
Flexible Software Profiling of GPU Architectures

Mark Stephenson t Siva Kumar Sastry Harit Yunsup Lee:j: Eiman Ebrahimit

Daniel R. 10hnson t David Nellans t Mike O'Connort* Stephen W. Kecklert*
t NVIDIA, :j: University of California, Berkeley, and * The University of Texas at Austin

{mstephenson,shari,eebrahimi,djohnson,dnellans,moconnor,skecklerj@nvidia.com, yunsup@cs.berkeley.edu

Abstract
To aid application characterization and architecture design

space exploration, researchers and engineers have developed

a wide range of tools for CPUs, including simulators, pro­

filers, and binary instrumentation tools. With the advent of

GPU computing, GPU manufacturers have developed simi­

lar tools leveraging hardware profiling and debugging hooks.

To date, these tools are largely limited by the fixed menu of

options provided by the tool developer and do not offer the

user the flexibility to observe or act on events not in the menu.

This paper presents SASSI (NVIDIA assembly code "SASS"

Instrumentor), a low-level assembly-language instrumenta­

tion tool for GPUs. Like CPU binary instrumentation tools,

SASSI allows a user to specify instructions at which to inject

user-provided instrumentation code. These facilities allow

strategic placement of counters and code into GPU assembly

code to collect user-directed, fine-grained statistics at hard­

ware speeds. SASSI instrumentation is inherently parallel,

leveraging the concurrency of the underlying hardware. In

addition to the details of SASSI, this paper provides four case

studies that show how SASSI can be used to characterize ap­

plications and explore the architecture design space along the

dimensions of instruction control flow, memory systems, value

similarity, and resilience.

1. Introduction

Computer architects have developed and employed a wide

range of tools for investigating new concepts and design al­

ternatives. In the CPU world, these tools have included simu­

lators, profilers, binary instrumentation tools, and instruction

sampling tools. These tools provide different features and

capabilities to the architect and incur different design-time

and runtime costs. For example, simulators provide the most

control over architecture under investigation and are necessary

for many types of detailed studies. On the other hand, sim­

ulators are time-consuming to develop, are slow to run, and

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.

ISCA'15, June 13-17, 2015, Portland, OR USA

© 20 1 5 ACM. ISBN 978- 1 -4503-3402-0/1 5/06 . . . $1 5.00
001: http://dx.doi.org/lO. 1 1 45/2749469.2750375

185

are often difficult to connect to the latest software toolchains

and applications. Binary rewriting tools like Pin [2 1] allow a

user to instrument a program to be run on existing hardware,

enabling an architect insight into an application's behavior and

how it uses the architecture. Such tools have been used in a

wide variety of architecture investigations including, determin­

istic replay architectures [26], memory access scheduling [25],

on-chip network architectures [24], and cache architecture

evaluation [18]. They have even been used as the foundation

for multicore architecture simulators [23]. In addition, these

types of tools have been used in a wide range of application

characterization and software analysis research.

With the advent of GPU computing, GPU manufacturers

have developed profiling and debugging tools, similar in nature

to their CPU counterparts. Tools such as NVIDIA's NSight

or Visual Profiler use performance counters and lightweight,

targeted binary instrumentation to profile various aspects of

program execution [34, 35]. These tools have the advantage

that they are easy to use, and run on hardware, at hardware

speeds. Unfortunately for computer architects and compiler

writers, the production-quality profilers are not flexible enough

to perform novel studies: one must choose what aspects of

program execution to measure from a menu of pre-selected

metrics. They also cannot be used as a base on which to build

other architecture evaluation tools.

As one solution to the shortcoming described above, the

architecture community has turned toward simulators, such

as GPGPU-Sim to analyze programs and guide architecture

development [1]. Simulators are immensely flexible, and al­

low architects to measure fine-grained details of execution.

The major disadvantage of simulators is their relatively slow

simulation rates. This forces researchers and architects to use

trimmed-down input data sets so that their experiments finish

in a reasonable amount of time. Of course, application profiles

can be highly input-dependent, and there is no guarantee that

simulation-sized inputs are representative of real workloads.

This paper presents a new GPU tool called SASSI for use in

application characterization and architecture studies. Unlike

the current suite of GPU profiling tools, which are tailor-made

for a particular task or small set of tasks, SAS SI is a versatile

instrumentation framework that enables software-based, se­

lective instrumentation of GPU applications. SASSI allows a

user to select specific instructions or instruction types at which

to inject user-level instrumentation code. Because SAS SI

is built into NVIDIA's production machine-code-generating

compiler, and runs as its last pass, injection of instrumentation

code does not affect compile-time code generation optimiza­

tions. Further SAS SI is highly portable and gracefully handles

the latest versions of CUDA, and can be extended to handle

OpenGL and DirectX 1 1 shaders. The tool allows us to collect

results across multiple generations of NVIDIA architectures

including Fermi, Kepler, and Maxwell.

As with the production-quality profiling tools, selective

instrumentation allows hardware-rate analysis, yet, as the

case studies we demonstrate confirm, our approach is flex­

ible enough to measure many interesting and novel aspects of

execution. Because selective instrumentation is far faster than

simulation, users can easily collect data based on real-world

execution environments and application data sets.

Because GPU architectures follow a different prograrmning

paradigm than traditional CPU architectures, the instrumen­

tation code that SASSI injects contains constructs and con­

straints that may be unfamiliar even to expert CPU program­

mers. Also unlike their CPU counterparts, GPU instrumen­

tation tools must cope with staggering register requirements

(combined with modest spill memory), and they must operate

in a truly heterogeneous environment (i. e. , the instrumented

device code must work in tandem with the host system).

In the remainder of this paper, we first discuss background

information on GPU architecture and software stacks. Then

we describe the details of SASSI, focusing on the key chal­

lenges inherent with GPU instrumentation, along with their

solutions. Finally, we demonstrate the tool's usefulness for ap­

plication profiling and architectural design space exploration

by presenting four varied case studies (in Sections 5-8) that

investigate control flow, memory systems, value similarity,

and resilience.

2. Background

This section provides background on basic GPU architecture

terminology and the NVIDIA GPU compilation flow. While

SASSI is prototyped using NVIDIA's technology, the ideas

presented in this paper are not specific to NVIDIA's architec­

tures, tools, or flows, and can be similarly applied to other

compiler backends and GPUs.

2.1. GPU Architecture Terminology

GPU programming models allow the creation of thousands of

threads that each execute the same code. Threads are grouped

into 32-element vectors called warps to improve efficiency.

The threads in each warp execute in a SIMT (single instruction,

multiple thread) fashion, all fetching from a single Program

Counter (PC) in the absence of control flow. Many warps

are then assigned to execute concurrently on a single GPU

core, or streaming multiprocessor (SM) in NVIDIA's termi­

nology. A GPU consists of multiple such SM building blocks

along with a memory hierarchy including SM-Iocal scratch­

pad memories and Ll caches, a shared L2 cache, and multiple

memory controllers. Different GPUs deploy differing numbers

186

Compile/instrument application

;n<h."m,>nt�t;nnhandler

Ahead-of-time
instrumentation

Use --maxrregs=16 to
cap register usage of

instrumentation handler

Figure 1: SASSI's i nstrumentation flow.

H
(j)
?

of SMs. Further details of GPU application execution, core,

and memory architecture are explained in the case studies of

Sections 5-8.

2.2. GPU Software Stack

Historically, NVIDIA has referred to units of code that run

on the GPU as shaders. There are several broad categories

of shaders, including DirectX shaders, OpenGL shaders, and

compute shaders (e.g. , CUDA kernels). A front-end com­

piler can be used to simplify the task of writing a shader.

For example, for compute shaders, a user can write parallel

programs using high-level programming languages such as

CUDA [32] or OpenCL [39], and use a front-end compiler,

such as NVIDIA's NVVM, to generate intermediate code in a

virtual ISA called parallel thread execution (PTX).

PTX exposes the GPU as a data-parallel computing device

by providing a stable programming model and instruction set

for general purpose parallel programming, but PTX does not

run directly on the GPU. A backend compiler optimizes and

translates PTX instructions into machine code that can run on

the device. For compute shaders, the backend compiler can

be invoked in two ways: (1) NVIDIA supports ahead-of-time

compilation of compute kernels via a PTX assembler (ptxas),

and (2) a HT-time compiler in the display driver can compile a

PTX representation of the kernel if it is available in the binary.

Compute shaders adhere to a well-defined Application Bi­

nary Inteiface or ABI, which defines different properties of

the interface between a caller and a callee. Examples include

what registers are caller-saved vs. callee-saved, what registers

are used to pass parameters, and how many can be passed in

registers before resorting to passing parameters on the stack.

In particular, this paper focuses on the ABI between on-device

(GPU) callers and callees.

3. SASSI

This section describes SAS SI, our backend compiler-based

instrumentation tool. SASSI stands for SASS Instrumentor,

where SASS is NVIDIA's name for its native ISA. We ex­

plain where SASSI sits in the compiler flow, describe SASSI

injection and instrumentation code, and discuss how the in­

strumentation interoperates with host (CPU) code.

IADD Rl, Rl, -Ox80

STL [Rl+OxI8], RO
STL [R1+0x40], RlO

STL [Rl+Ox44], Rll

P2R R3, PR, RZ, Oxl

STL [R1+0xIO], R3

IADD R4, RZ, Oxl5
STL [Rl], R4

MOV321 R5, vadd

STL [Rl+OxS], R5

MOV321 R4, Ox640

STL [Rl+OxC], R4
IADD RS, RZ, Ox29a

STL [Rl+Ox5S], R5

@PO IADD R4, RZ, Oxl

@!PO IADD R4, RZ, OxO

STL [Rl+Ox4], R4
LOP.OR R4, RI, c[OxO] [Ox24]

IADD R5, RZ, OxO

IADD R6. CC, RIO, OxO

IADD.X R7, RII, RZ

STL.64 [R1+0x60], RlO
IADD R6, RZ, Ox2

STL [RI+Ox6S], R6

IADD R7, RZ, Ox4

STL [R1+0x6c], R7

IADD R6, RZ, Ox2
STL [R1+0x70], R6

LOP.OR R6, RI, c [OxO] [Ox24]

IADD R6, R6, Ox60

IADD R7, RZ, OxO
JCAL sassi _before handler

LDL R3, [R1+0xIO]

R2P PR, R3, Oxl

LDL RU, [R1+0x44]

LDL RlO, [R1+0x40]
LDL RO, [RI+OxI8]

IADD Rl, RI, Ox80

@PO ST.E [RIO], RO;

(a) Instrumented code.

class SASSIBeforeParams

public:

const int32_t id;

const bool instrWillExecute;

const int32_t fnAddr;

const int32_t insOffset;

int32 t PRSpill;

int32_t CCSpi 11;
int32_t GPRSpill [16 J ;
const int32_t insEncodingi

device SASSIOpcodes GetOpcode () const;

device int32_t GetID() const;

_device int32_t GetFnAddr() const;

_device int32_t GetlnsOffset () const;

_device int32_t GetlnsAddr () const;

device bool IsMem() const;

device bool IsMemRead() const;

_device bool IsMemWrite() const;

_device bool IsSpillOrFill () const;

device bool IsSurfaceMemory() const;

device bool IsControlXfer() const;

device bool IsCondControlXfer() const;

_device bool IsSync() consti

_device bool IsNumeric () const;

device bool IsTexture() consti

) ;

(b) bp is an instance of this C++ class.

class SASSIMemoryParams

public:

const int64 -t addressi

const int32 -t properties;

const int32 -t width;

const int32 -t domaini

device int 64_t GetAddress () const;

device bool IsLoad () const;

device bool IsStore () const;

device bool IsAtomic() consti

device bool IsUniform() const;

device bool IsVolatile () const;

device int32_t GetWidth () const;

device SASSIMemoryDomain GetDomain () const;

) ;

(c) mp is an instance of this C++ class.

Figure 2: SASSI i nstrumentation. (a) The instruction at Cl) is the original store i nstruction. The other i nstructions are the code that

SASSI has i nserted to construct an A B I-compliant function cal l . The sequence does the fol lowing: 0 Stack al locates two objects,

bp and mp, instances of SASSIBeforeParams and SASSIMemoryParams. The class definitions of SASSIBeforeParams and

SASSIMemoryParams are shown i n (b) and (c), respectively. f) Saves l ive reg isters RO, R10, and Rll to the bp. GPRSpill array,

and saves the l ive predicate reg isters to bp. PRSpil1. 8 Init ial izes member variables of bp, including instrWillExecute

(which is true iff the instruction wi l l execute), fnAddress and insOffset (wh ich can be used to compute the i nstruction's PC),

and insEncoding (which i ncl udes the i nstruction's opcode and other static properties). e Passes a generic 64-bit pointer to bp

as an arg ument to sas si_be fore_handler in reg isters R4 and RS per NVIDIA's compute A B I . 0 In itial izes member variables of

mp, i ncluding address (wh ich contains the memory operation's effective address), width (wh ich is the width of the data in bytes),

properties (which contains static properties of the operation, e.g., whether it reads memory, writes memory, is atomic, etc.). (i)
Passes a generiC 64-bit pointer to mp in R6 and R7 per NVIDIA's com pute A B I . fi Performs the call to sassi_before_handler.

o Restores l ive reg isters, and reclaims the al located stack space . Cl) Executes the original store i nstruction.

3.1. SASSI Tool Flow

Figure 1 shows the compiler tool flow that includes the SASSI

instrumentation process. Shaders are first compiled to an

intermediate representation by afront-end compiler. Before

they can run on the GPU, however, the backend compiler must

read the intermediate representation and generate SASS. For

compute shaders, the backend compiler is in two places: in

the PTX assembler ptxas, and in the driver.

SASSI is implemented as the final compiler pass in ptxas,

and as such it does not disrupt the perceived final instruction

schedule or register usage. Furthermore as part of ptxas,

SAS SI is capable of instrumenting programs written in lan­

guages that target PTX, which includes CUDA and Open CL.

Apart from the injected instrumentation code, the original

SASS code ordering remains unaffected. With the SASSI pro­

totype we use nvlink to link the instrumented applications

with user-level instrumentation handlers. SASSI could also be

embedded in the driver to TIT compile PTX inputs, as shown

by dotted lines in Figure l .

SAS SI must be instructed where to insert instrumentation,

and what instrumentation to insert. Currently SASSI supports

187

inserting instrumentation before any and all SASS instructions.

Certain classes of instructions can be targeted for instrumen­

tation: control transfer instructions, memory operations, call

instructions, instructions that read registers, and instructions

that write registers. SASSI also supports inserting instrumen­

tation after all instructions other than branches and jumps.

Though not used in any of the examples in this paper, SASSI

supports instrumenting basic block headers as well as kernel

entries and exits. As a practical consideration, the where and

the what to instrument are specified via ptxas command-line

arguments.

3.2. SASSI Instrumentation

For each instrumentation site, SASSI will insert a CUDA

AB I-compliant function call to a user-defined instrumentation

handler. However, SASSI must be told what information

to pass to the instrumentation handler(s). We can currently

extract and pass to an instrumentation handler, the following

information for each site: memory addresses touched, registers

written and read (including their values), conditional branch

information, and register liveness information.

III [memory, extended memory, controlxfer, sync, . . .

III numeric, texture, total executed1

device unsigned long long dynamic_instr_counts [7];

III SASSI can be instructed to insert calls to this handler

III before every SASS instruction.

device void sassi_before_handler (SASSIBeforeParams *bp,

SASSIMemoryParams *mp) {
if (bp->IsMem(» (

atomicAdd(dynamic_instr_counts + 0, 1LL) i

if (mp->GetWidth() > 4 /*bytes*/)

atomicAdd(dynamic_instr_counts + 1, 1LL) ;

if (bp->IsContro1Xfer()) atomicAdd(dynamic_instr_counts + 2, lLL) i

if (bp->IsSync()) atomicAdd(dynamic_instr_counts + 3, lLL) ;

if (bp->IsNumeric()) atomicAdd(dynamic_instr_counts + 4, lLL) ;

if (bp->IsTexture()) atomicAdd(dynamic_instr_counts + 5, lLL) ;

atomicAdd(dynamic_instr_counts + 6, 1LL) i

Figure 3: A trivial example i nstrumentation handler. SASSI

can be instructed to insert a function call to this handler before

all instructions.

Figure 2(a) shows the result of one memory operation be­

ing instrumented by SASSI. The instruction at (9) is the

original memory instruction, and all prior instructions are

SAS SI-inserted instrumentation code. In this example, the

user has directed SASSI to insert instrumentation before all

memory operations (the where), and for each instrumentation

site to extract memory-specific details (such as the address

touched) about the memory operation (the what). SAS SI cre­

ates a sequence of instructions that is an ABI-compliant call

to a user-defined instrumentation handler. The caption of Fig­

ure 2 provides a detailed explanation of the sequence. SASSI

creates extra space on a thread's stack in this example to store

parameters that will be passed to the instrumentation handler.

While generating an AB I-compliant function call incurs

more instruction overhead than directly in-lining the instru­

mentation code, maintaining the ABI has two main benefits.

First, the user is able to write handlers in straight CUDA code.

They do not need to understand SASS, PTX, or even details

of the target architecture. Second, our approach is portable;

the same handler can be used for Fermi, Kepler, and Maxwell

devices, which are significantly different architectures.

Figure 3 shows a pedagogical instrumentation handler,

sas si_be fore_handler, from the setup shown in Figure 2.

The handler takes two parameters, pointers to instances of

SASSIBeforeParams (bp) and SASSIMemoryParams (mp),
respectively, and uses them to categorize instructions into

six overlapping categories. Note that a single SASS instruc­

tion can simultaneously belong to more than one of these

categories. As Figure 2(b) shows, the C++ object of class

SASSIBeforeParams contains methods that allow a handler

to query for basic properties of the instruction, including the

instruction's address, whether it uses texture memory, and

whether it alters control flow. This example uses several of

bp'S methods to categorize the instruction, and it uses CUDA's

atomicAdd function to record instances of each category. Ad­

ditionally, the handler uses the mp object to determine the

width in bytes of a memory operation's data. We can easily

188

instruct SAS SI to inject calls to this function before all SASS

instructions, the mechanics of which we describe later.

One challenging aspect of GPU instrumentation is the sheer

number of registers that may have to be spilled and filled in

the worst case to create an AB I-compliant function call. Even

though the compiler knows exactly which registers to spill,

there are many instrumentation sites in typical GPU programs

that require spilling 32 or more registers per thread if done

naively. NVIDIA's Kepler and Maxwell architectures require

spilling'" 128 registers per thread in the worst case. Com­

pounding this problem, threads are executed in SIMT fashion;

thus all the threads try to spill their live state to memory at

the same time, creating serious bandwidth bottlenecks. To

alleviate this issue, we impose a simple constraint on SASSI

instrumentation handlers; handlers must use at most 16 reg­

isters, the minimum number of registers required per-thread

by the CUDA ABI. This limit can trivially be enforced by

using the well-known -maxrregcount flag of nvcc to cap

the maximum number of registers used when compiling the

instrumentation handler.

It is important to note that SASSI does not change the orig­

inal SASS instructions in any way during instrumentation.

Furthermore, the register limit of 16 that we impose on the

instrumentation handler may increase the runtime overhead of

instrumentation, but it will not reduce an instrumentation han­

dIer's functional utility. With handlers for which the compiler

does not find an allocation that uses 16 or fewer registers, the

compiler will simply insert register spill code.

3.3. Initialization and Finalization

Unlike CPU instrumentation, GPU instrumentation must coor­

dinate with the host machine (CPU) to both initialize instru­

mentation counters, and to gather their values (and perhaps

log them to a file). For CUDA, SASSI leverages the CUPTI

library, which allows host-side code to register for callbacks

when certain important CUDA events occur, such as kernel

launches and exits [33]. In all of the case studies in this paper,

we use CUPTI to initialize counters on kernel launch and copy

counters off the device on kernel exits. On kernel launch, our

CUPTI "kernel launch" callback function uses cudaMemcpy to

initialize the on-device counters appropriately. On kernel exits,

our CUPTI "kernel exit" call back function uses cudaMemcpy

to collect (and possibly aggregate) the counters on the host

side. Furthermore, cudaMemcpy serializes kernel invocations,

preventing race conditions that might occur on the counters.

This approach is excessive for the cases where we do not need

per-kernel statistics. If instead we only wanted to measure

whole-program statistics, we could simply initialize counters

after the CUDA runtime is initialized, and copy counters off

the device before the program exits (taking care to register

callbacks for CUDA calls that reset device memory, which

would clear the device-side counters). The appropriate initial­

ization and finalization mechanisms can be chosen by the user

depending on the specific use case.

4. Methodology 1 _device_ void sassi_before_handler (SASSIBeforeParams *bp,

2 SASSICondBranchParams *brp)

The case studies we present in this paper are meant to demon­

strate how SAS SI's capabilities can be used for different types

of architecture experiments. Section 5 explores SASSI's abil­

ity to inspect application control flow behavior, which can be a

critical performance limiter on modern GPUs. Section 6 lever­

ages SAS SI to perform a detailed memory analysis, which

specifically characterizes an application's memory divergence.

Section 7 shows how SASSI allows access to an instrumented

3 {
4 If Find out thread index within the warp.

5
6
7
8
9

1 0
I I
1 2
1 3
1 4

application's register contents to enable value profiling. 1 5

1 6
While SASSI is capable of instrumenting applications that 1 7

target Fermi, Kepler, and Maxwell devices, the results we 1 8
1 9

present in this paper were gathered on Kepler-based architec- 20

tures. Specifically, the experiments presented in the aforemen- 21
22

tioned case studies target an NVIDIA Tesla KlO G2 with 8GB 23

memory and display driver version 340.21. In addition, all 24
25

experiments use the CUDA 6 toolkit, and we simply replace 26

the standard ptxas with our SASSI-enabled version. 27
28

The final case study in Section 8, characterizes an appli­

cation's sensitivity to transient errors by injecting faults into

the architecturally visible state of a GPU. The experiments

demonstrate how SAS SI can be used to change a kernel's be­

havior (e.g. , by altering register values and memory locations).

The experimental flow targets a Tesla K20 with 5GB memory,

display driver version 340.29, and uses the CUDA 6.5 toolkit.

We choose benchmarks to present in each of the case study

sections that reveal interesting behavior. With the exception of

NERSC's miniFE application [17, 27], all of the benchmarks

come from Parboil v2.5 [40] and Rodinia v2.3 [7].

5. Case Study I: Conditional Control Flow

Our first case study discusses a tool based on SASSI for ana­

lyzing SIMT control flow behavior. Explicitly parallel Single

Program Multiple Data (SPMD) languages such as CUDA and

OpenCL allow programmers to encode unconstrained control

flow, including gotos, nested loops, if-then-else statements,

function calls, etc. For GPUs when all of the threads in a warp

execute the same control flow (i. e. , the threads in the warp

share the same PC), they are said to be converged, and each

thread in the warp is therefore active. Conditional control

flow however, can cause a subset of threads to diverge. Such

divergence has serious performance ramifications for GPU ar­

chitectures. For NVIDIA's architectures, the hardware chooses

one path to continue executing, and defers the execution of

threads on the alternate paths by pushing the deferred thread

IDs and their program counters onto a divergence stack [19].

At this point, only a subset of the threads actually execute,

which causes warp efficiency to drop. At well-defined recon­

vergence points (which are automatically determined by the

compiler), the hardware pops the deferred threads off the stack

and begins executing the deferred threads.

This case study uses SASSI to collect per-branch control

flow statistics. Specifically, we will show an instrumentation

29
30
3 1
3 2
3 3
34

189

int threadldxlnWarp = threadldx.x & (warpSize- l) ;

If Find out which way this thread is going to branch.

bool dir = brp->GetDirection() ;

If Get masks and counts of 1) active threads in this warp,

If 2) threads that take the branch, and

If 3) threads that do not take the branch.

int active = _ballot (1) ;

int taken = _ballot (dir == true) i
int ntaken = _ballot (dir == false) ;

int numActive = -popc (active) ;

int numTaken = -popc(taken) , numNotTaken = -popc(ntaken) ;

II The first active thread in each warp gets to write results.

if ((_ffs (active) -1) == threadldxlnWarp) {
II Find the instruction's counters in a hash table based on

II its address. Create a new entry if one does not exist.

struct BranchStats *stats = find(bp->GetlnsAddr()) ;

II Increment the various counters that are associated

II with this instruction appropriately.

atomicAdd(&(stats->totalBranches) , lULL) ;

atomicAdd(& (stats->activeThreads) , numActive) ;

atomicAdd(&(stats->takenThreads) , numTaken) ;

atomicAdd(&(stats->takenNotThreads) , numNotTaken) ;

if (numTaken != numActive && numNotTaken != numActive) {
II If threads go different ways, note it.

atomicAdd(&(stats->divergentBranches) , lULL) ;

)))

Figure 4: Handler for conditional branch analysis.

handler that uses counters to record for each branch 1) the

total number of times the branch was executed, 2) how many

threads were active, 3) how many threads took the branch, 4)

how many threads "fell through", 5) and how often it caused a

warp to split (i. e. , divergent branch).

5.1. SASSI Instrumentation

Instrumentation where and what: This analysis targets pro­

gram control flow. We instruct SAS SI to instrument before all

conditional control flow instructions, and at each instrumen­

tation site, we direct SASSI to collect and pass information

about conditional control flow to the instrumentation handler.

Instrumentation handler: Figure 4 shows the instrumenta­

tion handler we use for this case study. SASSI will insert calls

to this handler before every conditional branch operation.

The handler first determines the thread index within the

warp (line 5) and the direction in which the thread is going to

branch (line 8). CUDA provides several warp-wide broadcast

and reduction operations that NVIDIA's architectures effi­

ciently support. For example, all of the handlers we present in

this paper use the _ballot (predicate) instruction, which

"evaluates predicate for all active threads of the warp and re­

turns an integer whose Nlh bit is set if and only if predicate

evaluates to non-zero for the Nh thread of the warp and the

Nth thread is active" [32].

The handler uses _ballot on lines 13- 15 to set masks

corresponding to the active threads (active), the threads that

are going to take the branch (taken), and the threads that are

going to fall through (ntaken). With these masks, the handler

Table 1: Average branch divergence statistics.

Static Dynamic

Benchmark Total Divergent Divergent Total Divergent Divergent
(Dataset) Branches Branches % Branches Branches %

bfs (IM) 41 1 9 46 3.66 M 1 49.68 K 4.1
bfs (NY) 41 22 54 933.88 K 1 1 9.45 K 1 2.8

'5 bfs (SF) 5 1 26 5 1 3.75 M 1 84.63 K 4.9
� bfs (UT) 41 20 49 697.28 K 1 04.08 K 1 4.9
c.. sgemm (small) 2 0 0 1 .04 K 0 0.0

sgemm (medium) 2 0 0 528.00 K 0 0.0
tpac f (small) 25 5 20 14.85 M 3.75 M 25.2

bfs 7 2 29 3.7 1 M 525.54 K 1 4.2
� gaussian 1 0 4 40 492.38 M 1 . 1 8 M 0.2
·2 heartwall 1 6 1 5 0 3 1 226.85 M 95.44 M 42. 1
� srad_vl 28 7 25 9.44 M 46.03 K 0.5
0:: srad_v2 1 9 1 2 63 I 1 .20 M 2.38 M 2 1 .3

streamcluster 7 0 0 442. I I M 0 0.0

uses the population count instruction (_pope) to efficiently

detennine the number of threads in each respective category

(numAetive, numTaken, numNotTaken).
On line 20 the handler elects the first active thread in the

warp (using the find first set CUDA intrinsic, _ffs) to record

the results. Because this handler records per-branch statistics,

it uses a hash table in which to store counters. Line 23 finds the

hash table entry for the instrumented branch (using a function

not shown here). Lines 27-33 update the counters.

As we described in Section 3, we rely on the CUPTI library

to register callbacks for kernel launch and exit events [33].

Using these callbacks, which run on the host, we can appro­

priately marshal data to initialize and record the values in the

device-side hash table.

S.2. Results

Table 1 summarizes the average per-branch divergence statis­

tics for a selected set of Parboil and Rodinia benchmarks with

different input datasets. For each benchmark, we calculate the

fraction of branches in the code that were divergent ("Static"

column), and how often branches diverged throughout execu­

tion ("Dynamic" column) thereby reducing warp efficiency.

Some benchmarks are completely convergent, such as

sgemm and streameluster, and do not diverge at all.

Other benchmarks diverge minimally, such as gaussian and

srad_vl, while, benchmarks such as tpaef and heartwall

experience abundant divergence. An application's branch

behavior can change with different datasets. For example,

Parboil's bfs shows a spread of 4. 1- 14.9% dynamic branch

divergence across four different input datasets. In addition,

branch behavior can vary across different implementations of

the same application (srad_vl vs. srad_v2, and Parboil bfs

vs. Rodinia bfs).
Figure 5 plots the detailed per-branch divergence statistics

we can get from SASSI. For Parboil bfs with the IM dataset,

two branches are the major source of divergence, while with

the UT data set, there are six branches in total (including the

previous two) that contribute to a 10% increase in dynamic

branch divergence. SAS SI simplifies the task of collecting per-

190

700 K .------,c=------,,------=----=----=----,------=----o--=-c-�c_=__
600 K ° Divergenl Branches ° Non-Divergent Branches Parboil bfs (1M)
500 K
400 K
300 K
200 K
100 K

ng��IIIIIIPa� rboi� lbfSI(UT) tic 90K
� 8 �g� m c 60�

i I �� � �80DOODDDDO[JOmrnODDDDDDrJc==_�_--
Figure 5: Per-branch divergence statistics of the Parboi l bfs

benchmark with different i n put datasets. Each bar represents

an unique branch i n the code. The branches are sorted i n a

descending order of runtime branch i nstruction count.

branch statistics with its easy-to-customize instrumentation

handler, and also makes it tractable to run all input datasets

with its low runtime overhead.

6. Case Study 11: Memory Divergence

Memory access patterns can impact performance, caching ef­

fectiveness, and DRAM bandwidth efficiency. In the SIMT

execution model, warps can issue loads with up to 32 unique

addresses, one per thread. Warp-wide memory access patterns

determine the number of memory transactions required. To

reduce total requests sent to memory, accesses to the same

cacheline are combined into a single request in a process

known as coalescing. Structured access patterns that touch

a small number of unique cachelines are more efficiently co­

alesced and consume less bandwidth than irregular access

patterns that touch many unique cachelines.

Warp instructions that generate inefficient access patterns

are said to be memory address diverged. Because warp in­

structions execute in lock-step in the SIMT model, all memory

transactions for a given warp must complete before the warp

can proceed. Requests may experience wide variance in la­

tency due to many factors, including cache misses, memory

scheduling, and variable DRAM access latency.

Architects have studied the impact of memory divergence

and ways to mitigate it in simulation [6, 22, 36, 37, 42]. For

this case study, we demonstrate instrumentation to provide

in-depth analysis of memory address divergence. While pro­

duction analysis tools provide the ability to understand broad

behavior, SASSI can enable much more detailed inspection

of memory access behavior, including: the frequency of ad­

dress divergence; the distribution of unique cachelines touched

per instruction; correlation of control divergence with address

divergence; and detailed accounting of unique references gen­

erated per program counter.

6.1. SASSI Instrumentation

Instrumentation where and what: We instruct SASSI to

instrument before all memory operations, and at each instru­

mentation site, we direct SAS SI to collect and pass memory­

specific information to the instrumentation handler.

1 _device_ void sassi_before_handler (SASSIBeforeParams *bp,

2 SASSIMemoryParams *mp)

3 {
4 if (bp->GetInstrWillExecute () {
5 intptr_t addrAsInt = mp->GetAddress() ;

6 II Only look at global memory requests. Filter others out.

7 if (_isGlobal «void *) addrAsInt» {
8 unsigned unique = 0; II Num unique lines per warp.

9
1 0 / / Shift off the offset bits into the cache line.

1 1 intptr_t lineAddr = addrAsInt » OFFSET_BITS;

1 2
1 3 int works e t = _ballot (1) ;

1 4 int firstActive = _ffs (workset) -1;

1 5 int numActive = -------popc (workset) ;

1 6 while (workset) {
1 7 I I Elect a leader, get its cache line, see who matches it.

1 8 int leader = _ffs(workset) - 1;

1 9 intptr_t leadersAddr = bcast(lineAddr, leader) ;

20 int notMatchesLeader = _ballot (leadersAddr != lineAddr) ;

21
22 II We have accounted for all values that match the leader's.

23 II Let's remove them all from the workset.

24 works et = workset & notMatchesLeader;

25 unique+ +;

26
27
28 II Each thread independently computes 'numActive', 'unique'.

29 II Let the first active thread actually tally the result

30 II in a 32x32 matrix of counters.

3 1 int threadIdxInWarp = threadIdx.x & (warpSize-1) ;

32 if (firstActive == threadIdxInWarp) {
33 atomicAdd (& (sassi_counters [numAct i ve-1 J [unique-1 J) , 1LL) ;

34))))

Figure 6: Handler for memory divergence profi l i n g .

Instrumentation handler: Figure 6 shows the instrumenta­

tion handler for this case study. SASSI inserts a call to this

handler before every operation that touches memory. Because

NVIDIA's instruction set is predicated, this handler first filters

out threads whose guarding predicate is false (line 4). This

handler then selects only addresses to global memory (line

7).' Next, the handler computes each thread's requested cache

line address (line 1 1). For this work, we use a 32B line size.

Each active thread in the warp will have a thread-local value

for the computed address in lineAddr. Lines 16-26 use re­

duction and broadcast operations to iteratively find the number

of unique values of lineAddr across a warp.

This handler elects a leader thread to record the statistics

(line 32). The leader populates a 32 x 32 (lower triangular)

matrix of values in sassi_counters [l [l, where the rows

of the matrix record the number of active threads in the warp

(numActive) and the columns correspond to the number of

unique line addresses found. This handler also uses CUPTI to

initialize and dump the statistics kept in sassi_counters.

6.2. Results

Figure 7 shows the the distribution (PMF) of unique cache

lines (32B granularity) requested per warp instruction for a

selection of address divergent applications. The distributions

show the percentage of thread-level memory accesses issued

from warps requesting N unique cache lines, where N ranges

from 1 to 32.

I NVIDIA GPUs feature several memory spaces, including local memory,
global memory, and shared memory.

19 1

1/)30% 0.44 0.43 0.51 0.45 0.73 � g.25%

L
� �20%

�ULJ
0

l
�15% E � 10%
t5 5%
� u. 0%

):' LL ;:::-
� § <1> .!!!

j
g> -' Cl:

� .0 -' if) ;;. � 2- '6 '6 w 0
.!!! :E .!!!

�
<1>

E :g
.0 .0 E '(>

� :il' .�

Parboil Rodinia miniFE

Figure 7: Distribution (PMF) of unique cachel i nes requested

per warp memory i nstruction for a selection of memory ad­

dress divergent applications.

100000

100

10
.

4 8 12 16 20 24 28 32

(a) CSR (b) ELL

Figure 8: Memory access behavior for miniFE variants using

different data formats. Warp occupancy is along the x-axis,

address divergence is along the y-axis.

The applications shown exhibit complex data access pat­

terns to irregularly structured data. Graph traversal operations

such as bf s (breadth-first search) have unpredictable, data­

dependent accesses that are frequently irregular. We can see

how data-dependent behavior impacts memory divergence

for three different datasets for bf s from the Parboil suite;

each exhibits similar overall behavior, but the extent of the

problem varies across datasets. Other applications such as

mri -gridding, spmv, and miniFE use sparse data represen­

tations or indirection that limits dense, regular access.

Advanced developers structure their code to use access

patterns or data formats that improve memory access regu­

larity [2, 30]. For instance, Figure 7 shows two variants of

miniFE that use different matrix formats (ELL vs. CSR). We

can see that miniFE-ELL makes most of its memory requests

from warp instructions with low address divergence. On the

other hand, miniFE-CSR makes the majority of its accesses

from warp instructions with high address divergence - with

73% of memory accesses being fully diverged (from warp in­

structions requesting the maximum 32 unique lines). Figure 8

provides an in-depth look at the two variants of miniFE. We

see a two-dimensional plot that accounts for both warp occu­

pancy (number of active threads) as well as address divergence

(number of unique cachelines requested). In the case of CSR,

an irregular access pattern results. In this implementation,

many instructions are maximally address divergent, generat­

ing as many unique requests as active threads (the diagonal).

For ELL, we can see that the distribution of unique requests,

device void sassi_after_handler (SASSIAfterParams* ap,

SASSIRegisterParams *rp)

int threadldxlnWarp = threadldx.x & (warpSize-1) i

int firstActiveThread = (_ffs (_ballot (1» -1) ; l*leader*1

II Get the address of this instruction, use it as a hash into a

II global array of counters.

struct handlerOperands *stats = find(ap->GetlnsAddr(» ;

II Record the number of times the instruction executes.

atomicAdd(&(stats->weight) , 1) ;

stats->numDsts = rp->GetNumGPRDsts() i

for (int d = 0; d < rp->GetNumGPRDsts() i d++) {
II Get the value in each destination register.

SASSIGPRReglnfo reglnfo = rp->GetGPRDst(d) ;

int valuelnReg = (int) rp->GetRegValue{ap, reglnfo) ;

stats->regNum [d] = rp->GetRegNum(reglnfo) i

II Use atomic AND operations to track constant bits.

atomicAnd{&(stats->constantOnes [d]) , valuelnReg) ;

atomicAnd{&(stats->constantZeros [d]) , �valuelnReg) ;

II Get the leader's 'valuelnReg', see if all threads agree.

int leaderValue = _shfl(valuelnReg, firstActiveThread) ;

int allSame = (_all (valuelnReg == leaderValue) ! = 0);

II The warp leader gets to write results.

if (threadldxlnWarp == firstActiveThread) {
atomicAnd(&(stats->isScalar [d]) , aIISame) ;

)))

Figure 9: A simpl ified handler for value profi l i n g .

while still correlated to the number of active threads, is shifted

lower. In this case, threads are making more aligned requests

that are better coalesced.

7. Case Study Ill: Value Profiling and Analysis

This section presents a simple profiling handler that tracks all

instructions that produce register values and determines the

following properties: (1) which bits of the generated values are

always constant across all warps, and (2) which instructions

are scalar, i. e. , the instruction produces the same values for all

threads within a warp. Scalar analysis has been proposed to

reduce register file capacity by allowing a significant amount

of sharing across threads in a warp [20]. Similarly, there have

been proposals to pack multiple, narrow-bitwidth operands

into a single register [4 1], and hardware mechanisms exist for

exploiting narrow-bitwidth computations (e.g. , by aggressively

clock-gating unused portions of the datapath) [5]. This sec­

tion's analysis provides insight into how many register file bits

(a premium in GPUs) current applications are wasting. Such

insight is a valuable guide to the opportunities that architecture

mechanisms can provide.

7.1. SASSI Instrumentation

Instrumentation where and what: To track the values a

shader's instructions produce, we use SASSI to instrument

after all instructions that write to one or more registers. We in­

struct SASSI to collect and pass to the instrumentation handler

the register information for each instrumented instruction.

Instrumentation handler: Figure 9 shows a simplified ver­

sion of the value profiling instrumentation handler for this case

study. The handler performs the following five steps: (1) it

192

Table 2: Results for value profi l i n g .

Dynamic % Static %

Benchmark const bits scalar const bits scalar

bfs 72 46 79 52
cutcp 1 6 25 45 42
histo 70 20 65 27
lbm 25 4 28 7
mri-gridding 66 66 60 35
mri-q 1 9 40 52 5 1
sad 5 1 5 58 35
sgemm 1 7 47 27 44
spmv 54 43 60 48
stencil 49 35 58 42
tpacf 70 26 72 33

b+tree 73 76 74 80
backprop 73 37 72 33
bfs 72 44 68 38
gaussian 7 1 54 57 50
heartwall 60 I I 75 54
hotspot 65 43 67 43
kmeans 38 33 59 51
lavaMD 46 30 54 40
lud 33 1 9 42 22
mummergpu 57 1 2 6 2 1 8

40 3 1 40 3 1
23 1 6 27 1 8

pathfinder 66 1 9 6 5 3 7
srad_vl 47 26 53 35
srad_v2 48 28 60 35
st reamcl uster 38 54 54 42

elects a leader from the warp's active threads to write back re­

sults about whether a write is scalar; (2) it gets a pointer to the

current instruction's statistics by hashing into a device-global

hash table; (3) it iterates through the destination registers, ex­

tracting the value to be written to each destination; (4) it uses

the atomicAnd function to keep track of constant one- and

zero-bits; and (5) it uses _shfl and _all to communicate

and decide whether a value is scalar. The leader records the

outcome in the hash table.

The instrumentation library uses the CUPTI library to reg­

ister callbacks for kernel launch and exit events [33]. Our

launch call back initializes the hash table, and our exit callback

copies the hash table off the device. This approach allows us

to track statistics per kernel invocation.

7.2. Results

In our library's thread exit call back function, the library dumps

the value profile for the associated kernel invocation, recording

the profile for each instruction that writes one or more registers.

For example, the output for a texture load from Parboil's bfs

that loads a 64-bit quantity into two adjacent registers is:

TLD.LZ.P
R12 <­

R13* <-

R12, R16, RZ, oxoooo, 1D, Ox3;
[OOOOOOOOOOOOOOTTTTTTTTTTTTTTTTTT]
[00000000000000000000000000000001]

This output shows that this instruction always loaded the

value 1 into R13, across all threads in the kernel. At the same

time, only the lower 18 bits of R12 varied (as is indicated by

the T values) during the kernel's execution; the upper 14 bits

were always O. The analysis identifies R13 as scalar, as noted

by the asterisk.

Our instrumentation library generates a coarse sUlmnary of

the scalar and bit invariance properties of the instrumented pro­

gram. Table 2 summarizes the results for Parboil and Rodinia.

We use the largest input data set available for Parboil, and

the default inputs for Rodinia. For each benchmark we show

the dynamic and static percentage of register bit assignments

that are constant and scalar. The static metrics weigh each

instruction equally, while the dynamic metrics use instruction

frequency to approximate the true dynamic statistics.

These results show that for these suites of benchmarks, the

architecture is making poor use of the register file. Most

benchmarks have a significant percentage of dynamic scalar

operations, ranging up to 76% for b+tree. In addition, for

these profile runs, most of the operands in these benchmarks

require only a fraction of the 32-bit register allotted to them.

With a remarkably concise amount of code, SASSI exposes

interesting in sights that can drive architecture studies that aim

to improve register file efficiency.

8. Case Study IV: Error Injection

This section demonstrates how SASSI can be employed to

evaluate and analyze GPU application sensitivity to transient

hardware errors, by injecting errors into the architecture state

of a running GPu. To the best of our knowledge, the only prior

research that examines GPU error vulnerability used CUDA­

GDB [14, 3 1]. That work also performed instruction-level

statistical error injection to study application vulnerability, but

lacked the ability to modify predicate registers and condition

codes. Furthermore, because breaking after every instruction

using CUDA-GDB and transferring control to the host system

is prohibitively expensive, that work required a complex and

heuristic-based profiling step to select error injection sites.

A SASSI-based error injection approach overcomes these

two challenges as it can modify any ISA visible state, in­

cluding predicate registers and condition codes. Further, the

instrumented code executes on the GPU, which makes the pro­

filing step much faster and more accurate. Performing error

injections using SASSI requires three main steps: (1) profil­

ing and identifying the error injection space; (2) statistically

selecting error injection sites; and (3) injecting errors into

executing applications and monitoring error behavior. Steps

(1) and (3) occur on different executions using two different

SAS SI instrumentation handlers.

In this study, we define an architecture-level error as a single­

bit flip in one of the destination registers of an executing

instruction. If the destination register is a general purpose

register (32-bit value) or a condition code (4-bit value), one

bit is randomly selected for flipping. For predicate registers,

we only flip a destination predicate bit that is being written by

the instruction.

8.1. SASSI Instrumentation

Instrumentation where and what: For the profiling step, we

instrument after all instructions that either access memory or

193

write to a register and exclude instructions that are predicated

out. We collect and pass the register and memory information

for each instrumented instruction to the handler, which records

the state modifications so that an off-line tool can stochasti­

cally select the error injection site. For error injections, we

instrument the same set of instructions and use the handler

to inject the error into the location selected by the stochastic

process.

Instrumentation handler: In the profiling step, we collect

the following information to identify the error injection space:

(1) static kernel names, (2) the number of times each kernel

executes, (3) the number of threads per kernel invocation, and

(4) the number of dynamic instructions per thread that are

not predicated out and either write to a register or a memory

location. We use CUPTI to collect (1) and (2) and instrument

the instructions using SASSI to collect (3) and (4).

Using this information we randomly select 1,000 error in­

jection sites per application, which is a tuple consisting of the

static kernel name, dynamic kernel invocation ID, thread ID,

dynamic instruction count, seed to select a destination register,

and seed to select the bit for injection. This step is performed

on the host CPU.

In the last and the most important step, we inject one error

per application run and monitor for crashes, hangs, and output

corruption. In each injection run, we check if the selected

kernel and its dynamic invocation count has been reached

using CUPTI. If so, we copy the remaining error site tuple

into the device memory. During kernel execution, we check

if the current thread is the selected thread for injection in the

instrumentation handler. For the selected thread, we maintain a

counter and check if the dynamic instruction that just executed

is the selected instruction for injection. If it is the selected

instruction, we inject the error into the bit and the register

specified by the seeds in the tuple.

After the handler injects the error the application contin­

ues unhindered (unless our experimental framework detects a

crash or a hang). We categorize the injection outcome based

on the exit status of the application, hang detection, error mes­

sages thrown during execution, and output differences from

that of an error-free reference run.

8.2. Results

Figure 10 shows how different applications respond to

architecture-level errors. As mentioned earlier, we performed

1,000 error injection runs per application. This figure shows

that approximately 79% of injected errors on average (using

our error model) did not have any impact on the program out­

put. Only 10% resulted in crashes or hangs. Approximately

4% of injections showed symptoms of failures (unsuccessful

kernel execution or explicit error messages in stdoutlstderr),

which can be categorized as potential crashes with appropriate

error monitors. The remaining injections corrupt some appli­

cation output (stdout or stderr or a program defined output

file). We categorize such cases as potential silent data corrup-

1 00%
90%
80%
70%
60%
50%
40%
30%
20%
1 0%

Potentiat Detected Unrecoverable Errors Potential Silent Data Corruptions

o Masked III Crashes � Hangs � Failure symptoms 0 Stdout only different _ Output file differen

Figure 10: Error i njection outcomes of different applications.

Each bar shows the results from 1,000 error i njection runs.

tions (SDCs). We observed that 1.5% of injections showed

differences only in stdoutlstderr when compared to error-free

executions without corrupting program output files, which

may be acceptable for some applications. Lastly, only 5.4%

showed differences in program output files. Additional details

can be found in [16].

SAS SI provides the ability to explore the architecture vul­

nerability of GPUs. We further expect that SASSI will be a

valuable tool in exploring hardware and software error mitiga­

tion schemes.

9. Discussion

This section discusses additional SASSI usage considerations,

including runtime overheads, instrumentation side-effects, lim­

itations, and possible extensions.

9.1. Runtime Overhead

The overhead of SAS SI instrumentation depends on where

we insert instrumentation and what instrumentation we insert.

Table 3 shows the overheads of instrumentation for each of the

case studies. For each benchmark, the three columns under the

"Baseline" heading show the wall clock runtime t (in seconds),

the total time spent executing kernels k (in milliseconds), and

the total number of kernel launches. The benchmarks in the

table are sorted by the fraction of total runtime spent in the

GPU kernel, from smallest to largest.

We use nvprof [35] to collect device-side statistics and the

Linux time command to measure whole-program runtimes.

All results were collected on a 3GHz Intel@ Xeon@ E5-2690

v2 with an NVIDIA Tesla K40m and driver version 346.4 1.

We use the median of five runs for each experiment, compile

benchmarks at the "-03" optimization level, and invoke the

applications with the largest supplied input data set.

For each case study we measure the total wall-clock runtime

T and device-side runtime K of instrumentation relative to the

baselines t and k, respectively. As the two instances where

instrumentation leads to performance improvements indicate,

these measurements contain some jitter.

194

As expected, the fewer SASS instructions SASSI instru­

ments, the lower the overhead of instrumentation. As Case

Study I only instruments conditional branches, it sees rela­

tively modest slowdowns. However, as Case Studies III and IV

add instrumentation after every SASS instruction that writes

a register, the slowdowns can be significant. The maximum

slowdown we see is over 160 x for whole-program execution.

For applications with a considerable fraction of CPU and

data transfer time, the whole-program overhead of instrumen­

tation is typically negligible, whereas for GPU-bound appli­

cations, the overhead can be large. Even heavy instrumenta­

tion does not significantly disrupt many of these applications,

simply because they are CPU-bound. Also of note, nvprof

treats the marshalling of data between the device and host as

kernel time, which reduces the apparent kernel-level impact

of instrumentation on memory-bound applications such as

mummergpu.

We removed the body of the instrumentation handlers to

measure the overhead of spilling and setting up ABI-compliant

calls. Surprisingly the runtime overhead does not decrease

dramatically when we stub out the code in the instrumentation

handlers. For all case studies, the overhead of ABI-compliance

and spilling live registers dominates, consuming roughly 80%

of the total overhead.

Future work will consider optimizations to reduce the base­

line overhead of instrumentation. One approach involves track­

ing which live variables are staticaUy guaranteed to have been

previously spilled but not yet overwritten, which will allow

us to forgo re-spilling registers. In addition, while passing

references to C++ objects is convenient for programmers,

stack-allocating the objects is expensive; We may consider

mechanisms to more efficiently pass parameters to the han­

dlers.

Because SASSI-instrumented programs run at native hard­

ware rates, it enables users to quickly refine their experiments,

a feature not possible in the context of GPU simulation frame­

works. Our worst kernel-level slowdown of 722 x is much

faster than simulators such as GPGPU-Sim, which are l - l O
million times slower than native execution.

9.2. Instrumentation Side-effects

While SAS SI is intended to be minimally invasive, additional

instructions, register pressure, and cache effects of SAS SI

instrumentation can alter the behavior of applications that

contain race-conditions or rely on specific scheduling or tim­

ing assumptions. Even without instrumentation, tpacf in

the Parboil suite produces inconsistent results across differ­

ent architectures, particularly on the medium and large input

sets. While we did not observe applications that exhibited

non-deterministic behavior with the addition of SASSI, if an

application is already susceptible to non-deterministic behav­

ior, SAS SI instrumentation will likely exacerbate this non­

determinism.

Table 3: Instrumentation overheads. The " Basel ine" col umn shows the wal l clock time t , and the t ime spent executing kernels k,

for each of the benchmarks. The "T " col umn for each case study shows the total runtime of the i nstru mented appl ication with

respect to t, and the "K" col umn shows the device-side runtime with respect to k.

Baseline

Benchmark I=Total time (s) k=Kernel time (ms) Kernel launches

sgemm 2.0 7 .8 4
spmv 2.2 24.3 58

bfs 2.3 54.3 37
mri-q 0.3 9 .2 1 5

' 0 mri-gridding 9.6 374.2 81
oD cutcp 3 . 0 176. 1 3 1 �
0- histo 40.4 4466. 1 7 1 042

stencil 1 .6 1 88 . 2 1 04
sad 3 . 1 498 .9 7
lbm 7 . 2 561 1 A 3003

tpacf 5 A 4280.6 4

nn 0.3 0 . 1 3
hotspot 0.7 0 .4 4

lud OA J .7 48
b+tree 1 . 8 1 2 . 5 20

bfs 2.0 16A 55
pathfinder J .3 1 2 . 1 8

" srad_v2 2.3 23 .0 8
'2 mummergpu 7.7 90 . 1 1 3 'i3

backprop 0.3 4 .8 1 0 0
c:<: kmeans 1 .6 32.3 10

lavaMD 0.6 2 1 . 5 6
srad_vl 0.4 2 1 . 2 708

0.3 25 .5 258
gaussian 1 .5 254.9 2052

streamcluster 7 . 1 243 1 .5 1 1 278
heartwall 0.5 227 A 40

Minimum 0.3 0 . 1 3
Maximum 40A 561 1 A 7 1 042

Harmonic mean 0 .9 J .3 1 2 . 2

9.3. Concurrency Issues and Limitations

Because SASSI instrumentation code is written in CUDA, it is

parallel by construction. Designing instrumentation handlers

for SASSI requires the user to carefully consider synchroniza­

tion and data sharing. SASSI handlers can exploit most of

the explicit parallel features of CUDA, including operations

for voting, atomics, shuffle, and broadcast. However, not all

CUDA is legal within SASSI instrumentation handlers. For

example, thread barriers (syncthreads) cannot be used be­

cause the instrumentation function may be called when the

threads in a warp are diverged; syncthreads executed by

diverged warps precludes all threads from reaching the com­

mon barrier. Finally, SAS SI instrumentation libraries that use

shared resources, such as shared and constant memory, not

only risk affecting occupancy, but they could also cause instru­

mented programs to fail. For instance, it is not unconunon for

programs to use all of shared memory, leaving nothing for the

instrumentation library. In practice, we have not been limited

by these restrictions.

9.4. SASSI Extensions

Exploiting compile-time information: As part of the back­

end compiler, SASSI has structural and type information that

cannot be easily reconstructed dynamically. For instance, un­

like SAS SI, binary instrumentation frameworks generally can­

not identify static basic block headers [12]. Operand datatype

195

Case Study I Case Study 11 Case Study III Case Study IV
Cond. Branches Memory Divergence Value Profiting Error Injection

T K T K T K T K

1 .01 1 .9k 1 .51 1 I 1 . 8k 2 . 1 1 293 .3k 2.21 286Ak
1 .01 3 .5k J .31 1 9 . 9k 1 . 81 72.8k 1 . 81 73 . l k
1 . 1 1 3 .7k 1 .21 I J .7k 1 .61 25.5k I AI 20.8k
1 .51 1 6 . l k 1 . 1 1 1 .2k 22.31 722. l k 2 1 . 1 1 678.3k
1 .51 17 .3k I Al 1 3 .9k 6.31 1 39 . 8k 4.71 98 .9k
5 . 1 1 8 1 .3k 3 . 81 60.3k 42.61 7 1 4Ak 40.31 676.2k

4.41 29.8k 5 . 91 46.0k 3 0 . 81 270.4k 29 . 1 1 257 .0k
4.31 27 . l k 9 .41 69.9k 32.31 255.5k 32.31 258 . 6k
i . l l I . l k i . l l L6k 3 . 81 1 7 . 8k 3 .51 1 6 . 2k
2.01 2 .2k 1 8 .31 23 . l k 1 0 3 . 01 1 29 .6k 98.21 1 25 . 0k

1 8 .91 23 .0k 1 0 . 91 1 3 .6k 1 60 .61 205 .0k 148.91 1 87 . 0k

1 .01 2 .0k 1 .01 2 .2k 0 .91 8.7k 1 .01 8 . 2k
1 . 1 1 8 . 6k 1 .01 16 .3k 1 .01 1 2 L 6k 1 . 1 1 1 20 .2k
1 .01 7 . l k 1 .01 22.4k J .31 80.8k J .31 67 . l k
1 .01 3 .5k 1 .01 1 O . 0k l .31 39.3k 1 .21 3 8 Ak
1 .01 4.7k 1 . 1 1 14 .0k l .31 34Ak I AI 34.7k
1 . 1 1 2 .6k 1 . 1 1 7 . l k 1 .21 20.3k 1 .21 20.7k
1 .01 5 . l k 1 . 1 1 1 2.3k J .71 69. l k J .71 69.9k
1 . 1 1 J .3k 1 . 1 1 L l k 1 .21 4 .0k 1 . 1 1 3 .5k
1 .01 1 .5k i . l l 5 .4k l .31 1 7 . 8k l .31 1 8 .5k
1 .01 2. l k 0 .91 2.4k 1 .51 26.7k 1 .51 25.5k
1 .41 1 3 . 8k 2 . 1 1 30 .8k 1 7 .71 452.5k 1 6 . 21 422.4k
1 .41 8 . 5k 4.61 62.0k 14 .51 227 .8k 14 .51 232.5k
1 .01 LOk J .31 5 .3k 2.01 1 3 .9k 1 .91 1 3 .5k
4.41 1 8 .7k 2.31 8 .4k 1 2.71 69Ak 6.31 32.9k
2.01 3 . 8k 8.71 22.8k 34.71 99.9k 3 3 . 01 95.6k
9 .91 22. l k 30.01 70.6k 1 03 .31 229 .6k 93.71 220.7k

1 .01 1 .0k 0 .91 I . l k 0 .91 4 .0k 1 .01 3 .5k
1 8 .91 8 J .3k 30.01 I I L8k 1 60 .61 722. l k 148.91 678.3k

1 .41 3 .4k 1 .61 5.7k 2.41 3 L 8k 2.41 29.0k

information can also be passed to SASSI handlers, information

that is not explicitly encoded in a program's binary code.

Instrumenting heterogeneous applications: SASSI can be

used in conjunction with host-side instrumentation tools like

Pin to enable whole-program analysis of applications. This

approach requires some degree of coordination between the

host- and device-side instrumentation code, particularly when

used to form a unified stream of events for analysis. We have

already built a prototype to examine the sharing and CPU­

GPU page migration behavior in a Unified Virtual Memory

system [29] by tracing the addresses touched by the CPU and

GPU. A CPU-side handler processes and correlates the traces.

Driving other simulators: SASSI can collect low-level traces

of device-side events, which can then be processed by separate

tools. For instance, a memory trace collected by SASSI can

be used to drive a memory hierarchy simulator.

9.5. Graphics Shaders

Instrumentation of OpenGL and DirectX shaders is feasible

with SASSI. Graphics shaders require SAS SI to be part of

the driver because they are always HT compiled. Graphics

shaders do not adhere to the CUDA ABI nor do they maintain

a stack, and therefore SASSI must allocate and manage a

stack from which the handler code can operate. Aside from

stack management, the mechanics of setting up a CUDA ABI­

compliant call from a graphics shader remain unchanged.

10. Related Work

To our knowledge, this paper is the first to introduce an ac­

curate and flexible selective instrumentation framework for

GPU applications. The major contribution of this work is

demonstrating a middle ground for measuring, characterizing,

and analyzing GPU application performance that provides ac­

curate hardware-rate analysis while being flexible enough to

measure many interesting aspects of execution.

Many profilers rely on specialized hardware support, such as

NSight [34], Visual Profiler [35], and ProfileMe [1 1]. SASSI

on the other hand, like the remainder of the related work

in this section, is purely software-based. We qualitatively

compare SAS SI to alternative approaches, including binary

instrumentation and compiler-based frameworks.

10.1. Binary Instrumentation

Tools such as Pin [2 1], DynamoRIO [12], Valgrind [28], and

Atom [38] allow for flexible binary instrumentation of pro­

grams. Binary instrumentation offers a major advantage over

compiler-based instrumentation approaches such as SASSI

employs: users do not need to recompile their applications to

apply instrumentation. Not only is recompilation onerous, but

there are cases where vendors may not be willing to relinquish

their source code, making recompilation impossible.

On the other hand, compiler-based instrumentation ap­

proaches have some tangible benefits. First, the compiler has

information that is difficult, if not impossible, to reconstruct

at runtime, including control-flow graph information, register

liveness, and operand data-types. Second, in the context of

just-in-time compiled systems (as is the case with graphics

shaders and appropriately compiled compute shaders), pro­

grams are always recompiled before executing anyway. Fi­

nally, compiler-based instrumentation is more efficient than

binary instrumentation because the compiler has the needed

information to spill and refill the minimal number of registers.

10.2. Direct-execution Simulation

Another approach related to compiler-based instrumentation

is direct execution to accelerate functional simulators. Tools

such as RPPT [9], Tango [10], Proteus [4], Shade [8], and

Mambo [3] all translate some of the simulated program's

instructions into the native ISA of the host machine where

they execute at hardware speeds. The advantage of these ap­

proaches for architecture studies is that they are built into sim­

ulators designed to explore the design space and they naturally

co-exist with simulator performance models. The disadvan­

tage is that one has to implement the simulator and enough of

the software stack to run any code at all. By running directly

on native hardware, SASSI inherits the software stack and

allows a user to explore only those parts of the program they

care about. While we have not yet done so, one can use SASSI

as a basis for an architecture performance simulator.

196

10.3. Compiler-based Instrumentation

Ocelot is a compiler framework that operates on PTX code,

ingesting PTX emitted by a front-end compiler, modifying it in

its own compilation passes, and then emitting PTX for GPUs

or assembly code for CPUs. Ocelot was originally designed to

allow architectures other than NVIDIA GPUs to leverage the

parallelism in PTX programs [13], but has also been used to

perform instrumentation of GPU programs [15]. While Ocelot

is a useful tool, it suffers from several significant problems

when used as a GPU instrumentation framework. First, be­

cause Ocelot operates at the virtual ISA (PTX) level, it is far

divorced from the actual binary code emitted by the backend

compiler. Consequently, Ocelot interferes with the backend

compiler optimizations and is far more invasive and less pre­

cise in its ability to instrument a program. SASSI's approach

to instrumentation, which allows users to write handlers in

CUDA, is also more user-friendly than the C++ "builder" class

approach employed in [15].

11. Conclusion

This paper introduced SAS SI, a new assembly-language instru­

mentation tool for GPUs. Built into the NVIDIA production­

level backend compiler, SAS SI enables a user to specify spe­

cific instructions or instruction types at which to inject a call

to a user-provided instrumentation function. SASSI instru­

mentation code is written in CUDA and is inherently parallel,

enabling users to explore the parallel behavior of applications

and architectures. We have demonstrated that SASSI can be

used for a range of architecture studies, including instruction

control flow, memory systems, value similarity, and resilience.

Similar to CPU binary instrumentation tools, SASSI can be

used to perform a wide range of studies on GPU applications

and architectures. The runtime overhead of SAS SI depends

in part on the frequency of instrumented instructions and the

complexity of the instrumentation code. Our studies show a

range of runtime slowdowns from 1- 160 x , depending on the

experiment. While we have chosen to implement SAS SI in

the compiler, nothing precludes the technology from being

integrated into a binary rewriting tool for GPUs. Further, we

expect that the SASSI technology can be extended in the future

to include graphics shaders.

12. Acknowledgments

We would like to thank the numerous people at NVIDIA who

provided valuable feedback and training during SASSI's de­

velopment, particularly Vyas Venkataraman. We thank Jason

Clemons who helped us generate figures, and Neha Agarwal

who provided an interesting early use case.

References

[1] A. Bakhoda, G. L. Yuan, W. W. L. Fung, H. Wong, and T. M. Aamodt,
"Analyzing CUDA Workloads Using a Detailed GPU Simulator," in
Proceedings of the International Symposium on Peiformance Analysis
of Systems and Software (ISPASS), April 2009 , pp. 1 63-174.

[2] N. Bell and M. Garland, "Efficient Sparse Matrix-Vector Multiplication
on CUDA," NVIDIA, Tech. Rep. NVR-2008-004, December 2008.

[3] P. Bohrer, J . Peterson, M. Elnozahy, R. Rajamony, A. Gheith, R. Rock­
hold, C. Lefurgy, H. Shafi, T. Nakra, R. Simpson, E. Speight,
K. Sudeep, E. Y. Hensbergen, and L. Zhang, "Mambo: A Full Sys­
tem Simulator for the PowerPC Architecture," ACM SIGMETRICS
Peiformance Evaluation Review, vol. 3 1 , no. 4, pp. 8-1 2 , 2004.

[4] E. A. Brewer, C. N. Dellarocas, A. Colbrook, and W. E. Weihl, "PRO­
TEUS: A High-performance Parallel-architecture Simulator," in Pro­
ceedings of the International Conference on Measurement and Model­
ing of Computer Systems (SIGMETRICS), June 1 992, pp. 247-248.

[5] D. Brooks and M. Martonosi, "Dynamically Exploiting Narrow Width
Operands to Improve Processor Power and Performance," in Proceed­
ings of the International Symposium on High-Peiformance Computer
Architecture (HPCA), January 1 999, pp. 1 3-22.

[6] M. Burtscher, R. Nasre, and K. Pingali, "A Quantitative Study of
Irregular Programs on GPUs," in Proceedings of the International
Symposium on Workload Characterization (llSWC), November 2012,
pp. 1 4 1 -1 5 1 .

[7] S . Che, M . Boyer, J . Meng, D . Tarj an, J . W. Sheaffer, S .-H. Lee, and
K. Skadron, "Rodinia: A Benchmark Suite for Heterogeneous Com­
puting," in Proceedings of the International Symposium on Workload
Characterization (llSWC), October 2009, pp . 44-54.

[8] B. Cmelik and D. Keppel, "Shade: A Fast Instruction-set Simulator for
Execution Profiling," in Proceedings of the International Conference
on Measurement and Modeling of Computer Systems (SIGMETRICS),
May 1 994, pp . 128- 1 37 .

[9] R. C. Covington, S . Madala, Y. Mehta, J. R. Jump, and J . B . SincIair,
"The Rice Parallel Processing Testbed," in Proceedings of the Interna­
tional Conference on Measurement and Modeling of Computer Systems
(SIGMETRICS), May 1 988, pp. 4- 1 1 .

[1 0] H . Davis, S . R . Goldschmidt, and J . Hennessy, "Multiprocessor Tracing
and Simulation Using Tango," in Proceedings of the International
Coriference on Parallel Processing (ICPP), August 1 99 1 .

[1 1] J . Dean, 1 . E. Hicks, C . A . Waldspurger, W. E. Weihl, and G. Chrysos,
"ProfileMe: Hardware Support for Instruction-Level Profiling on Out­
of-Order Processors," in Proceedings of the International Symposium
on Microarchitecture (MICRO), December 1 997, pp . 292-302.

[1 2] Derek Bruening, "Efficient, Transparent, and Comprehensive Runtime
Code Manipulation," Ph.D . dissertation, Massachusetts Institute of
Technology, 2004.

[1 3] G. Diamos, A. Kerr, and M. Kesavan, "Translating GPU Binaries to
Tiered Many-Core Architectures with Ocelot," Georgia Institute of
Technology Center for Experimental Research in Computer Systems
(CERCS), Tech. Rep. 090 1 , January 2009.

[1 4] B . Fang, K. Pattabiraman, M. Ripeanu, and S . Gurumurthi, "GPU-Qin:
A Methodology for Evaluating the Error Resilience of GPGPU Applica­
tions," in Proceedings of the International Symposium on Peiformance
Analysis of Systems and Software (ISPASS), March 2014, pp. 22 1-230.

[1 5] N . Farooqui, A. Kerr, G. Diamos, S. Yalamanchili, and K. Schwan,
"A Framework for Dynamically Instrumenting GPU Compute Appli­
cations within GPU Ocelot," in Proceedings of the Fourth Workshop
on General Purpose Processing on Graphics Processing Units, March
201 1 .

[1 6] S . K . S . Hari, T. Tsai, M . Stephenson, S . W. Keckler, and J . Emer,
"SASSIFI: Evaluating Resilience of GPU Applications," in Proceedings
of the Workshop on Silicon Errors in Logic - System Effects (SELSE),
April 20 1 5 .

[1 7] M. A. Heroux, D . W. Doerfler, P. S . Crozier, J . M. WilIenbring, H. C.
Edwards, A. Williams, M. Rajan, E. R. Keiter, H. K. Thornquist,
and R. W. Numrich, "Improving Performance via Mini-applications,"
Sandia National Labs, Tech. Rep. SAND2009-5574, September 2009.

[1 8] A. Jaleel, K. B. Theobald, S. C. Steely, Jr., and J . Emer, "High Per­
formance Cache Replacement Using Re-reference Interval Prediction
(RRIP)," in Proceedings of the International Symposium on Computer
Architecture (ISCA), June 2010, pp. 60-7 1 .

[1 9] Y. Lee, Y. Grover, R. Krashinsky, M. Stephenson, S . W. KeckJer,
and K. Asanovic, "Exploring the Design Space of SPMD Divergence
Management on Data-Parallel Architectures," in Proceedings of the
International Symposium on Microarchitecture (MICRO), December
2014, pp. 1 0 1-1 1 3 .

[20] Y. Lee, R. Krashinsky, Y. Grover, S . W. Keckler, and K. Asanovic,
"Convergence and Scalarization for Data-parallel Architectures," in In­
ternational Symposium on Code Generation and Optimization (CGO),
February 20 1 3 , pp . 1-1 1 .

197

[2 1] c. -K. Luk, R. Cohn, R. Muth, H. Pati!, A. KJauser, G. Lowney, S. Wal­
lace, Y. J. Reddi, and K. Hazelwood, "Pin: Building Customized Pro­
gram Analysis Tools with Dynamic Instrumentation," in Proceedings of
the Coriference on Programming Language Design and Implementation
(PLDI), June 2005, pp. 1 90-200.

[22] J. Meng, D . Tarj an, and K. Skadron, "Dynamic Warp Subdivision for
Integrated Branch and Memory Divergence Tolerance," in Proceedings
of the International Symposium on Computer Architecture (ISCA), June
20 1 0 , pp. 235-246.

[23] J. Miller, H. Kasture, G. Kurian, C. Gruenwald, N. Beckmann, C. Celio,
J. Eastep, and A. Agarwal, "Graphite: A Distributed Parallel Simulator
for Multicores," in Proceedings of the International Symposium on
High-Peiformance Computer Architecture (HPCA), January 20 1 0 , pp.
1 - 1 2 .

[24] T . Moscibroda and O. Mutlu, "A Case for Bufferless Routing i n On­
chip Networks," in Proceedings of the International Symposium on
Computer Architecture (ISCA), June 2009, pp. 196-207.

[25] O. MutIu and T. Moscibroda, "Stall-Time Fair Memory Access
Scheduling for Chip Multiprocessors," in Proceedings of the Inter­
national Symposium on Microarchitecture (MICRO), December 2007,
pp. 1 46-160.

[26] S . Narayanasamy, G. Pokam, and B . Calder, "BugNet: Continuously
Recording Program Execution for Deterministic Replay Debugging," in
Proceedings of the International Symposium on Computer Architecture
(ISCA), May 2005, pp. 284-295 .

[27] National Energy Research Scientific Computing Center,
"Mi ni FE," h Ups:/ /www.nersc.gov/users/computational- s ystems/ cori/
nersc- 8-procurement/trinity- nersc- 8- rfp/nersc- 8- trinity- benchmarks/
mini fe, 2014.

[28] N . Nethercote and J. Seward, "Valgrind: A Framework for Heavy­
weight Dynamic Binary Instrumentation," in Proceedings of the Confer­
ence on Programming Language Design and Implementation (PLDI),
June 2007, pp. 89-100.

[29] NVIDIA. (20 1 3 , November) Unified Memory in CUDA 6 . Available:
http://devblogs .nvidia.com/parall el foralllun i fied - memory - i n - cuda - 6/

[30] NVIDIA. (2014, August) CUDA C Best Practices Guides. Available:
http://docs.nvidia.comlcudalcuda- c-best - practices- guidelindex.html

[3 1] NVIDIA. (20 1 4, August) CUDA-GDB :: CUDA Toolkit Documenta­
tion. Available: http://docs.nvidia.com/cudalcuda- gdblindex.html

[32] NVIDIA. (20 14, November) CUDA Programming Guide :: CUDA
Toolkit Documentation. Available: http://docs.nvidia.com/cudal
cuda- c- programming- guide/

[33] NVIDIA. (20 14, November) CUPTI :: CUDA Toolkit Documentation.
Available: hUp://docs.nvidia.com/cudalcuptilindex.html

[34] NVIDIA. (20 1 4) NVIDIA NSIGHT User Guide. Avail­
able: http://docs.nvidia.comlgameworkslindex.html#developertools/
desktop/nsighc visual_studio_edition_user _guide.htm

[35] NVIDIA. (20 14, August) Visual Profiler Users ' s Guide. Available:
http://docs.nvidia.comlcudalprofi ler - users- guide

[36] T. G. Rogers, M. O ' Connor, and T. M. Aamodt, "Divergence-aware
Warp Scheduling," in Proceedings of the International Symposium on
Microarchitecture (MICRO), December 20 1 3 , pp. 99- 1 1 0 .

[37] J. Sartori and R. Kumar, "Branch and Data Herding: Reducing Control
and Memory Divergence for Error-Tolerant GPU Applications," IEEE
Transactions on Multimedia, vol. 1 5 , no. 2, pp. 279-290, February
20 1 3 .

[38] A. Srivastava and A. Eustace, "ATOM: A System for Building Cus­
tomized Program Analysis Tools," in Proceedings of the Conference
on Programming Language Design and Implementation (PLDI), June
1 994, pp. 1 96-205.

[39] 1. E. Stone, D . Gohara, and G. Shi, "OpenCL: A Parallel Program­
ming Standard for Heterogeneous Computing Systems," Computing in
Science and Engineering, vol. 1 2 , no. 3, pp. 66-73, May/June 20 1 0 .

[40] J. A. Strauon, C. Rodrigues, I . - J . Sung, N . Obeid, L.-w. Chang,
N. Anssari, G. D. Liu, and w.-m. W. Hwu, "Parboil: A Revised Bench­
mark Suite for Scientific and Commercial Throughput Computing,"
University of Illinois at Urbana-Champaign, Center for Reliable and
High-Performance Computing, Tech. Rep. IMPACT- 1 2-0 1 , March
20 1 2 .

[4 1] S . Tallam and R. Gupta, "Bitwidth Aware Global Register Alloca­
tion," in Proceedings of the Symposium on Principles of Programming
Languages (POPL), January 2003, pp. 85-96.

[42] P. Xiang, Y. Yang, and H. Zhou, "Warp-level Divergence in GPUs:
Characterization, Impact, and Mitigation," in Proceedings of the In­
ternational Symposium on High-Peiformance Computer Architecture
(HPCA), February 2014, pp. 284-295 .

