through shared-memory.  

Fig. 2a presents a radix-4 Brent-Kung scan-then-propagate 
strategy that embeds 4-item Kogge-Stone warpscans and 
propagation fans.  At the root of the hourglass, one of the warps is 
repurposed to warpscan the partial totals from each warp2.  Only 
two block-wide barriers are needed if the width of the SIMD warp 
is greater than the number of warps in the block.  This block-wide 
scan technique was first demonstrated in CUDPP [23] and is one 
of several block-scan components available in CUB [21].    In this 
example, the depth is 5 levels and size is 37 operators.   

Fig. 2b presents a radix-4 “raking” reduce-then-scan strategy 
in which the entire computation is delegated to a single warp3.  
With 4 items per thread, the delegate warp performs efficient 
serial upsweep and downsweep networks within the registers of 
each thread.  The root of the hourglass comprises a Kogge-Stone 
warpscan.  Only two block-wide barriers are needed.  This type of 
raking block-wide scan technique was first demonstrated in 
MatrixScan  [12] and is one of several block-scan components 
available in CUB [21].    Although the network is relatively deep 
(9 levels), this approach exhibits minimal inter-thread 
communication and is very efficient (only 29 operators). 

Fig. 2c presents a radix-4 Sklansky strategy in which 4-input 
Kogge-Stone warpscans are coupled with 4-output Sklansky fan 
propagation.  It is also provided as a block-scan component within 
CUB [21].  Unlike the previous two strategies, the number of 
block-wide barriers increases with the log of the number of warps. 
In this example, the depth is 4 levels and size is 36 operators. 

3.2 Global scan strategies 

Historically, GPU scan implementations have primarily embodied 
one of three radix-b strategies at the global level: scan-then-
propagate, reduce-then-scan, or chained-scan. 

                                                
2
 This can also be considered a variation of the Han-Carlson network 

construction [15] in which the root of a Brent-Kung construction is simply 
replaced with a Kogge-Stone network. 
3
 “Raking” is a parallel decomposition in which each thread consumes a 

non-overlapping partition of consecutive items.  It is visually reminiscent 
of the tines of a rake being dragged at an angle along the ground [6]. 

 
  

 

(a) A radix-4 Brent-Kung scan-then-propagate 

strategy embedding Kogge-Stone  warpscans 

and propagation fans 

 

(b) A raking radix-4 reduce-then-scan strategy 

embedding serial reductions, serial scans, and 

a Kogge-Stone warpscan at the root 

 

 (c) A radix-4 Sklansky strategy embedding 

Kogge-Stone warpscans and propagation 

fans 

Fig. 2.  GPU hybrid block-scan strategies for n = 16 and SIMD warp size 4.   

Rounded boxes illustrate warp assignments. 

 
 

 

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15

x0:x0

x0:x1

x0:x2

x0:x3

x0:x4

x0:x5

x0:x6

x0:x7

x0:x8

x0:x9

x0:x10

x0:x11

x0:x12

x0:x13

x0:x14

x0:x15

barrier

barrier

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15

x0:x0

x0:x1

x0:x2

x0:x3

x0:x4

x0:x5

x0:x6

x0:x7

x0:x8

x0:x9

x0:x10

x0:x11

x0:x12

x0:x13

x0:x14

x0:x15

x12 x13 x14 x15
barrier

barrier

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15

x0:x0

x0:x1

x0:x2

x0:x3

x0:x4

x0:x5

x0:x6

x0:x7

x0:x8

x0:x9

x0:x10

x0:x11

x0:x12

x0:x13

x0:x14

x0:x15

barrier

barrier



4 
 

Scan-then-propagate.  The global scan implementations 
within CUDPP [10, 23] and Thrust [3] are examples of high-radix 
Brent-Kung data flow, recursively dispatching kernels of block-
sized scan networks followed by kernels of block-sized fan 
propagation.  Discounting the negligible I/O of inner levels, they 
incur ~4n global data movement, with the outermost kernels 
reading and writing ~n items each. 

Reduce-then-scan. The global scan implementations within 
MatrixScan [12], B40C [1], MGPU [2], and by Ha and Han [16] 
are examples of reduce-then-scan dataflow, dispatching kernels of 
block-sized reduction networks followed by kernels of block-
sized scan networks.  MatrixScan does this recursively, whereas 
the other implementations employ a raking strategy in which the 
upsweep and downsweep thread blocks process multiple input 
tiles each, necessitating only a single root scan kernel. 

As illustrated in Fig. 3, the input is partitioned evenly among 
G thread blocks, where G is the number of blocks that can be 

actively resident on the processor (and is uncorrelated to n).  In 
the first kernel, each thread block reduces the tiles of its partition 
in an iterative, serial fashion.  Then the small list of G block-
aggregates is itself scanned.  In the third kernel, each thread block 
iteratively computes a prefix scan across the tiles of its partition, 
seeded with the appropriate block-prefix computed by the scan of 
block-aggregates.  By switching the behavior of the first upsweep 
thread block from reduction to scan, Ha and Han are able to elide 
the last block of the upsweep kernel and the first block of the 
downsweep kernel.  The global data movement is ~3n (~2n items 
read, ~n items written).   

Chained-scan.  As an alternative, the chained-scan 
parallelization [27] is a single-pass approach in which thread 
blocks are each assigned a tile of input, and a serial dependence 
chain exists between thread blocks.  Each thread block will wait 
on the inclusive prefix of its predecessor to become available.  
The global data movement is ~2n (n items read, n items written).   

 
Fig. 3.  Three-kernel reduce-then-scan parallelization among G thread blocks (~3n global data movement) 

 

 
Fig. 4.  Single-pass chained-scan prefix scan among G thread blocks (~2n global data movement) 

 

 
 

Fig. 5.  Single-pass adaptive look-back prefix scan among G thread blocks (~2n global data movement) 
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As illustrated in Fig. 4, the local block-wide scans are typically 
implemented using a parallel reduce-then-scan strategy.  This 
allows the thread blocks to perform local upsweep and 
downsweep work in parallel, each core only having to wait at its 
phase-transition for the required prefix to be produced by its 
predecessor.  The running prefix is then aggregated into the block-
wide downsweep. 

Chained-scan’s performance is limited by the latency of signal 
propagation between thread blocks.  For example, suppose a 
NVIDIA Tesla C2050  GPU processor with 144GB/sec memory 
bandwidth, processor cores operating at 1.15GHz, and a latency of 
600 clock cycles to pass a message from one core to another 
through the memory hierarchy.  This signaling latency limits the 
system to a scan throughput of 1.9M partitions/sec.  If each core is 
assigned a partition of 256 inputs (32-bits each), the maximum-
achievable scan throughput will be limited to 490M inputs/sec.  
This is well short of the theoretical memory bandwidth limitation 
of limit of 18B inputs/sec for simply reading and writing the data.   

When limited by partition-signaling, one solution is to increase 
the partition size.  (In the previous example, a partition size of 
9000 inputs per thread block would be required to saturate 
memory bandwidth.)  However, it may be impractical to increase 
the partition size arbitrarily.  Many processor designs have limited 
storage capacity per core.  For example, GPU processors provide 
virtualized cores whose performance is optimized when the 
working set fits completely within on-chip register file and shared 
memory resources.  Our method, however, is insensitive to 
partition size and is therefore amenable to diverse architectural 
configurations. 

4. Decoupled Lookback 

4.1 Operation 

Our method is a generalization of the chained-scan approach with 
dramatically reduced prefix propagation latencies.  The idea is to 
decouple the singular dependence of each processor on its 
immediate predecessor at the expense of progressively redundant 
computation.  Whereas the chained-scan approach has a fixed 
“look-back” of one partition, our method allows processors to 
inspect the status of predecessors that are increasingly further 
away.  This is illustrated in Fig. 5.  

As each partition is processed, its status is updated with the 
partition-wide aggregate.  Each aggregate is simply the reduction 
of items within partition, and can be computed independently 
from other partitions.  Because the aggregates are readily 
available, each processor is generally free to peruse the aggregates 
recorded for preceding partitions, progressively accumulating 
them until complete exclusive prefix is known (the running total 
across all prior partitions).  The partition’s status is then updated 
with the inclusive prefix, which is computed from the exclusive 
prefix and the partition-wide aggregate.  The exclusive prefix is 
then used to begin the partition’s downsweep scan phase.  
Furthermore, an opportunistic encounter with a predecessor’s 
inclusive prefix permits early-termination of the look-back phase. 

More specifically, each parallel processor within our method 
operates as follows: 

1. Initialize the partition descriptor.  Each processor’s 
partition is allocated a status descriptor having the 
following fields: 

 aggregate.  Used to record the partition-wide 
aggregate as computed by the upsweep phase of 
partition-scan.  

 inclusive_prefix.  Used to record the partition’s 
inclusive prefix as computed by reducing aggregate 
with the accumulated look-back from preceding 
partitions. 

 status_flag.  The flag describes the partition’s current 
status as one of the following: 

A – aggregate available.  Indicates the aggregate 
field has been recorded for the associated partition.   

P – prefix available.  Indicates the inclusive_prefix 
field has been recorded for the associated partition. 

X – invalid.  Indicates no information about the 
partition is available to other processors.  All 
descriptors are initialized with status X. 

2. Synchronize.  All processors synchronize to ensure a 
consistent view of initialized partition descriptors. 

3. Compute and record the partition-wide aggregate.  Each 
processor computes and records its partition-wide 
aggregate to the corresponding partition descriptor.  It 
then executes a memory fence and updates the descriptor’s 
status_flag to A.  Furthermore, the processor owning the 
first partition copies aggregate to the inclusive_prefix 
field, updates status_flag to P, and skips to Step 6 below.  

4. Determine the partition’s exclusive prefix using 
decoupled look-back.  Each processor initializes and 
maintains a running exclusive_prefix as it progressively 
inspects the descriptors of increasingly antecedent 
partitions, beginning with the immediately preceding 
partition.  For each predecessor, the processor will 
conditionally perform the following based upon the 
predecessor’s status_flag:  

X -- Block (or continue polling) until the status_flag is 
not X. 

A -- The predecessor’s aggregate field is added to 
exclusive_prefix and the processor continues on to 
inspect the preceding tile.   

P -- The predecessor’s inclusive_prefix field is added to 
exclusive_prefix and the look-back phase is terminated.   

5. Compute and record the partition-wide inclusive 
prefixes.  Each processor adds exclusive_prefix to 
aggregate and records the result to the descriptor’s 
inclusive_prefix field.  It then executes a memory fence 
and updates the descriptor’s status_flag to P.  

6. Perform a partition-wide scan seeded with the partition’s 
exclusive prefix.  Each processor completes the scan of its 
partition, incorporating exclusive_prefix into every output 
value. 

The computation of each processor can proceed independently 
and in parallel with other processors throughout steps 1, 3, 5, and 
6.  In Step 4 (decoupled look-back), each processor must wait on 
its predecessor(s) to finish Step 3 (record partition-wide 
reduction).   

4.2 Properties 

Our method has the following properties: 

 Safety.  The algorithm will run to completion if the system 
guarantees forward-progress for all processors.  Forward 
progress ensures that no processor will wait indefinitely in 
Step 4: every predecessor is free to record its aggregate in 
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Step 3.  (And aggregates are sufficient to compute an 
exclusive prefix.) 

 Minimal waiting.  Blocking will be minimal for systems 
that provide fair or nearly-fair scheduling.  Fairness ensures 
that all processors will have recorded their aggregates in 
roughly the same amount of time.  This includes the 
inclusive_prefix of the first block.   As a result, processors 
are generally to freely accumulate all of their predecessor 
aggregates with minimal blocking or waiting.  

 Constant-bound look-back.  The amount of look-back is 
constant given a finite number processing elements.  (All 
physically-realizable computer systems have a finite 
number of processors.)  A constant amount of look-back 
ensures an optimal overall work-complexity of O(n).  This 
property is true regardless whether processors are assigned:  

o A single partition of size n/p.  There are only a finite 
number of preceding partitions for each processor to 
inspect 

o Multiple partitions of constant size.  The 
assignment of n/p partitions is striped across the 
processors and partitions are processed one at a time 
to completion, i.e., processor0 scans partition0, 
partitionP, partition2P, partition3P, etc.  Each partition 
may inspect at most p predecessors before it reaches 
the prefix recorded for a partition previously 
processed by the same processor.   

 Accelerated signal propagation.  Under the chained-scan 
strategy, the act of sharing an inclusive_prefix is only 
capable able of releasing the processor’s immediate 
decedent from blocking look-back.  Under our strategy, the 
recording of a partition’s inclusive_prefix is capable of 
releasing all decedent processors. 

 Support for non-commutative scan operators.  Our method 
only applies the reduction operator to consecutive inputs (or 
consecutive partial reductions). 

4.3 An Example 

Suppose a small prefix sum problem computed by eight 
processors over eight partitions where, for illustrative purposes, 
the sum of each partition equals 2.  The snapshot of execution 
state in Fig. 6 illustrates many of the relative processor schedules 
and short-circuiting opportunities that may manifest under our 
method.  The state of each processor is as follows: 

 processor0 is finished.  It has computed and recorded its 
aggregate, copied it to the inclusive_prefix field, and set its 
flag to P.   

 processor1 has computed and recorded its aggregate, set its 
flag to A, computed and recorded its inclusive_prefix, but 
has not yet updated its flag to P.  Its exclusive_prefix was 
obtained from its immediate predecessor’s inclusive_prefix. 

 processor2 has computed and recorded its aggregate, set its 
flag to A, but has not started inspecting predecessors. 

 processor3 is finished.  It has computed and recorded its 
aggregate , set its flag to A, computed and recorded its 
inclusive_prefix, and set its flag to P.  It used a look-back 
window of three predecessors to determine its 
exclusive_prefix. 

 processor4 has computed and recorded its aggregate, set its 
flag to A, but has not started inspecting predecessors. 

 processor5 is finished.  It has computed and recorded its 
aggregate , set its flag to A, computed and recorded its 
inclusive_prefix, and set its flag to P.  It used a look-back 
window of two predecessors to determine its 
exclusive_prefix. 

 processor6 has not yet started. 

 processor7 has computed and recorded its aggregate, set its 
flag to A, and is waiting on its immediate predecessor to 
valid. 

4.4 Adaptations and Optimizations 

This section describes various adaptations and optimizations that 
we have applied to our basic method. 

Virtual processors.  Many programming models such as 
CUDA employ an abstraction of virtual processors that are 
dynamically scheduled on the hardware’s physical processors4.  
Each processor is given a numeric rank by which it can index its 
corresponding input partition.  However, the runtime that 
schedules virtual processors may run them arbitrary order and 
without preemption.  As a result, our original method is 
susceptible to deadlock in Step 4: the machine may be occupied 
with a set of virtual processors that will wait indefinitely for the 
results of predecessors that cannot be scheduled until the active 
set retires. This can be remedied by providing each virtual 
processor with an identifier that guarantees every preceding 
partition has been actively scheduled.  For example, each virtual 
processor can obtain such an identifier upon activation by 
atomically-incrementing a global counter. 

Fence-free descriptor updates.  The descriptor updates in 
Steps 3 and 5 each require three memory operations: (1) an update 
to aggregate or inclusive_prefix; (2) a memory fence; and (3) an 
update to status_flag.  The memory fences preserve a valid, 
consistent view of descriptors across all processors.  Otherwise 
the compiler or the memory subsystem may reorder the updates to 
these fields (e.g., by first writing A to status_flag and then 
updating aggregate).  Such orderings would invite a small 
window of time between write operations in which peer 
processors would be susceptible to a view of invalid state.   

Memory fences can incur a performance penalty, however.  
This occurs when the fence implementation prevents write 

                                                
4
 By oversubscribing physical hardware with an abundance of virtual 

processors, parallel programs can be made portable across computers 
having different processor configurations.  Furthermore, “over-

partitioning” is often a useful technique for mitigating transient load 
imbalances between partition workloads. 

Partition ID 0 1 2 3 4 5 6 7 

Flag P A A P A P X A 

Aggregate 2 2 2 2 2 2 - 2 
Inclusive Prefix 2 4 - 8 - 12 - - 

 
Fig. 6.  “Snapshot” of execution state during a small prefix sum problem computed by eight processors over eight intput partitions. 
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operations from being pipelined or overlapped, i.e., the first write 
must complete before the latter can be made.  This can result in 
unwanted signaling latency.   

The fence can be eliminated if the status flag and the 
corresponding value being updated can be combined into a single 
architectural word.  Consider prefix sum over 32-bit integers.  If 
the architecture supports 64-bit loads and stores, a single 64-bit 
write of {A, 2} is sufficient to guarantee all peer processors will 
have a consistent view of partition status and the corresponding 

aggregate value of 2.  Furthermore, these scenarios obviate the 
need for partition descriptors to maintain separate fields for 
aggregate and inclusive prefix; a simple value field will suffice.   

Parallelized look-back. The latency of variable look-back can 
be further reduced by inspecting predecessors in parallel.  A 
parallelization of Step 4 can be quite advantageous for processors 
having a SIMD style of parallelism.  Compared to a single thread, 
the incremental memory and computational workload from having 
an entire SIMD group of threads participate is often negligible.  
The procedure of Step 4 is modified so that a set of t threads can 
simultaneously inspect a window of t preceding partitions, with 
each thread being assigned it to monitor its own predecessor: 

 Threads poll (or block) until their respective predecessor is 
no longer flagged X (invalid).   

 Once all threads have observed valid predecessors, the 
thread-set will conditionally perform one of the following 
based upon their status flags: 

o All predecessors have status A.  Each thread reads its 
predecessor’s aggregate.  A local reduction of these 
aggregates is computed and added to the running 
exclusive_prefix.  The entire window is slid back p 
partitions and threads return the previous step to 
inspect the preceding block of predecessors. 

o At least one predecessor has status P.  Each thread 
reads the corresponding aggregate or inclusive_prefix 
from its predecessor’s partition descriptor.  A local 
segmented-reduction of these values is computed in 
which each thread is flagged as being a segment-head 
if its predecessor has status P.   The last segment’s 
total is added to the running exclusive_prefix and the 
look-back phase is terminated. 

In-place compaction behavior.  This one-pass scan strategy is 
also amenable for implementing parallel algorithms that exhibit 
compaction behavior (i.e., sequence transformations where only 
some of the data items are retained).  Examples include select-if, 
reduce-value-by-key, run-length-encode, etc.  Underlying these 
methods is a prefix sum over an array of binary flags, where a 
given flag is set if the corresponding data item is to be kept within 
the compacted output.  For each data item, the prefix sum of the 
preceding flags equals the scatter offset for which that data item is 
to be written within the compacted output.   

A beneficial consequence of using our single-pass design is 
that these compaction operations can operate in-place, i.e., 
without requiring a separate storage for the compacted output.  
Because of the signaling, each processor is guaranteed that all 
preceding processors have at least read their inputs.  This allows a 
given processor to write its outputs to their compacted locations 
without risking overwriting a predecessor's inputs before it has 
had an opportunity to read them itself.  For traditional three-pass 
versions of these algorithms, the parallel processors in 
downsweep stage operate independently of each other, and 
therefore have no guarantee regarding the safety of overwriting 
the inputs of preceding processors.  To our knowledge, we are the 
first to present in-place solutions for these algorithms for the GPU 
machine model. 

5. Evaluation 

5.1 Comparison with contemporary GPU implementations 

In this subsection, we evaluate 32-bit device-wide prefix sum 
performance as a function of problem size for the following GPU-
based scan implementations: 

 
Fig. 7.  32-bit device-wide prefix sum throughput 

(NVIDIA Tesla M40, ECC off) 

 

 
Fig. 8.  32-bit device-wide prefix sum throughput  

(NVIDIA Tesla K40, ECC off) 

 

 
Fig. 9.  32-bit device-wide prefix sum throughput 

(NVIDIA Tesla C2050, ECC off) 
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 CUB [21]: Our single-pass decoupled-lookback 
parallelization with ~2n data movement (including the 
adaptations and optimizations described in the previous 
sections). 

 StreamScan [27]: A single-pass chained-scan 
parallelization with ~2n data movement.  StreamScan is a 
32-bit implementation (OpenCL), which precludes very 
large problem sizes.  Furthermore, it is auto-tuned per 
problem size.   

 MGPU [2]: A three-kernel reduce-then-scan parallelization 
with ~3n data movement. 

 Thrust [3]: A recursive scan-then-propagate parallelization 
with ~4n data movement. 

We also measure the throughput performance of CUDA’s 
global memcpy operation. Copy serves as an ideal performance 
ceiling for prefix scan because it shares the same minimum I/O 
workload, is completely data-parallel, and has no computational 
overhead. 

We conducted our evaluation using the three most recent 
generations of NVIDIA Tesla GPU processors (all with ECC 
disabled): Maxwell-based M40 (Fig. 7), Kepler-based K40 (Fig. 
8), and Fermi-based C2050 (Fig. 9).  Our CUB performance 
meets or exceeds that of the other implementations for all 
architectures and problem sizes.  For Kepler and Maxwell 
platforms, CUB throughput is able to match the performance 
ceiling of memcpy for large problems, and cannot be improved 
upon nontrivially.   

Despite extensive per-input auto-tuning, StreamScan 
performance is hindered by the latencies of serial prefix 
propagation.  This is manifest in two ways: (1) the roofline 
saturation of StreamScan throughput occurs at relatively higher 
problem sizes on all architectures, and (2) StreamScan is unable to 
match memcpy throughput on Fermi and Kepler architectures 
where on-chip resources (register file and shared memory) 
preclude blocking factors large enough to cover roundtrip L2 
cache latency. 

Furthermore, these results largely match our performance 
speedup expectations. If were to assume memory-bound operation 
for all implementations, we would expect speedups 1x, 1.5x, and 
2x versus StreamScan, MGPU, and Thrust, respectively.  In 
practice, for very large problems (capable of saturating the 
processor), we achieve harmonic mean speedups of 1.1x, 1.4x, 
and 2.3x, respectively.  Fig. 10 further enumerates saturated CUB 
speedup per architecture, and Fig. 11 enumerates harmonic-mean 
CUB speedup for all problem sizes.   

5.2 Adaptation for compaction behavior 

Using CUB collective primitives for data movement, we have 
applied this single-pass scan strategy to construct very fast, 
performance-portable implementations of various compaction 
algorithms:  

 select-if: applies a binary selection functor to selectively 
copy items from input to output 

 partition-if:  applies a binary selection functor to split  copy 
items from input into separate partitions within the output 

 
StreamScan MGPU Thrust 

Saturated M40 1.00x 1.37x 2.08x 

Saturated K40 1.23x 1.46x 2.73x 

Saturated C2050 1.12x 1.47x 2.10x 

H-mean saturated 1.11x 1.43x 2.27x 
 

 
StreamScan MGPU Thrust 

H-mean M40 1.62x 1.35x 2.99x 

H-mean K40 1.67x 1.18x 2.87x 

H-mean C2050 1.54x 1.20x 2.73x 

H-mean all 1.60x 1.19x 2.80x 
 

 

Fig. 10. CUB speedup for large inputs 

 

 

Fig. 11. Average CUB speedup  

  
(a) select_if() 

int32 data w/ 50% uniform-random selection 

(b) reduce_by_key() 

{int32,fp32} pairs w/ average segment length 500 

 

  
(c) partition_if() 

int32 data w/ 50% uniform-random selection 

(d) run_length_encode() 

int32 data w/ average segment length 500 

 
Fig. 12.  Performance of compaction-like algorithms across 32M inputs 
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 reduce-by-key: Reduces segments of values, where 
segments are demarcated by corresponding runs of identical 
keys 

 run-length-encode. Computes a compressed representation 
of a sequence of input elements such that each maximal 
"run" of consecutive same-valued data items is encoded as a 
single item along with a count of the elements in that run 

These algorithms all make use of prefix sum as a method to 
determine where output items should be placed.  The scatter offset 
for a given thread is the count of preceding items to be written by 
lower-ranked threads.  Not only is the Thrust scan algorithm less 
efficient, but the process of item-selection must be either (a) be 
memoized in off-chip temporary storage, which consumes extra 
bandwidth; or (b) run twice, once during upsweep and again 
during downsweep.  In comparison, item-selection can be fused 
with our prefix scan strategy without incurring additional I/O or 
redundant selection computation. 

Fig. 12 illustrates the throughput of our CUB-based primitives 
versus the functionally-equivalent versions implemented by 
Thrust.  Our implementations of these operations are 4.1x, 7.1x, 
3.5x, and 3.8x faster, respectively.   

6. Conclusion 

Our method is a novel generalization of the chained-scan 
approach with dramatically reduced prefix propagation latencies. 
The principal idea is for processors to progressively inspect the 
status of predecessors that are increasingly further away.  We 
demonstrate that, unlike prior single-pass algorithms, our method 
is capable of fully saturating DRAM bandwidth by overlapping 
the propagation of prefix dependences with a small amount of 
redundant computation.  We have also shown this strategy to be 
amenable for implementing parallel algorithms that exhibit in-
place compaction behavior, i.e., it does not require separate 
storage for the compacted output. 

Another important distinction between our method and prior 
work is nondeterministic execution scheduling.  Whereas 
contemporary scan parallelizations are constructed from static 
data flow networks (i.e., the order of operations is fixed for a 
given problem setting), our method allows parallel processors to 
perform redundant work as necessary to avoid delays from serial 
dependences.  An interesting implication is that scan results are 
not necessarily deterministic for pseudo-associative operators.  
For example, the prefix sum across a given floating point dataset 
may vary from run to run because the number and order of scan 
operators applied by CUB may vary from one run to the next.   

Our CUDA-based implementation is freely available within 
the open-source CUB library of GPU parallel primitives (v1.0.1 
and later) [21]. 
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