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Abstract 
To aid application characterization and architecture design 

space exploration, researchers and engineers have developed 

a wide range of tools for CPUs, including simulators, pro­

filers, and binary instrumentation tools. With the advent of 

GPU computing, GPU manufacturers have developed simi­

lar tools leveraging hardware profiling and debugging hooks. 

To date, these tools are largely limited by the fixed menu of 

options provided by the tool developer and do not offer the 

user the flexibility to observe or act on events not in the menu. 

This paper presents SASSI (NVIDIA assembly code "SASS" 

Instrumentor), a low-level assembly-language instrumenta­

tion tool for GPUs. Like CPU binary instrumentation tools, 

SASSI allows a user to specify instructions at which to inject 

user-provided instrumentation code. These facilities allow 

strategic placement of counters and code into GPU assembly 

code to collect user-directed, fine-grained statistics at hard­

ware speeds. SASSI instrumentation is inherently parallel, 

leveraging the concurrency of the underlying hardware. In 

addition to the details of SASSI, this paper provides four case 

studies that show how SASSI can be used to characterize ap­

plications and explore the architecture design space along the 

dimensions of instruction control flow, memory systems, value 

similarity, and resilience. 

1. Introduction 

Computer architects have developed and employed a wide 

range of tools for investigating new concepts and design al­

ternatives. In the CPU world, these tools have included simu­

lators, profilers, binary instrumentation tools, and instruction 

sampling tools. These tools provide different features and 

capabilities to the architect and incur different design-time 

and runtime costs. For example, simulators provide the most 

control over architecture under investigation and are necessary 

for many types of detailed studies. On the other hand, sim­

ulators are time-consuming to develop, are slow to run, and 
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are often difficult to connect to the latest software toolchains 

and applications. Binary rewriting tools like Pin [2 1] allow a 

user to instrument a program to be run on existing hardware, 

enabling an architect insight into an application's behavior and 

how it uses the architecture. Such tools have been used in a 

wide variety of architecture investigations including, determin­

istic replay architectures [26], memory access scheduling [25], 

on-chip network architectures [24], and cache architecture 

evaluation [ 18]. They have even been used as the foundation 

for multicore architecture simulators [23]. In addition, these 

types of tools have been used in a wide range of application 

characterization and software analysis research. 

With the advent of GPU computing, GPU manufacturers 

have developed profiling and debugging tools, similar in nature 

to their CPU counterparts. Tools such as NVIDIA's NSight 

or Visual Profiler use performance counters and lightweight, 

targeted binary instrumentation to profile various aspects of 

program execution [34, 35]. These tools have the advantage 

that they are easy to use, and run on hardware, at hardware 

speeds. Unfortunately for computer architects and compiler 

writers, the production-quality profilers are not flexible enough 

to perform novel studies: one must choose what aspects of 

program execution to measure from a menu of pre-selected 

metrics. They also cannot be used as a base on which to build 

other architecture evaluation tools. 

As one solution to the shortcoming described above, the 

architecture community has turned toward simulators, such 

as GPGPU-Sim to analyze programs and guide architecture 

development [ 1]. Simulators are immensely flexible, and al­

low architects to measure fine-grained details of execution. 

The major disadvantage of simulators is their relatively slow 

simulation rates. This forces researchers and architects to use 

trimmed-down input data sets so that their experiments finish 

in a reasonable amount of time. Of course, application profiles 

can be highly input-dependent, and there is no guarantee that 

simulation-sized inputs are representative of real workloads. 

This paper presents a new GPU tool called SASSI for use in 

application characterization and architecture studies. Unlike 

the current suite of GPU profiling tools, which are tailor-made 

for a particular task or small set of tasks, SAS SI is a versatile 

instrumentation framework that enables software-based, se­

lective instrumentation of GPU applications. SASSI allows a 

user to select specific instructions or instruction types at which 

to inject user-level instrumentation code. Because SAS SI 

is built into NVIDIA's production machine-code-generating 



compiler, and runs as its last pass, injection of instrumentation 

code does not affect compile-time code generation optimiza­

tions. Further SAS SI is highly portable and gracefully handles 

the latest versions of CUDA, and can be extended to handle 

OpenGL and DirectX 1 1  shaders. The tool allows us to collect 

results across multiple generations of NVIDIA architectures 

including Fermi, Kepler, and Maxwell. 

As with the production-quality profiling tools, selective 

instrumentation allows hardware-rate analysis, yet, as the 

case studies we demonstrate confirm, our approach is flex­

ible enough to measure many interesting and novel aspects of 

execution. Because selective instrumentation is far faster than 

simulation, users can easily collect data based on real-world 

execution environments and application data sets. 

Because GPU architectures follow a different prograrmning 

paradigm than traditional CPU architectures, the instrumen­

tation code that SASSI injects contains constructs and con­

straints that may be unfamiliar even to expert CPU program­

mers. Also unlike their CPU counterparts, GPU instrumen­

tation tools must cope with staggering register requirements 

(combined with modest spill memory), and they must operate 

in a truly heterogeneous environment (i. e. , the instrumented 

device code must work in tandem with the host system). 

In the remainder of this paper, we first discuss background 

information on GPU architecture and software stacks. Then 

we describe the details of SASSI, focusing on the key chal­

lenges inherent with GPU instrumentation, along with their 

solutions. Finally, we demonstrate the tool's usefulness for ap­

plication profiling and architectural design space exploration 

by presenting four varied case studies (in Sections 5-8) that 

investigate control flow, memory systems, value similarity, 

and resilience. 

2. Background 

This section provides background on basic GPU architecture 

terminology and the NVIDIA GPU compilation flow. While 

SASSI is prototyped using NVIDIA's technology, the ideas 

presented in this paper are not specific to NVIDIA's architec­

tures, tools, or flows, and can be similarly applied to other 

compiler backends and GPUs. 

2.1. GPU Architecture Terminology 

GPU programming models allow the creation of thousands of 

threads that each execute the same code. Threads are grouped 

into 32-element vectors called warps to improve efficiency. 

The threads in each warp execute in a SIMT (single instruction, 

multiple thread) fashion, all fetching from a single Program 

Counter (PC) in the absence of control flow. Many warps 

are then assigned to execute concurrently on a single GPU 

core, or streaming multiprocessor (SM) in NVIDIA's termi­

nology. A GPU consists of multiple such SM building blocks 

along with a memory hierarchy including SM-Iocal scratch­

pad memories and Ll caches, a shared L2 cache, and multiple 

memory controllers. Different GPUs deploy differing numbers 
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Figure 1: SASSI's i nstrumentation flow. 
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of SMs. Further details of GPU application execution, core, 

and memory architecture are explained in the case studies of 

Sections 5-8. 

2.2. GPU Software Stack 

Historically, NVIDIA has referred to units of code that run 

on the GPU as shaders. There are several broad categories 

of shaders, including DirectX shaders, OpenGL shaders, and 

compute shaders (e.g. , CUDA kernels). A front-end com­

piler can be used to simplify the task of writing a shader. 

For example, for compute shaders, a user can write parallel 

programs using high-level programming languages such as 

CUDA [32] or OpenCL [39], and use a front-end compiler, 

such as NVIDIA's NVVM, to generate intermediate code in a 

virtual ISA called parallel thread execution (PTX). 

PTX exposes the GPU as a data-parallel computing device 

by providing a stable programming model and instruction set 

for general purpose parallel programming, but PTX does not 

run directly on the GPU. A backend compiler optimizes and 

translates PTX instructions into machine code that can run on 

the device. For compute shaders, the backend compiler can 

be invoked in two ways: ( 1) NVIDIA supports ahead-of-time 

compilation of compute kernels via a PTX assembler (ptxas), 

and (2) a HT-time compiler in the display driver can compile a 

PTX representation of the kernel if it is available in the binary. 

Compute shaders adhere to a well-defined Application Bi­

nary Inteiface or ABI, which defines different properties of 

the interface between a caller and a callee. Examples include 

what registers are caller-saved vs. callee-saved, what registers 

are used to pass parameters, and how many can be passed in 

registers before resorting to passing parameters on the stack. 

In particular, this paper focuses on the ABI between on-device 

(GPU) callers and callees. 

3. SASSI 

This section describes SAS SI, our backend compiler-based 

instrumentation tool. SASSI stands for SASS Instrumentor, 

where SASS is NVIDIA's name for its native ISA. We ex­

plain where SASSI sits in the compiler flow, describe SASSI 

injection and instrumentation code, and discuss how the in­

strumentation interoperates with host (CPU) code. 



IADD Rl, Rl, -Ox80 

STL [Rl+OxI8], RO 
STL [R1+0x40], RlO 

STL [Rl+Ox44], Rll 

P2R R3, PR, RZ, Oxl 

STL [R1+0xIO], R3 

IADD R4, RZ, Oxl5 
STL [Rl], R4 

MOV321 R5, vadd 

STL [Rl+OxS], R5 

MOV321 R4, Ox640 

STL [Rl+OxC], R4 
IADD RS, RZ, Ox29a 

STL [Rl+Ox5S], R5 

@PO IADD R4, RZ, Oxl 

@!PO IADD R4, RZ, OxO 

STL [Rl+Ox4], R4 
LOP.OR R4, RI, c[OxO] [Ox24] 

IADD R5, RZ, OxO 

IADD R6. CC, RIO, OxO 

IADD.X R7, RII, RZ 

STL.64 [R1+0x60], RlO 
IADD R6, RZ, Ox2 

STL [RI+Ox6S], R6 

IADD R7, RZ, Ox4 

STL [R1+0x6c], R7 

IADD R6, RZ, Ox2 
STL [R1+0x70], R6 

LOP.OR R6, RI, c [OxO] [Ox24] 

IADD R6, R6, Ox60 

IADD R7, RZ, OxO 
JCAL sassi _before handler 

LDL R3, [R1+0xIO] 

R2P PR, R3, Oxl 

LDL RU, [R1+0x44] 

LDL RlO, [R1+0x40] 
LDL RO, [RI+OxI8] 

IADD Rl, RI, Ox80 

@PO ST.E [RIO], RO; 

(a) Instrumented code. 

class SASSIBeforeParams 

public: 

const int32_t id; 

const bool instrWillExecute; 

const int32_t fnAddr; 

const int32_t insOffset; 

int32 t PRSpill; 

int32_t CCSpi 11; 
int32_t GPRSpill [16 J ; 
const int32_t insEncodingi 

_device_ SASSIOpcodes GetOpcode () const; 

device int32_t GetID() const; 

_device int32_t GetFnAddr() const; 

_device int32_t GetlnsOffset () const; 

_device int32_t GetlnsAddr () const; 

device bool IsMem() const; 

device bool IsMemRead() const; 

_device bool IsMemWrite() const; 

_device bool IsSpillOrFill () const; 

device bool IsSurfaceMemory() const; 

device bool IsControlXfer() const; 

device bool IsCondControlXfer() const; 

_device bool IsSync() consti 

_device bool IsNumeric () const; 

device bool IsTexture() consti 

) ; 

(b) bp is an instance of this C++ class. 

class SASSIMemoryParams 

public: 

const int64 -t addressi 

const int32 -t properties; 

const int32 -t width; 

const int32 -t domaini 

_device_ int 64_t GetAddress () const; 

_device_ bool IsLoad () const; 

_device_ bool IsStore () const; 

device bool IsAtomic() consti 

device bool IsUniform() const; 

_device_ bool IsVolatile () const; 

_device_ int32_t GetWidth () const; 

_device_ SASSIMemoryDomain GetDomain () const; 

) ; 

(c) mp is an instance of this C++ class. 

Figure 2: SASSI i nstrumentation. (a) The instruction at Cl) is the original store i nstruction.  The other i nstructions are the code that 

SASSI has i nserted to construct an A B I-compliant function cal l .  The sequence does the fol lowing: 0 Stack al locates two objects, 

bp and mp, instances of SASSIBeforeParams and SASSIMemoryParams. The class definitions of SASSIBeforeParams and 

SASSIMemoryParams are shown i n  (b) and (c), respectively. f) Saves l ive reg isters RO, R10, and Rll to the bp. GPRSpill array, 

and saves the l ive predicate reg isters to bp. PRSpil1. 8 Init ial izes member variables of bp, including instrWillExecute 

(which is true iff the instruction wi l l  execute), fnAddress and insOffset (wh ich can be used to compute the i nstruction's PC), 

and insEncoding (which i ncl udes the i nstruction's opcode and other static properties). e Passes a generic 64-bit pointer to bp 

as an arg ument to sas si_be fore_handler in reg isters R4 and RS per NVIDIA's compute A B I .  0 In itial izes member variables of 

mp, i ncluding address (wh ich contains the memory operation's effective address), width (wh ich is the width of the data in bytes), 

properties (which contains static properties of the operation, e.g., whether it  reads memory, writes memory, is atomic, etc.). (i) 
Passes a generiC 64-bit pointer to mp in R6 and R7 per NVIDIA's com pute A B I .  fi Performs the call  to sassi_before_handler. 

o Restores l ive reg isters, and reclaims the al located stack space . Cl) Executes the original store i nstruction.  

3.1. SASSI Tool Flow 

Figure 1 shows the compiler tool flow that includes the SASSI 

instrumentation process. Shaders are first compiled to an 

intermediate representation by afront-end compiler. Before 

they can run on the GPU, however, the backend compiler must 

read the intermediate representation and generate SASS. For 

compute shaders, the backend compiler is in two places: in 

the PTX assembler ptxas, and in the driver. 

SASSI is implemented as the final compiler pass in ptxas, 

and as such it does not disrupt the perceived final instruction 

schedule or register usage. Furthermore as part of ptxas, 

SAS SI is capable of instrumenting programs written in lan­

guages that target PTX, which includes CUDA and Open CL. 

Apart from the injected instrumentation code, the original 

SASS code ordering remains unaffected. With the SASSI pro­

totype we use nvlink to link the instrumented applications 

with user-level instrumentation handlers. SASSI could also be 

embedded in the driver to TIT compile PTX inputs, as shown 

by dotted lines in Figure l .  

SAS SI must be  instructed where to insert instrumentation, 

and what instrumentation to insert. Currently SASSI supports 
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inserting instrumentation before any and all SASS instructions. 

Certain classes of instructions can be targeted for instrumen­

tation: control transfer instructions, memory operations, call 

instructions, instructions that read registers, and instructions 

that write registers. SASSI also supports inserting instrumen­

tation after all instructions other than branches and jumps. 

Though not used in any of the examples in this paper, SASSI 

supports instrumenting basic block headers as well as kernel 

entries and exits. As a practical consideration, the where and 

the what to instrument are specified via ptxas command-line 

arguments. 

3.2. SASSI Instrumentation 

For each instrumentation site, SASSI will insert a CUDA 

AB I-compliant function call to a user-defined instrumentation 

handler. However, SASSI must be told what information 

to pass to the instrumentation handler(s). We can currently 

extract and pass to an instrumentation handler, the following 

information for each site: memory addresses touched, registers 

written and read (including their values), conditional branch 

information, and register liveness information. 



III [memory, extended memory, controlxfer, sync, . . .  

III numeric, texture, total executed1 

_device_ unsigned long long dynamic_instr_counts [7]; 

III SASSI can be instructed to insert calls to this handler 

III before every SASS instruction. 

_device_ void sassi_before_handler (SASSIBeforeParams *bp, 

SASSIMemoryParams *mp) { 
if (bp->IsMem(» ( 

atomicAdd(dynamic_instr_counts + 0, 1LL) i 

if (mp->GetWidth() > 4 /*bytes*/) 

atomicAdd(dynamic_instr_counts + 1, 1LL) ; 

if (bp->IsContro1Xfer() ) atomicAdd(dynamic_instr_counts + 2, lLL) i 

if (bp->IsSync() ) atomicAdd(dynamic_instr_counts + 3, lLL) ; 

if (bp->IsNumeric() ) atomicAdd(dynamic_instr_counts + 4, lLL) ; 

if (bp->IsTexture() ) atomicAdd(dynamic_instr_counts + 5, lLL) ; 

atomicAdd(dynamic_instr_counts + 6, 1LL) i 

Figure 3: A trivial example i nstrumentation handler. SASSI 

can be instructed to insert a function call  to this handler before 

all instructions. 

Figure 2(a) shows the result of one memory operation be­

ing instrumented by SASSI. The instruction at (9) is the 

original memory instruction, and all prior instructions are 

SAS SI-inserted instrumentation code. In this example, the 

user has directed SASSI to insert instrumentation before all 

memory operations (the where), and for each instrumentation 

site to extract memory-specific details (such as the address 

touched) about the memory operation (the what). SAS SI cre­

ates a sequence of instructions that is an ABI-compliant call 

to a user-defined instrumentation handler. The caption of Fig­

ure 2 provides a detailed explanation of the sequence. SASSI 

creates extra space on a thread's stack in this example to store 

parameters that will be passed to the instrumentation handler. 

While generating an AB I-compliant function call incurs 

more instruction overhead than directly in-lining the instru­

mentation code, maintaining the ABI has two main benefits. 

First, the user is able to write handlers in straight CUDA code. 

They do not need to understand SASS, PTX, or even details 

of the target architecture. Second, our approach is portable; 

the same handler can be used for Fermi, Kepler, and Maxwell 

devices, which are significantly different architectures. 

Figure 3 shows a pedagogical instrumentation handler, 

sas si_be fore_handler, from the setup shown in Figure 2. 

The handler takes two parameters, pointers to instances of 

SASSIBeforeParams (bp) and SASSIMemoryParams (mp), 
respectively, and uses them to categorize instructions into 

six overlapping categories. Note that a single SASS instruc­

tion can simultaneously belong to more than one of these 

categories. As Figure 2(b) shows, the C++ object of class 

SASSIBeforeParams contains methods that allow a handler 

to query for basic properties of the instruction, including the 

instruction's address, whether it uses texture memory, and 

whether it alters control flow. This example uses several of 

bp'S methods to categorize the instruction, and it uses CUDA's 

atomicAdd function to record instances of each category. Ad­

ditionally, the handler uses the mp object to determine the 

width in bytes of a memory operation's data. We can easily 
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instruct SAS SI to inject calls to this function before all SASS 

instructions, the mechanics of which we describe later. 

One challenging aspect of GPU instrumentation is the sheer 

number of registers that may have to be spilled and filled in 

the worst case to create an AB I-compliant function call. Even 

though the compiler knows exactly which registers to spill, 

there are many instrumentation sites in typical GPU programs 

that require spilling 32 or more registers per thread if done 

naively. NVIDIA's Kepler and Maxwell architectures require 

spilling'" 128 registers per thread in the worst case. Com­

pounding this problem, threads are executed in SIMT fashion; 

thus all the threads try to spill their live state to memory at 

the same time, creating serious bandwidth bottlenecks. To 

alleviate this issue, we impose a simple constraint on SASSI 

instrumentation handlers; handlers must use at most 16 reg­

isters, the minimum number of registers required per-thread 

by the CUDA ABI. This limit can trivially be enforced by 

using the well-known -maxrregcount flag of nvcc to cap 

the maximum number of registers used when compiling the 

instrumentation handler. 

It is important to note that SASSI does not change the orig­

inal SASS instructions in any way during instrumentation. 

Furthermore, the register limit of 16 that we impose on the 

instrumentation handler may increase the runtime overhead of 

instrumentation, but it will not reduce an instrumentation han­

dIer's functional utility. With handlers for which the compiler 

does not find an allocation that uses 16 or fewer registers, the 

compiler will simply insert register spill code. 

3.3. Initialization and Finalization 

Unlike CPU instrumentation, GPU instrumentation must coor­

dinate with the host machine (CPU) to both initialize instru­

mentation counters, and to gather their values (and perhaps 

log them to a file). For CUDA, SASSI leverages the CUPTI 

library, which allows host-side code to register for callbacks 

when certain important CUDA events occur, such as kernel 

launches and exits [33]. In all of the case studies in this paper, 

we use CUPTI to initialize counters on kernel launch and copy 

counters off the device on kernel exits. On kernel launch, our 

CUPTI "kernel launch" callback function uses cudaMemcpy to 

initialize the on-device counters appropriately. On kernel exits, 

our CUPTI "kernel exit" call back function uses cudaMemcpy 

to collect (and possibly aggregate) the counters on the host 

side. Furthermore, cudaMemcpy serializes kernel invocations, 

preventing race conditions that might occur on the counters. 

This approach is excessive for the cases where we do not need 

per-kernel statistics. If instead we only wanted to measure 

whole-program statistics, we could simply initialize counters 

after the CUDA runtime is initialized, and copy counters off 

the device before the program exits (taking care to register 

callbacks for CUDA calls that reset device memory, which 

would clear the device-side counters). The appropriate initial­

ization and finalization mechanisms can be chosen by the user 

depending on the specific use case. 



4. Methodology 1 _device_ void sassi_before_handler (SASSIBeforeParams *bp, 

2 SASSICondBranchParams *brp) 

The case studies we present in this paper are meant to demon­

strate how SAS SI's capabilities can be used for different types 

of architecture experiments. Section 5 explores SASSI's abil­

ity to inspect application control flow behavior, which can be a 

critical performance limiter on modern GPUs. Section 6 lever­

ages SAS SI to perform a detailed memory analysis, which 

specifically characterizes an application's memory divergence. 

Section 7 shows how SASSI allows access to an instrumented 

3 { 
4 If Find out thread index within the warp. 

5 
6 
7 
8 
9 

1 0  
I I  
1 2  
1 3  
1 4  

application's register contents to enable value profiling. 1 5  

1 6  
While SASSI is capable of instrumenting applications that 1 7  

target Fermi, Kepler, and Maxwell devices, the results we 1 8  
1 9  

present in this paper were gathered on Kepler-based architec- 20 

tures. Specifically, the experiments presented in the aforemen- 21 
22 

tioned case studies target an NVIDIA Tesla KlO G2 with 8GB 23 

memory and display driver version 340.21. In addition, all 24 
25 

experiments use the CUDA 6 toolkit, and we simply replace 26 

the standard ptxas with our SASSI-enabled version. 27 
28 

The final case study in Section 8, characterizes an appli­

cation's sensitivity to transient errors by injecting faults into 

the architecturally visible state of a GPU. The experiments 

demonstrate how SAS SI can be used to change a kernel's be­

havior (e.g. , by altering register values and memory locations). 

The experimental flow targets a Tesla K20 with 5GB memory, 

display driver version 340.29, and uses the CUDA 6.5 toolkit. 

We choose benchmarks to present in each of the case study 

sections that reveal interesting behavior. With the exception of 

NERSC's miniFE application [ 17, 27], all of the benchmarks 

come from Parboil v2.5 [40] and Rodinia v2.3 [7]. 

5. Case Study I: Conditional Control Flow 

Our first case study discusses a tool based on SASSI for ana­

lyzing SIMT control flow behavior. Explicitly parallel Single 

Program Multiple Data (SPMD) languages such as CUDA and 

OpenCL allow programmers to encode unconstrained control 

flow, including gotos, nested loops, if-then-else statements, 

function calls, etc. For GPUs when all of the threads in a warp 

execute the same control flow (i. e. , the threads in the warp 

share the same PC), they are said to be converged, and each 

thread in the warp is therefore active. Conditional control 

flow however, can cause a subset of threads to diverge. Such 

divergence has serious performance ramifications for GPU ar­

chitectures. For NVIDIA's architectures, the hardware chooses 

one path to continue executing, and defers the execution of 

threads on the alternate paths by pushing the deferred thread 

IDs and their program counters onto a divergence stack [ 19]. 

At this point, only a subset of the threads actually execute, 

which causes warp efficiency to drop. At well-defined recon­

vergence points (which are automatically determined by the 

compiler), the hardware pops the deferred threads off the stack 

and begins executing the deferred threads. 

This case study uses SASSI to collect per-branch control 

flow statistics. Specifically, we will show an instrumentation 

29 
30 
3 1  
3 2  
3 3  
34 
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int threadldxlnWarp = threadldx.x & (warpSize- l) ; 

If Find out which way this thread is going to branch. 

bool dir = brp->GetDirection() ; 

If Get masks and counts of 1) active threads in this warp, 

If 2) threads that take the branch, and 

If 3) threads that do not take the branch. 

int active = _ballot (1) ; 

int taken = _ballot (dir == true) i 
int ntaken = _ballot (dir == false) ;  

int numActive = -popc (active) ; 

int numTaken = -popc(taken) , numNotTaken = -popc(ntaken) ; 

II The first active thread in each warp gets to write results. 

if ((_ffs (active) -1) == threadldxlnWarp) { 
II Find the instruction's counters in a hash table based on 

II its address. Create a new entry if one does not exist. 

struct BranchStats *stats = find(bp->GetlnsAddr() ) ;  

II Increment the various counters that are associated 

II with this instruction appropriately. 

atomicAdd(&(stats->totalBranches) , lULL) ; 

atomicAdd(& (stats->activeThreads) , numActive) ; 

atomicAdd(&(stats->takenThreads) , numTaken) ; 

atomicAdd(&(stats->takenNotThreads) , numNotTaken) ; 

if (numTaken != numActive && numNotTaken != numActive) { 
II If threads go different ways, note it. 

atomicAdd(&(stats->divergentBranches) , lULL) ; 

))) 

Figure 4: Handler for conditional branch analysis. 

handler that uses counters to record for each branch 1) the 

total number of times the branch was executed, 2) how many 

threads were active, 3) how many threads took the branch, 4) 

how many threads "fell through", 5) and how often it caused a 

warp to split (i. e. , divergent branch). 

5.1. SASSI Instrumentation 

Instrumentation where and what: This analysis targets pro­

gram control flow. We instruct SAS SI to instrument before all 

conditional control flow instructions, and at each instrumen­

tation site, we direct SASSI to collect and pass information 

about conditional control flow to the instrumentation handler. 

Instrumentation handler: Figure 4 shows the instrumenta­

tion handler we use for this case study. SASSI will insert calls 

to this handler before every conditional branch operation. 

The handler first determines the thread index within the 

warp (line 5) and the direction in which the thread is going to 

branch (line 8). CUDA provides several warp-wide broadcast 

and reduction operations that NVIDIA's architectures effi­

ciently support. For example, all of the handlers we present in 

this paper use the _ballot (predicate) instruction, which 

"evaluates predicate for all active threads of the warp and re­

turns an integer whose Nlh bit is set if and only if predicate 

evaluates to non-zero for the Nh thread of the warp and the 

Nth thread is active" [32]. 

The handler uses _ballot on lines 13- 15 to set masks 

corresponding to the active threads (active), the threads that 

are going to take the branch (taken), and the threads that are 

going to fall through (ntaken). With these masks, the handler 



Table 1: Average branch divergence statistics. 

Static Dynamic 

Benchmark Total Divergent Divergent Total Divergent Divergent 
(Dataset) Branches Branches % Branches Branches % 

bfs (IM) 41  1 9  46 3.66 M 1 49.68 K 4.1  
bfs (NY) 41 22 54 933.88 K 1 1 9.45 K 1 2.8 

'5 bfs (SF) 5 1  26 5 1  3.75 M 1 84.63 K 4.9 
� bfs (UT) 41  20 49 697.28 K 1 04.08 K 1 4.9 
c.. sgemm (small) 2 0 0 1 .04 K  0 0.0 

sgemm (medium) 2 0 0 528.00 K 0 0.0 
tpac f (small) 25 5 20 14.85 M 3.75 M 25.2 

bfs 7 2 29 3.7 1 M 525.54 K 1 4.2 
� gaussian 1 0  4 40 492.38 M 1 . 1 8  M 0.2 
·2 heartwall 1 6 1  5 0  3 1  226.85 M 95.44 M 42. 1 
� srad_vl 28 7 25 9.44 M 46.03 K 0.5 
0:: srad_v2 1 9  1 2  63 I 1 .20 M 2.38 M 2 1 .3 

streamcluster 7 0 0 442. I I M  0 0.0 

uses the population count instruction (_pope) to efficiently 

detennine the number of threads in each respective category 

(numAetive, numTaken, numNotTaken). 
On line 20 the handler elects the first active thread in the 

warp (using the find first set CUDA intrinsic, _ffs) to record 

the results. Because this handler records per-branch statistics, 

it uses a hash table in which to store counters. Line 23 finds the 

hash table entry for the instrumented branch (using a function 

not shown here). Lines 27-33 update the counters. 

As we described in Section 3, we rely on the CUPTI library 

to register callbacks for kernel launch and exit events [33]. 

Using these callbacks, which run on the host, we can appro­

priately marshal data to initialize and record the values in the 

device-side hash table. 

S.2. Results 

Table 1 summarizes the average per-branch divergence statis­

tics for a selected set of Parboil and Rodinia benchmarks with 

different input datasets. For each benchmark, we calculate the 

fraction of branches in the code that were divergent ("Static" 

column), and how often branches diverged throughout execu­

tion ("Dynamic" column) thereby reducing warp efficiency. 

Some benchmarks are completely convergent, such as 

sgemm and streameluster, and do not diverge at all. 

Other benchmarks diverge minimally, such as gaussian and 

srad_vl, while, benchmarks such as tpaef and heartwall 

experience abundant divergence. An application's branch 

behavior can change with different datasets. For example, 

Parboil's bfs shows a spread of 4. 1- 14.9% dynamic branch 

divergence across four different input datasets. In addition, 

branch behavior can vary across different implementations of 

the same application (srad_vl vs. srad_v2, and Parboil bfs 

vs. Rodinia bfs). 
Figure 5 plots the detailed per-branch divergence statistics 

we can get from SASSI. For Parboil bfs with the IM dataset, 

two branches are the major source of divergence, while with 

the UT data set, there are six branches in total (including the 

previous two) that contribute to a 10% increase in dynamic 

branch divergence. SAS SI simplifies the task of collecting per-
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Figure 5: Per-branch divergence statistics of the Parboi l  bfs 

benchmark with different i n put datasets. Each bar represents 

an unique branch i n  the code. The branches are sorted i n  a 

descending order of runtime branch i nstruction count. 

branch statistics with its easy-to-customize instrumentation 

handler, and also makes it tractable to run all input datasets 

with its low runtime overhead. 

6. Case Study 11: Memory Divergence 

Memory access patterns can impact performance, caching ef­

fectiveness, and DRAM bandwidth efficiency. In the SIMT 

execution model, warps can issue loads with up to 32 unique 

addresses, one per thread. Warp-wide memory access patterns 

determine the number of memory transactions required. To 

reduce total requests sent to memory, accesses to the same 

cacheline are combined into a single request in a process 

known as coalescing. Structured access patterns that touch 

a small number of unique cachelines are more efficiently co­

alesced and consume less bandwidth than irregular access 

patterns that touch many unique cachelines. 

Warp instructions that generate inefficient access patterns 

are said to be memory address diverged. Because warp in­

structions execute in lock-step in the SIMT model, all memory 

transactions for a given warp must complete before the warp 

can proceed. Requests may experience wide variance in la­

tency due to many factors, including cache misses, memory 

scheduling, and variable DRAM access latency. 

Architects have studied the impact of memory divergence 

and ways to mitigate it in simulation [6, 22, 36, 37, 42]. For 

this case study, we demonstrate instrumentation to provide 

in-depth analysis of memory address divergence. While pro­

duction analysis tools provide the ability to understand broad 

behavior, SASSI can enable much more detailed inspection 

of memory access behavior, including: the frequency of ad­

dress divergence; the distribution of unique cachelines touched 

per instruction; correlation of control divergence with address 

divergence; and detailed accounting of unique references gen­

erated per program counter. 

6.1. SASSI Instrumentation 

Instrumentation where and what: We instruct SASSI to 

instrument before all memory operations, and at each instru­

mentation site, we direct SAS SI to collect and pass memory­

specific information to the instrumentation handler. 



1 _device_ void sassi_before_handler (SASSIBeforeParams *bp, 

2 SASSIMemoryParams *mp) 

3 { 
4 if (bp->GetInstrWillExecute () { 
5 intptr_t addrAsInt = mp->GetAddress() ; 

6 II Only look at global memory requests. Filter others out. 

7 if (_isGlobal «void *) addrAsInt» { 
8 unsigned unique = 0; II Num unique lines per warp. 

9 
1 0  / /  Shift off the offset bits into the cache line. 

1 1  intptr_t lineAddr = addrAsInt » OFFSET_BITS; 

1 2  
1 3  int works e t  = _ballot (1) ; 

1 4  int firstActive = _ffs (workset) -1; 

1 5  int numActive = -------popc (workset) ; 

1 6  while (workset) { 
1 7  I I  Elect a leader, get its cache line, see who matches it. 

1 8  int leader = _ffs(workset) - 1; 

1 9  intptr_t leadersAddr = bcast(lineAddr, leader) ; 

20 int notMatchesLeader = _ballot (leadersAddr != lineAddr) ; 

21 
22 II We have accounted for all values that match the leader's. 

23 II Let's remove them all from the workset. 

24 works et = workset & notMatchesLeader; 

25 unique+ +; 

26 
27 
28 II Each thread independently computes 'numActive', 'unique'. 

29 II Let the first active thread actually tally the result 

30 II in a 32x32 matrix of counters. 

3 1  int threadIdxInWarp = threadIdx.x & (warpSize-1) ; 

32 if (firstActive == threadIdxInWarp) { 
33 atomicAdd (& (sassi_counters [numAct i ve-1 J [unique-1 J ) , 1LL) ; 

34 )))) 

Figure 6: Handler for memory divergence profi l i n g .  

Instrumentation handler: Figure 6 shows the instrumenta­

tion handler for this case study. SASSI inserts a call to this 

handler before every operation that touches memory. Because 

NVIDIA's instruction set is predicated, this handler first filters 

out threads whose guarding predicate is false (line 4). This 

handler then selects only addresses to global memory (line 

7).' Next, the handler computes each thread's requested cache 

line address (line 1 1). For this work, we use a 32B line size. 

Each active thread in the warp will have a thread-local value 

for the computed address in lineAddr. Lines 16-26 use re­

duction and broadcast operations to iteratively find the number 

of unique values of lineAddr across a warp. 

This handler elects a leader thread to record the statistics 

(line 32). The leader populates a 32 x 32 (lower triangular) 

matrix of values in sassi_counters [l [l, where the rows 

of the matrix record the number of active threads in the warp 

(numActive) and the columns correspond to the number of 

unique line addresses found. This handler also uses CUPTI to 

initialize and dump the statistics kept in sassi_counters. 

6.2. Results 

Figure 7 shows the the distribution (PMF) of unique cache 

lines (32B granularity) requested per warp instruction for a 

selection of address divergent applications. The distributions 

show the percentage of thread-level memory accesses issued 

from warps requesting N unique cache lines, where N ranges 

from 1 to 32. 

I NVIDIA GPUs feature several memory spaces, including local memory, 
global memory, and shared memory. 
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Figure 7: Distribution (PMF) of unique cachel i nes requested 

per warp memory i nstruction for a selection of memory ad­

dress divergent applications. 
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Figure 8: Memory access behavior for miniFE variants using 

different data formats. Warp occupancy is along the x-axis, 

address divergence is along the y-axis. 

The applications shown exhibit complex data access pat­

terns to irregularly structured data. Graph traversal operations 

such as bf s (breadth-first search) have unpredictable, data­

dependent accesses that are frequently irregular. We can see 

how data-dependent behavior impacts memory divergence 

for three different datasets for bf s from the Parboil suite; 

each exhibits similar overall behavior, but the extent of the 

problem varies across datasets. Other applications such as 

mri -gridding, spmv, and miniFE use sparse data represen­

tations or indirection that limits dense, regular access. 

Advanced developers structure their code to use access 

patterns or data formats that improve memory access regu­

larity [2, 30]. For instance, Figure 7 shows two variants of 

miniFE that use different matrix formats (ELL vs. CSR). We 

can see that miniFE-ELL makes most of its memory requests 

from warp instructions with low address divergence. On the 

other hand, miniFE-CSR makes the majority of its accesses 

from warp instructions with high address divergence - with 

73% of memory accesses being fully diverged (from warp in­

structions requesting the maximum 32 unique lines). Figure 8 

provides an in-depth look at the two variants of miniFE. We 

see a two-dimensional plot that accounts for both warp occu­

pancy (number of active threads) as well as address divergence 

(number of unique cachelines requested). In the case of CSR, 

an irregular access pattern results. In this implementation, 

many instructions are maximally address divergent, generat­

ing as many unique requests as active threads (the diagonal). 

For ELL, we can see that the distribution of unique requests, 



_device_ void sassi_after_handler (SASSIAfterParams* ap, 

SASSIRegisterParams *rp) 

int threadldxlnWarp = threadldx.x & (warpSize-1) i 

int firstActiveThread = (_ffs (_ballot (1» -1) ; l*leader*1 

II Get the address of this instruction, use it as a hash into a 

II global array of counters. 

struct handlerOperands *stats = find(ap->GetlnsAddr(» ; 

II Record the number of times the instruction executes. 

atomicAdd(&(stats->weight) , 1) ; 

stats->numDsts = rp->GetNumGPRDsts() i 

for (int d = 0; d < rp->GetNumGPRDsts() i d++) { 
II Get the value in each destination register. 

SASSIGPRReglnfo reglnfo = rp->GetGPRDst(d) ; 

int valuelnReg = (int) rp->GetRegValue{ap, reglnfo) ; 

stats->regNum [d] = rp->GetRegNum(reglnfo) i 

II Use atomic AND operations to track constant bits. 

atomicAnd{&(stats->constantOnes [d]) , valuelnReg) ; 

atomicAnd{&(stats->constantZeros [d]) , �valuelnReg) ; 

II Get the leader's 'valuelnReg', see if all threads agree. 

int leaderValue = _shfl(valuelnReg, firstActiveThread) ; 

int allSame = (_all (valuelnReg == leaderValue) ! = 0); 

II The warp leader gets to write results. 

if (threadldxlnWarp == firstActiveThread) { 
atomicAnd(&(stats->isScalar [d]) , aIISame) ; 

))) 

Figure 9: A simpl ified handler for value profi l i n g .  

while still correlated to the number of active threads, is shifted 

lower. In this case, threads are making more aligned requests 

that are better coalesced. 

7. Case Study Ill: Value Profiling and Analysis 

This section presents a simple profiling handler that tracks all 

instructions that produce register values and determines the 

following properties: ( 1) which bits of the generated values are 

always constant across all warps, and (2) which instructions 

are scalar, i. e. ,  the instruction produces the same values for all 

threads within a warp. Scalar analysis has been proposed to 

reduce register file capacity by allowing a significant amount 

of sharing across threads in a warp [20]. Similarly, there have 

been proposals to pack multiple, narrow-bitwidth operands 

into a single register [4 1], and hardware mechanisms exist for 

exploiting narrow-bitwidth computations (e.g. , by aggressively 

clock-gating unused portions of the datapath) [5]. This sec­

tion's analysis provides insight into how many register file bits 

(a premium in GPUs) current applications are wasting. Such 

insight is a valuable guide to the opportunities that architecture 

mechanisms can provide. 

7.1. SASSI Instrumentation 

Instrumentation where and what: To track the values a 

shader's instructions produce, we use SASSI to instrument 

after all instructions that write to one or more registers. We in­

struct SASSI to collect and pass to the instrumentation handler 

the register information for each instrumented instruction. 

Instrumentation handler: Figure 9 shows a simplified ver­

sion of the value profiling instrumentation handler for this case 

study. The handler performs the following five steps: ( 1) it 
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Table 2: Results for value profi l i n g .  

Dynamic % Static % 

Benchmark const bits scalar const bits scalar 

bfs 72 46 79 52 
cutcp 1 6  25 45 42 
histo 70 20 65 27 
lbm 25 4 28 7 
mri-gridding 66 66 60 35 
mri-q 1 9  40 52 5 1  
sad 5 1  5 58 35 
sgemm 1 7  47 27 44 
spmv 54 43 60 48 
stencil 49 35 58 42 
tpacf 70 26 72 33 

b+tree 73 76 74 80 
backprop 73 37 72 33 
bfs 72 44 68 38 
gaussian 7 1  54 57 50 
heartwall 60 I I  75 54 
hotspot 65 43 67 43 
kmeans 38 33 59 51 
lavaMD 46 30 54 40 
lud 33 1 9  42 22 
mummergpu 57 1 2  6 2  1 8  

40 3 1  40 3 1  
23 1 6  27 1 8  

pathfinder 66 1 9  6 5  3 7  
srad_vl 47 26 53 35 
srad_v2 48 28 60 35 
st reamcl uster 38 54 54 42 

elects a leader from the warp's active threads to write back re­

sults about whether a write is scalar; (2) it gets a pointer to the 

current instruction's statistics by hashing into a device-global 

hash table; (3) it iterates through the destination registers, ex­

tracting the value to be written to each destination; (4) it uses 

the atomicAnd function to keep track of constant one- and 

zero-bits; and (5) it uses _shfl and _all to communicate 

and decide whether a value is scalar. The leader records the 

outcome in the hash table. 

The instrumentation library uses the CUPTI library to reg­

ister callbacks for kernel launch and exit events [33]. Our 

launch call back initializes the hash table, and our exit callback 

copies the hash table off the device. This approach allows us 

to track statistics per kernel invocation. 

7.2. Results 

In our library's thread exit call back function, the library dumps 

the value profile for the associated kernel invocation, recording 

the profile for each instruction that writes one or more registers. 

For example, the output for a texture load from Parboil's bfs 

that loads a 64-bit quantity into two adjacent registers is: 

TLD.LZ.P 
R12 <­

R13* <-

R12, R16, RZ, oxoooo, 1D, Ox3; 
[OOOOOOOOOOOOOOTTTTTTTTTTTTTTTTTT] 
[00000000000000000000000000000001] 

This output shows that this instruction always loaded the 

value 1 into R13, across all threads in the kernel. At the same 

time, only the lower 18 bits of R12 varied (as is indicated by 

the T values) during the kernel's execution; the upper 14 bits 

were always O. The analysis identifies R13 as scalar, as noted 

by the asterisk. 



Our instrumentation library generates a coarse sUlmnary of 

the scalar and bit invariance properties of the instrumented pro­

gram. Table 2 summarizes the results for Parboil and Rodinia. 

We use the largest input data set available for Parboil, and 

the default inputs for Rodinia. For each benchmark we show 

the dynamic and static percentage of register bit assignments 

that are constant and scalar. The static metrics weigh each 

instruction equally, while the dynamic metrics use instruction 

frequency to approximate the true dynamic statistics. 

These results show that for these suites of benchmarks, the 

architecture is making poor use of the register file. Most 

benchmarks have a significant percentage of dynamic scalar 

operations, ranging up to 76% for b+tree. In addition, for 

these profile runs, most of the operands in these benchmarks 

require only a fraction of the 32-bit register allotted to them. 

With a remarkably concise amount of code, SASSI exposes 

interesting in sights that can drive architecture studies that aim 

to improve register file efficiency. 

8. Case Study IV: Error Injection 

This section demonstrates how SASSI can be employed to 

evaluate and analyze GPU application sensitivity to transient 

hardware errors, by injecting errors into the architecture state 

of a running GPu. To the best of our knowledge, the only prior 

research that examines GPU error vulnerability used CUDA­

GDB [ 14, 3 1]. That work also performed instruction-level 

statistical error injection to study application vulnerability, but 

lacked the ability to modify predicate registers and condition 

codes. Furthermore, because breaking after every instruction 

using CUDA-GDB and transferring control to the host system 

is prohibitively expensive, that work required a complex and 

heuristic-based profiling step to select error injection sites. 

A SASSI-based error injection approach overcomes these 

two challenges as it can modify any ISA visible state, in­

cluding predicate registers and condition codes. Further, the 

instrumented code executes on the GPU, which makes the pro­

filing step much faster and more accurate. Performing error 

injections using SASSI requires three main steps: ( 1) profil­

ing and identifying the error injection space; (2) statistically 

selecting error injection sites; and (3) injecting errors into 

executing applications and monitoring error behavior. Steps 

( 1) and (3) occur on different executions using two different 

SAS SI instrumentation handlers. 

In this study, we define an architecture-level error as a single­

bit flip in one of the destination registers of an executing 

instruction. If the destination register is a general purpose 

register (32-bit value) or a condition code ( 4-bit value), one 

bit is randomly selected for flipping. For predicate registers, 

we only flip a destination predicate bit that is being written by 

the instruction. 

8.1. SASSI Instrumentation 

Instrumentation where and what: For the profiling step, we 

instrument after all instructions that either access memory or 
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write to a register and exclude instructions that are predicated 

out. We collect and pass the register and memory information 

for each instrumented instruction to the handler, which records 

the state modifications so that an off-line tool can stochasti­

cally select the error injection site. For error injections, we 

instrument the same set of instructions and use the handler 

to inject the error into the location selected by the stochastic 

process. 

Instrumentation handler: In the profiling step, we collect 

the following information to identify the error injection space: 

( 1) static kernel names, (2) the number of times each kernel 

executes, (3) the number of threads per kernel invocation, and 

(4) the number of dynamic instructions per thread that are 

not predicated out and either write to a register or a memory 

location. We use CUPTI to collect ( 1) and (2) and instrument 

the instructions using SASSI to collect (3) and (4). 

Using this information we randomly select 1,000 error in­

jection sites per application, which is a tuple consisting of the 

static kernel name, dynamic kernel invocation ID, thread ID, 

dynamic instruction count, seed to select a destination register, 

and seed to select the bit for injection. This step is performed 

on the host CPU. 

In the last and the most important step, we inject one error 

per application run and monitor for crashes, hangs, and output 

corruption. In each injection run, we check if the selected 

kernel and its dynamic invocation count has been reached 

using CUPTI. If so, we copy the remaining error site tuple 

into the device memory. During kernel execution, we check 

if the current thread is the selected thread for injection in the 

instrumentation handler. For the selected thread, we maintain a 

counter and check if the dynamic instruction that just executed 

is the selected instruction for injection. If it is the selected 

instruction, we inject the error into the bit and the register 

specified by the seeds in the tuple. 

After the handler injects the error the application contin­

ues unhindered (unless our experimental framework detects a 

crash or a hang). We categorize the injection outcome based 

on the exit status of the application, hang detection, error mes­

sages thrown during execution, and output differences from 

that of an error-free reference run. 

8.2. Results 

Figure 10 shows how different applications respond to 

architecture-level errors. As mentioned earlier, we performed 

1,000 error injection runs per application. This figure shows 

that approximately 79% of injected errors on average (using 

our error model) did not have any impact on the program out­

put. Only 10% resulted in crashes or hangs. Approximately 

4% of injections showed symptoms of failures (unsuccessful 

kernel execution or explicit error messages in stdoutlstderr), 

which can be categorized as potential crashes with appropriate 

error monitors. The remaining injections corrupt some appli­

cation output (stdout or stderr or a program defined output 

file). We categorize such cases as potential silent data corrup-



1 00% 
90% 
80% 
70% 
60% 
50% 
40% 
30% 
20% 
1 0% 

Potentiat Detected Unrecoverable Errors Potential Silent Data Corruptions 

o Masked III Crashes � Hangs � Failure symptoms 0 Stdout only different _ Output file differen 

Figure 10: Error i njection outcomes of different applications. 

Each bar shows the results from 1,000 error i njection runs. 

tions (SDCs). We observed that 1.5% of injections showed 

differences only in stdoutlstderr when compared to error-free 

executions without corrupting program output files, which 

may be acceptable for some applications. Lastly, only 5.4% 

showed differences in program output files. Additional details 

can be found in [ 16]. 

SAS SI provides the ability to explore the architecture vul­

nerability of GPUs. We further expect that SASSI will be a 

valuable tool in exploring hardware and software error mitiga­

tion schemes. 

9. Discussion 

This section discusses additional SASSI usage considerations, 

including runtime overheads, instrumentation side-effects, lim­

itations, and possible extensions. 

9.1. Runtime Overhead 

The overhead of SAS SI instrumentation depends on where 

we insert instrumentation and what instrumentation we insert. 

Table 3 shows the overheads of instrumentation for each of the 

case studies. For each benchmark, the three columns under the 

"Baseline" heading show the wall clock runtime t (in seconds), 

the total time spent executing kernels k (in milliseconds), and 

the total number of kernel launches. The benchmarks in the 

table are sorted by the fraction of total runtime spent in the 

GPU kernel, from smallest to largest. 

We use nvprof [35] to collect device-side statistics and the 

Linux time command to measure whole-program runtimes. 

All results were collected on a 3GHz Intel@ Xeon@ E5-2690 

v2 with an NVIDIA Tesla K40m and driver version 346.4 1. 

We use the median of five runs for each experiment, compile 

benchmarks at the "-03" optimization level, and invoke the 

applications with the largest supplied input data set. 

For each case study we measure the total wall-clock runtime 

T and device-side runtime K of instrumentation relative to the 

baselines t and k, respectively. As the two instances where 

instrumentation leads to performance improvements indicate, 

these measurements contain some jitter. 
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As expected, the fewer SASS instructions SASSI instru­

ments, the lower the overhead of instrumentation. As Case 

Study I only instruments conditional branches, it sees rela­

tively modest slowdowns. However, as Case Studies III and IV 

add instrumentation after every SASS instruction that writes 

a register, the slowdowns can be significant. The maximum 

slowdown we see is over 160 x for whole-program execution. 

For applications with a considerable fraction of CPU and 

data transfer time, the whole-program overhead of instrumen­

tation is typically negligible, whereas for GPU-bound appli­

cations, the overhead can be large. Even heavy instrumenta­

tion does not significantly disrupt many of these applications, 

simply because they are CPU-bound. Also of note, nvprof 

treats the marshalling of data between the device and host as 

kernel time, which reduces the apparent kernel-level impact 

of instrumentation on memory-bound applications such as 

mummergpu. 

We removed the body of the instrumentation handlers to 

measure the overhead of spilling and setting up ABI-compliant 

calls. Surprisingly the runtime overhead does not decrease 

dramatically when we stub out the code in the instrumentation 

handlers. For all case studies, the overhead of ABI-compliance 

and spilling live registers dominates, consuming roughly 80% 

of the total overhead. 

Future work will consider optimizations to reduce the base­

line overhead of instrumentation. One approach involves track­

ing which live variables are staticaUy guaranteed to have been 

previously spilled but not yet overwritten, which will allow 

us to forgo re-spilling registers. In addition, while passing 

references to C++ objects is convenient for programmers, 

stack-allocating the objects is expensive; We may consider 

mechanisms to more efficiently pass parameters to the han­

dlers. 

Because SASSI-instrumented programs run at native hard­

ware rates, it enables users to quickly refine their experiments, 

a feature not possible in the context of GPU simulation frame­

works. Our worst kernel-level slowdown of 722 x is much 

faster than simulators such as GPGPU-Sim, which are l - l O  
million times slower than native execution. 

9.2. Instrumentation Side-effects 

While SAS SI is intended to be minimally invasive, additional 

instructions, register pressure, and cache effects of SAS SI 

instrumentation can alter the behavior of applications that 

contain race-conditions or rely on specific scheduling or tim­

ing assumptions. Even without instrumentation, tpacf in 

the Parboil suite produces inconsistent results across differ­

ent architectures, particularly on the medium and large input 

sets. While we did not observe applications that exhibited 

non-deterministic behavior with the addition of SASSI, if an 

application is already susceptible to non-deterministic behav­

ior, SAS SI instrumentation will likely exacerbate this non­

determinism. 



Table 3: Instrumentation overheads. The " Basel ine" col umn shows the wal l  clock time t ,  and the t ime spent executing kernels k, 

for each of the benchmarks. The "T " col umn for each case study shows the total runtime of the i nstru mented appl ication with 

respect to t, and the "K" col umn shows the device-side runtime with respect to k. 

Baseline 

Benchmark I=Total time (s) k=Kernel time (ms) Kernel launches 

sgemm 2.0 7 .8 4 
spmv 2.2 24.3  58 

bfs 2.3 54.3 37 
mri-q 0.3  9 .2  1 5  

' 0 mri-gridding 9.6  374.2 81 
oD cutcp 3 . 0  176. 1 3 1  � 
0- histo 40.4 4466. 1  7 1 042 

stencil 1 .6 1 88 . 2  1 04 
sad 3 . 1  498 .9  7 
lbm 7 . 2  561 1 A  3003 

tpacf 5 A  4280.6 4 

nn 0.3  0 . 1  3 
hotspot 0.7 0 .4 4 

lud OA J .7 48 
b+tree 1 . 8  1 2 . 5  20 

bfs 2.0 16A 55 
pathfinder J .3 1 2 . 1  8 

" srad_v2 2.3 23 .0  8 
'2 mummergpu 7.7  90 . 1  1 3  'i3 

backprop 0.3  4 .8  1 0  0 
c:<: kmeans 1 .6 32.3 10 

lavaMD 0.6  2 1 . 5  6 
srad_vl 0.4 2 1 . 2  708 

0.3 25 .5  258 
gaussian 1 .5 254.9  2052 

streamcluster 7 . 1  243 1 .5 1 1 278 
heartwall 0.5  227 A 40 

Minimum 0.3  0 . 1  3 
Maximum 40A 561 1 A  7 1 042 

Harmonic mean 0 .9  J .3 1 2 . 2  

9.3. Concurrency Issues and Limitations 

Because SASSI instrumentation code is written in CUDA, it is 

parallel by construction. Designing instrumentation handlers 

for SASSI requires the user to carefully consider synchroniza­

tion and data sharing. SASSI handlers can exploit most of 

the explicit parallel features of CUDA, including operations 

for voting, atomics, shuffle, and broadcast. However, not all 

CUDA is legal within SASSI instrumentation handlers. For 

example, thread barriers (syncthreads) cannot be used be­

cause the instrumentation function may be called when the 

threads in a warp are diverged; syncthreads executed by 

diverged warps precludes all threads from reaching the com­

mon barrier. Finally, SAS SI instrumentation libraries that use 

shared resources, such as shared and constant memory, not 

only risk affecting occupancy, but they could also cause instru­

mented programs to fail. For instance, it is not unconunon for 

programs to use all of shared memory, leaving nothing for the 

instrumentation library. In practice, we have not been limited 

by these restrictions. 

9.4. SASSI Extensions 

Exploiting compile-time information: As part of the back­

end compiler, SASSI has structural and type information that 

cannot be easily reconstructed dynamically. For instance, un­

like SAS SI, binary instrumentation frameworks generally can­

not identify static basic block headers [ 12]. Operand datatype 
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Case Study I Case Study 11 Case Study III Case Study IV 
Cond. Branches Memory Divergence Value Profiting Error Injection 

T K T K T K T K 

1 .01 1 .9k 1 .51 1 I 1 . 8k 2 . 1 1  293 .3k 2.21 286Ak 
1 .01 3 .5k J .31 1 9 . 9k 1 . 81 72.8k 1 . 81 73 . l k  
1 . 1 1 3 .7k 1 .21 I J .7k 1 .61 25.5k I AI 20.8k 
1 .51 1 6 . l k  1 . 1 1 1 .2k 22.31 722. l k  2 1 . 1 1  678.3k 
1 .51 17 .3k I Al 1 3 .9k 6.31 1 39 . 8k 4.71 98 .9k 
5 . 1 1  8 1 .3k 3 . 81 60.3k 42.61 7 1 4Ak 40.31 676.2k 

4.41 29.8k 5 . 91 46.0k 3 0 . 81 270.4k 29 . 1 1  257 .0k 
4.31 27 . l k  9 .41 69.9k 32.31 255.5k 32.31 258 . 6k 
i . l l  I . l k  i . l l  L6k 3 . 81 1 7 . 8k 3 .51 1 6 . 2k 
2.01 2 .2k 1 8 .31 23 . l k  1 0 3 . 01 1 29 .6k 98.21 1 25 . 0k 

1 8 .91 23 .0k 1 0 . 91 1 3 .6k 1 60 .61 205 .0k 148.91 1 87 . 0k 

1 .01 2 .0k 1 .01 2 .2k 0 .91 8.7k 1 .01 8 . 2k 
1 . 1 1 8 . 6k 1 .01 16 .3k 1 .01 1 2 L 6k 1 . 1 1 1 20 .2k 
1 .01 7 . l k  1 .01 22.4k J .31 80.8k J .31 67 . l k  
1 .01 3 .5k 1 .01 1 O . 0k l .31 39.3k 1 .21 3 8 Ak 
1 .01 4.7k 1 . 1 1 14 .0k l .31 34Ak I AI 34.7k 
1 . 1 1 2 .6k 1 . 1 1 7 . l k  1 .21 20.3k 1 .21 20.7k 
1 .01 5 . l k  1 . 1 1 1 2.3k J .71 69. l k  J .71 69.9k 
1 . 1 1 J .3k 1 . 1 1 L l k  1 .21 4 .0k 1 . 1 1 3 .5k 
1 .01 1 .5k i . l l  5 .4k l .31 1 7 . 8k l .31 1 8 .5k 
1 .01 2. l k  0 .91 2.4k 1 .51 26.7k 1 .51 25.5k 
1 .41 1 3 . 8k 2 . 1 1  30 .8k 1 7 .71 452.5k 1 6 . 21 422.4k 
1 .41 8 . 5k 4.61 62.0k 14 .51 227 .8k 14 .51 232.5k 
1 .01 LOk J .31 5 .3k 2.01 1 3 .9k 1 .91 1 3 .5k 
4.41 1 8 .7k 2.31 8 .4k 1 2.71 69Ak 6.31 32.9k 
2.01 3 . 8k 8.71 22.8k 34.71 99.9k 3 3 . 01 95.6k 
9 .91 22. l k  30.01 70.6k 1 03 .31  229 .6k 93.71 220.7k 

1 .01 1 .0k 0 .91 I . l k  0 .91 4 .0k 1 .01 3 .5k 
1 8 .91 8 J .3k 30.01 I I L8k 1 60 .61 722. l k  148.91 678.3k 

1 .41 3 .4k 1 .61 5.7k 2.41 3 L 8k 2.41 29.0k 

information can also be passed to SASSI handlers, information 

that is not explicitly encoded in a program's binary code. 

Instrumenting heterogeneous applications: SASSI can be 

used in conjunction with host-side instrumentation tools like 

Pin to enable whole-program analysis of applications. This 

approach requires some degree of coordination between the 

host- and device-side instrumentation code, particularly when 

used to form a unified stream of events for analysis. We have 

already built a prototype to examine the sharing and CPU­

GPU page migration behavior in a Unified Virtual Memory 

system [29] by tracing the addresses touched by the CPU and 

GPU. A CPU-side handler processes and correlates the traces. 

Driving other simulators: SASSI can collect low-level traces 

of device-side events, which can then be processed by separate 

tools. For instance, a memory trace collected by SASSI can 

be used to drive a memory hierarchy simulator. 

9.5. Graphics Shaders 

Instrumentation of OpenGL and DirectX shaders is feasible 

with SASSI. Graphics shaders require SAS SI to be part of 

the driver because they are always HT compiled. Graphics 

shaders do not adhere to the CUDA ABI nor do they maintain 

a stack, and therefore SASSI must allocate and manage a 

stack from which the handler code can operate. Aside from 

stack management, the mechanics of setting up a CUDA ABI­

compliant call from a graphics shader remain unchanged. 



10. Related Work 

To our knowledge, this paper is the first to introduce an ac­

curate and flexible selective instrumentation framework for 

GPU applications. The major contribution of this work is 

demonstrating a middle ground for measuring, characterizing, 

and analyzing GPU application performance that provides ac­

curate hardware-rate analysis while being flexible enough to 

measure many interesting aspects of execution. 

Many profilers rely on specialized hardware support, such as 

NSight [34], Visual Profiler [35], and ProfileMe [ 1 1]. SASSI 

on the other hand, like the remainder of the related work 

in this section, is purely software-based. We qualitatively 

compare SAS SI to alternative approaches, including binary 

instrumentation and compiler-based frameworks. 

10.1. Binary Instrumentation 

Tools such as Pin [2 1], DynamoRIO [ 12], Valgrind [28], and 

Atom [38] allow for flexible binary instrumentation of pro­

grams. Binary instrumentation offers a major advantage over 

compiler-based instrumentation approaches such as SASSI 

employs: users do not need to recompile their applications to 

apply instrumentation. Not only is recompilation onerous, but 

there are cases where vendors may not be willing to relinquish 

their source code, making recompilation impossible. 

On the other hand, compiler-based instrumentation ap­

proaches have some tangible benefits. First, the compiler has 

information that is difficult, if not impossible, to reconstruct 

at runtime, including control-flow graph information, register 

liveness, and operand data-types. Second, in the context of 

just-in-time compiled systems (as is the case with graphics 

shaders and appropriately compiled compute shaders), pro­

grams are always recompiled before executing anyway. Fi­

nally, compiler-based instrumentation is more efficient than 

binary instrumentation because the compiler has the needed 

information to spill and refill the minimal number of registers. 

10.2. Direct-execution Simulation 

Another approach related to compiler-based instrumentation 

is direct execution to accelerate functional simulators. Tools 

such as RPPT [9], Tango [ 10], Proteus [4], Shade [8], and 

Mambo [3] all translate some of the simulated program's 

instructions into the native ISA of the host machine where 

they execute at hardware speeds. The advantage of these ap­

proaches for architecture studies is that they are built into sim­

ulators designed to explore the design space and they naturally 

co-exist with simulator performance models. The disadvan­

tage is that one has to implement the simulator and enough of 

the software stack to run any code at all. By running directly 

on native hardware, SASSI inherits the software stack and 

allows a user to explore only those parts of the program they 

care about. While we have not yet done so, one can use SASSI 

as a basis for an architecture performance simulator. 
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10.3. Compiler-based Instrumentation 

Ocelot is a compiler framework that operates on PTX code, 

ingesting PTX emitted by a front-end compiler, modifying it in 

its own compilation passes, and then emitting PTX for GPUs 

or assembly code for CPUs. Ocelot was originally designed to 

allow architectures other than NVIDIA GPUs to leverage the 

parallelism in PTX programs [ 13], but has also been used to 

perform instrumentation of GPU programs [ 15]. While Ocelot 

is a useful tool, it suffers from several significant problems 

when used as a GPU instrumentation framework. First, be­

cause Ocelot operates at the virtual ISA (PTX) level, it is far 

divorced from the actual binary code emitted by the backend 

compiler. Consequently, Ocelot interferes with the backend 

compiler optimizations and is far more invasive and less pre­

cise in its ability to instrument a program. SASSI's approach 

to instrumentation, which allows users to write handlers in 

CUDA, is also more user-friendly than the C++ "builder" class 

approach employed in [ 15]. 

11.  Conclusion 

This paper introduced SAS SI, a new assembly-language instru­

mentation tool for GPUs. Built into the NVIDIA production­

level backend compiler, SAS SI enables a user to specify spe­

cific instructions or instruction types at which to inject a call 

to a user-provided instrumentation function. SASSI instru­

mentation code is written in CUDA and is inherently parallel, 

enabling users to explore the parallel behavior of applications 

and architectures. We have demonstrated that SASSI can be 

used for a range of architecture studies, including instruction 

control flow, memory systems, value similarity, and resilience. 

Similar to CPU binary instrumentation tools, SASSI can be 

used to perform a wide range of studies on GPU applications 

and architectures. The runtime overhead of SAS SI depends 

in part on the frequency of instrumented instructions and the 

complexity of the instrumentation code. Our studies show a 

range of runtime slowdowns from 1- 160 x ,  depending on the 

experiment. While we have chosen to implement SAS SI in 

the compiler, nothing precludes the technology from being 

integrated into a binary rewriting tool for GPUs. Further, we 

expect that the SASSI technology can be extended in the future 

to include graphics shaders. 
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