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Abstract

High-quality off-line rendering requires many features not natively supported by current commodity graphics hard-
ware: wide smooth filters, high sampling rates, order-independent transparency, spectral opacity, motion blur, depth
of field. We present a GPU-based hidden-surface algorithm that implements all these features. The algorithm is Reyes-
like but uses regular sampling and multiple passes. Transparency is implemented by depth peeling, made more efficient
by opacity thresholding and a new method called z batches. We discuss performance and some design trade-offs. At
high spatial sampling rates, our implementation is substantially faster than a CPU-only renderer for typical scenes.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Three-Dimensional Graphics and Realism]: Hidden
line/surface removal

1. Introduction
Rendering for film and other high-end applications typically
requires a plethora of hidden surface removal features that
have not traditionally been available in graphics hardware:
highly supersampled antialiasing, filtered with a high-quality
kernel with support wider than one pixel; motion blur and
depth of field; order-independent transparency with spec-
tral opacities (separate values for red, green, and blue); and
floating-point output of color, opacity, and any other arbitrary
values computed by shaders.

Until recently, real-time graphics hardware has taken a sim-
plistic approach to hidden surface removal: a single z-buffer
entry per pixel, 8-bit color depth, and an 8-bit alpha chan-
nel to represent coverage and opacity. Even now that some of
these restrictions have been lifted (notably with the advent of
floating-point framebuffers), it has been difficult or impossible
to achieve the full array of features above, particularly at the
quality levels demanded by high-end applications.

In this paper, we present a high-quality hidden surface re-
moval algorithm that is accelerated by modern commodity
graphics hardware. Specifically:
• The algorithm incorporates supersampling, user-selected fil-

ters with arbitrarily wide support, depth of field, and multi-
ple output channels.

• The algorithm supports transparency. It uses the depth peel-
ing technique, enhanced to allow multi-channel opacity and
opacity thresholding. We also present optimizations that, for
typical scenes, allow transparency performance to scale lin-
early rather than as O(N2).

• The algorithm uses grid occlusion culling to avoid addi-
tional shading.

• The algorithm produces comparable quality and superior
performance to the hidden surface removal algorithms used
in CPU-only software renderers, for many typical scenes
(see Figure 1).

† {dwexler|lgritz|eenderton|jrice}@nvidia.com

Figure 1: A motion blurred image from our GPU-accelerated
renderer. Courtesy of Tweak Films.

• We explore a variety of engineering trade-offs in imple-
menting this algorithm on modern GPUs, and discuss its
performance on a variety of scenes.
This work does not attempt to create real-time rendering ca-

pabilities (e.g., 30 fps). Rather, our goal is to accelerate the
rendering of images at the highest quality possible, suitable
for film or broadcast, that now take minutes or hours. We
have already achieved significant speed improvements by us-
ing graphics hardware, and we expect those improvements to
become even greater over time as graphics hardware becomes
more capable and its speed improvements continue to outpace
those of CPUs.

1.1. Rationale: Programmable Graphics Hardware
Previous attempts at high-quality rendering with graphics
hardware have generally involved costly custom hardware
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whose performance is often soon overtaken by improvements
in general purpose CPUs.

In contrast, this work is concerned strictly with commodity
graphics hardware. We find this approach promising because
the economy of scale present with modern commodity hard-
ware makes it very inexpensive, and because graphics hard-
ware increases in capability at a much faster rate than CPUs are
improving. Kirk [Kir02] reports that for several years graphics
hardware doubled in speed every six to twelve months versus
every eighteen months for CPUs.

In addition to traditional geometric transformation and ras-
terization, modern graphics processing units (hereafter re-
ferred to as “GPUs”) such as the ATI Radeon 9800 and
NVIDIA GeForce FX feature (1) significant programmability
via vertex and fragment shaders, rapidly converging on the ca-
pabilities of stream processors; and (2) floating-point precision
through most or all of the pipeline [ATI03,NVI03]. These two
facilities are the key enablers of the work described here.

1.2. Related Work
Prior work can be categorized according to the hardware it re-
quires. Software-only systems for high-quality rendering, par-
ticularly the Reyes architecture [CCC87, AG99] and its com-
mercial implementations, form both the jumping-off point for
our approach and the baseline against which we measure our
results. Systems using specialized hardware for high-quality
rendering have been proposed or built, but are outside the
scope of this paper. This leaves GPU and GPU-assisted meth-
ods.

Current GPUs support multisampling, which computes vis-
ibility for multiple samples per pixel but reuses a single color
from the center of the pixel [MH02]. This improves real-time
graphics but is not high-quality: current hardware limits the
filter shape to a box with no overlap between adjacent pixels,
full floating-point formats are not yet supported, and only low,
fixed numbers of samples per pixel are supported (currently 4
to 8, versus the dozens typically used for film rendering). The
proposed Talisman architecture [TK96] mitigates the memory
expense of multiple samples by rendering one screen region
at a time, and also supports multisampling, though at a fixed
4×4 samples per pixel.

The accumulation buffer [HA90] supports antialiasing, mo-
tion blur, and depth of field effects by accumulating weighted
sums of several passes, where each pass is a complete re-
rendering of the scene at a different subpixel offset, time,
and lens position, respectively. Direct hardware support has
not yet included full 32-bit floating point precision, but pro-
grammable GPUs can use fragment shaders to apply this tech-
nique at floating point precision, although still at the expense
of sending geometry to the GPU once per spatial filter sam-
ple. Interleaved sampling [KH01] can reduce the artifacts from
regularly-sampled accumulation buffers.

Scenes with partially transparent surfaces, possibly mixed
with opaque surfaces, are challenging. Methods that require
sorting surfaces in depth are problematic because intersect-
ing surfaces may have to be split to resolve depth ordering.
The depth peeling method, described in general by Mam-
men [Mam89] and for GPUs by Everitt [Eve01], solves order-
independent transparency on the GPU. The method is summa-
rized later in this paper. Its principal drawback is that a scene
with maximum depth complexity D must be sent to the GPU
D times. For some scenes, such as particle systems for smoke,
this can result in O(N2) rendering time, where N is the num-
ber of primitives. Mammen suggests an occlusion culling op-
timization (though not by that name). In his algorithm, once
an object no longer affects the current pass, it is dropped for
subsequent passes. Kelley et al. [KGP∗94] designed hardware
with four z-buffers, able to depth peel four layers at once. They
use screen regions so that only regions with high D require

high numbers of passes. The hardware R-Buffer [Wit01] pro-
poses to recirculate transparent pixels rather than transparent
surfaces; this avoids sending and rasterizing the geometry mul-
tiple times, but can require vast memory for deep scenes.

2. Architectural Overview
The context for this work is a Reyes-like architecture [CCC87,
AG99]. High-order surface primitives (such as NURBS, subdi-
vision surfaces, and polygons) are recursively split until small
enough to shade all at once. These patches are discretized into
grids of pixel-sized quadrilateral micropolygons. Grids typi-
cally contain on the order of 100 micropolygons, and are lim-
ited to a user-selected size. The grids are possibly displaced,
then assigned color, opacity, and optionally other data values at
each grid vertex by execution of user-programmable shaders.
Finally, the shaded grids are undergo hidden surface removal
(“hiding”) to form a 2D image.

It is this final stage—hidden-surface removal of the shaded
grids of approximately pixel-sized quadrilaterals—that is the
concern of this paper. Whether performed on the GPU or CPU,
the earlier stages—handling high-order geometry and shad-
ing the micropolygon vertices—are largely orthogonal to the
methods used for hidden surface removal. Although beyond
the scope of this paper, our shading system implements ad-
vanced techniques including global illumination and ray trac-
ing.

Like many Reyes-style renderers, we divide image space
into rectangular subimages called buckets [CCC87] in order
to reduce the working set (of both geometry and pixels) so that
scenes of massive complexity can be handled using reason-
able amounts of memory. For each bucket, the grids overlap-
ping that bucket are rasterized using OpenGL, as described in
Section 3. To handle partially-transparent grids, we use depth
peeling but extend it in several important ways to allow multi-
channel opacity and opacity thresholding. We also introduce a
batching scheme that reduces the computational complexity of
depth peeling for typical cases. The transparency algorithms
are discussed in detail in Section 4.

Motion blur and depth of field are achieved using an
accumulation-buffer-like technique involving multiple render-
ing passes through the geometry for the bucket. This is de-
scribed in Section 5.

In order to achieve sufficiently high supersampling to ame-
liorate visible aliasing, buckets are rendered for all of these
passes at substantially oversampled resolution, then filtered
and downsampled to form the final image tiles. The filtering
and downsampling is performed entirely on the graphics card
using fragment programs, as described in Section 6.

The handling of transparency, motion blur, depth of field,
and arbitrary output channels can lead to large numbers of ren-
dering passes for each bucket (though much of that work must
be performed only for buckets that contain transparent or mov-
ing geometry). Specifically,

passes = Poutput×Pmotion×Ptransparent

where Poutput is the number of output images; Pmotion is
the number of motion blur or depth of field samples; and
Ptransparent is the number of passes necessary to resolve trans-
parency.

GPUs are well optimized to rasterize huge amounts of ge-
ometry very rapidly. Large numbers of passes render quite
quickly, generally much faster than using CPU-only algo-
rithms. In short, brute force usually wins. We will return to
discussion of performance characteristics and other results in
Section 7.

3. Hiding Opaque Surfaces
This section describes our basic hidden-surface algorithm for
opaque geometry. For simplicity, we describe the process for
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a single bucket in isolation; extension to multiple buckets is
straightforward. The steps are repeated for each output image†.

The algorithm has the overall splitting-and-dicing form of a
Reyes-style algorithm, but with a new grid occlusion test to-
wards the end:
for each output image:

for every object from front to back:
if object’s bounding box passes the occlusion test:

if object is too big to dice:
split object and re-insert split sub-objects

else:
dice object into grid of final-pixel-sized quads
if diced grid passes the occlusion test:

shade the grid
render the grid

The grid rendering and both occlusion culling steps are ex-
ecuted on the graphics hardware.

3.1. Grid Rendering
To render diced grids with high quality on the GPU, we use
regular supersampling — in other words, we render large, and
minify later. We render the grids using standard OpenGL prim-
itives into an image buffer which is larger than the final pixel
resolution by a user-selected factor, typically 4-16x in each di-
mension. For a typical bucket size of 32× 32 pixels, the su-
persampled buffer fits easily in GPU memory. It is a happy
synergy that buckets, primarily designed to limit in-core scene
complexity, also help to limit buffer size. Rendering grids large
also helps tune the geometry for the GPU. The projected screen
size of a grid micropolygon is usually on the order of a single
pixel in the final image. However, current GPUs are designed
to be most efficient at rendering polygons that cover tens or
hundreds of pixels; smaller polygons tend to reduce the par-
allel computation efficiency of the hardware. Supersampling
helps to move our grid polygons into this “sweet spot” of GPU
performance.

Shading data can be computed at the resolution of the grid—
the dicing rate—or at another, higher resolution. If the shading
and dicing rates match, then the shaded colors are passed down
to the GPU as per-vertex data. A full-precision register inter-
polates the colors across polygons, resulting in smooth-shaded
grids.

If the shading rate differs from the dicing rate, so that shad-
ing data is no longer per-vertex, then colors are passed to the
GPU as a floating-point texture instead. Sending the texture to
the GPU and then sampling it for each fragment is slower than
passing a color per vertex. In our implementation, the penalty
was 10–20%, and quality suffered because the hardware we
used could not efficiently filter floating-point texture lookups.

3.2. Occlusion Culling
In modern Reyes-style algorithms, before an object is split,
diced, or shaded, its bounding box is tested to see whether it
is completely occluded by objects already rendered [AG99].
If so, it is culled. To maximize culling, objects are processed
in roughly front-to-back order, using a heap data structure or-
dered by the near z values of the objects’ camera space bound-
ing boxes. In a high-quality renderer, shading tends to be more
expensive than occlusion testing, since it may include texture
lookups, shadows, or even global illumination. So occlusion
culling before shading can often produce great performance
benefits.

† Users’ shaders can optionally output other variables besides color.
Each is rendered into a separate output image. Examples include sur-
face normals or separate specular and diffuse images.

CPU-based renderers typically maintain a hierarchical z-
buffer for occlusion testing [GK93]. By contrast, our renderer
uses the GPU hardware to occlusion test against the full z-
buffer, via the OpenGL occlusion query operations [SA03].
Occlusion query returns the number of fragments that passed
the z-buffer test between the query start and end calls. In other
words, it returns the number of visible fragments. We turn off
writes to the framebuffer, begin an occlusion-query, render the
bounding box, then end the query. If the query reports zero
visible fragments, the object is culled.

The bounding box occlusion cull before objects are diced is
similar to CPU-based algorithms. But later, after the object is
diced (but before it is shaded), we occlusion cull again using
the actual grid geometry, an exact test for whether rendering
the grid would change any pixels. This test would be quite ex-
pensive on the CPU, but GPUs rasterize quickly. Grid culling
is especially effective near silhouette edges, where grids be-
hind the silhouette very often have a bounding box that spills
out past the silhouette. Grid culling can also help when an ob-
ject’s bounding box pokes out from behind other geometry, but
the actual object does not (e.g., two concentric spheres with
slightly different radii). Grid culling reduces shading by 10-
20% in our test scenes and provides a significant performance
boost. In scenes dominated by shading time such as ambient
occlusion, ray tracing, and complex user-defined shaders, the
performance boost is even more pronounced.

The PC bus architectures in current use allow much greater
data bandwidth to the GPU than back from it. Occlusion-query
fits this mold well, since it returns only a single integer. How-
ever, the GPU must finish rendering the primitives before the
occlusion-query result is available. Thus the frequent queries
in our hider algorithm tend to cause the GPU to run at reduced
efficiency, although some latency can be hidden by careful or-
dering of operations.

4. Transparency
As mentioned earlier, we use depth peeling to render grids that
may be transparent and may overlap in depth and screen space.
Standard depth peeling [Eve01] is a multipass method that ren-
ders the nearest transparent surface at each pixel in the first
pass, the second nearest surface in the second pass, etc. Each
pass is composited into an RGBAZ “layers so far” buffer that
accumulates the transparent layers already rendered. Each pass
renders the whole scene using ordinary z-buffering, with an
additional test that only accepts fragments that are behind the
corresponding z in the layers-so-far buffer. An occlusion query
test on each pass indicates whether that layer was empty; if it
was, the algorithm halts.

We considered an alternative to depth peeling, an algorithm
to “bust and sort” overlapping grids into individual microp-
olygons, then render them all in front-to-back order. This ap-
proach was abandoned because current GPUs do not support
floating-point alpha blending or allow framebuffer reads from
within fragment programs. This might be worth revisiting if
future GPUs add these capabilities.

Our depth peeling algorithm (Listing 1) extends that of
Everitt in several ways. First, like Mammen [Mam89], we pro-
cess all opaque surfaces beforehand into a separate RGBAZ
buffer, leaving only the transparent grids for depth peeling.
Second, we perform opacity thresholding between batches of
transparent surfaces sorted in depth, resulting in greatly im-
proved performance for typical cases. Third, we handle spec-
tral opacity, using three passes when needed.

4.1. Opaque Preprocessing
Because typical scenes are mostly opaque, rendering opaque
surfaces first drastically cuts the number of required depth
peeling passes. The remaining transparent grids are occlusion
culled against the opaque z-buffer, further reducing depth peel-
ing effort. We use the opaque z-buffer texture as an additional
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depth comparison during depth peeling, so transparent microp-
olygons occluded by opaque surfaces do not add additional
depth peeling passes.

Figure 2: Depth-peeling of three transparent spheres and an
opaque cube, after one layer has been peeled. Dotted lines
indicate the layers-so-far buffer (nearest layer) while dashed
lines indicate the layer being computed (second-nearest layer).
The thick line on the surface of the cube indicates the opaque-
surfaces buffer, which culls away all surfaces behind it.

Figure 2 illustrates the algorithm. The opaque preprocess
renders all opaque surfaces into the opaque z-buffer. From here
on, we render only transparent surfaces. Grids occluded by the
opaque z-buffer are culled. Pass 1 computes RGBAZ of the
nearest transparent surfaces; this initializes the layers-so-far
buffer. Pass p, p > 1, computes RGBAZ of the p-th nearest
transparent surfaces. The fragment program for Pass p rejects
fragments unless they are both behind the layer-so-far buffer’s
z and in front of the opaque buffer’s z; the z-buffer test for Pass
p selects the nearest of the accepted fragments. We halt when
the occlusion query test for Pass p reports that no fragments
were accepted. Otherwise, we composite the RGBA of Pass p
under the layers-so-far buffer, and replace the z of the layers-
so-far buffer with the z of Pass p.

4.2. Z-Batches
Depth peeling has O(N2) worst-case performance for N grids.
If we could depth peel the grids in batches of B grids each, the
worst case would be only O((N/B)B2) = O(BN) = O(N). The
problem is that the grids from separate batches may overlap in
depth, so we cannot simply depth peel the batches indepen-
dently and composite the results. We solve this problem by re-
stricting each batch to a specific range of z values, partitioning
the z axis so that standard compositing yields correct results.

We do this with constant-z clipping planes. Recall that we
have sorted our grids by the z value of the front plane of the
camera-space bounding box. We break the list of transparent
grids into z-batches of B consecutive grids each. The zmin of
each z-batch is the zmin of its first primitive. While depth peel-
ing a z-batch, we clip away fragments nearer than the batch’s
zmin or farther than (or equal to) the next batch’s zmin; see Fig-
ure 3. Grids that cross a zmin boundary are rendered with both
batches. Each z-batch now produces the correct image for a
non-overlapping range of z values, and simple compositing of
these images now works.

Grids that cross multiple zmin planes appear in multiple
z-batches. In the worst case, grids overlap so extensively in
depth that z-batch size effectively approaches N, and we still
do O(N2) work. More typically, batches are bigger than B but
still much smaller than N, and the speed-up is enormous.

4.3. Opacity Thresholding
Due to the nature of the Porter-Duff over operation [PD84]
used to accumulate transparent layers, the opacity value will
approach but never equal full opacity. Opacity thresholding

Batch 0 Batch 1 Batch 2

Figure 3: Clipping planes in z let us depth-peel each z-batch
independently. Here we see three z-batches, with B = 5. As-
sume each sphere is one grid. Note that grids that “trail” into
a following batch are rendered in both batches, with z-clipping
at the batch boundary.

[Lev90] approximates opacity values above a user-specified
threshold as fully opaque, thus reducing the effective depth
complexity. This meshes nicely with z-batches. After each
z-batch is rendered, we identify these pseudo-opaque pixels
and merge their z values into the opaque buffer. Before grids
are added to a z-batch, they are occlusion culled against this
opaque buffer.

Figure 4: A particle system with 16,000 transparent overlap-
ping spheres. Courtesy of Tweak Films.

Using z-batches and opacity thresholding can improve per-
formance by orders of magnitude. Figure 4 rendered in just
under 4 hours without using either technique; in 13 minutes
with z-batching (B = 26) but no opacity thresholding; and in
3 min. 38 sec. with B = 26 and an opacity threshold of 0.95.
The stochastic CPU renderer discussed in Section 7 renders
the scene in 5 min. 15 sec. with the same opacity threshold.

Thresholding results are inexact because the threshold test
is performed after an entire z-batch is processed and not as in-
dividual fragments are processed. The first grid to push a pixel
over the threshold may be in the middle of a batch, so the pixel
may still accumulate a few more layers. This artifact is easy to
see when we lower the opacity threshold to an unreasonably
low value such as 0.2, especially since batching can change at
bucket boundaries (see Figure 5). However, it is nearly invisi-
ble at ordinary opacity thresholds (e.g., 0.95).

Figure 5: Exaggerated artifacts of opacity thresholding by
batches. A stack of camera-facing planes, each with opacity
0.1, with the opacity threshold set to the unreasonably low
value of 0.2. Image on right shows the ideal solution.
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If future GPUs were to extend the occlusion query operation
to return the pixel bounding box and the z range of the rendered
fragments that passed the occlusion test, we could optimize the
thresholding pass by running it only on the bounding rectan-
gle from the previous depth peeling pass. This would allow
us to run the test after each primitive instead of per z-batch,
which would reduce error and improve culling efficiency. Oc-
clusion query is the only reduction operator currently avail-
able in GPU hardware; enhancements could be useful for many
general computations.

4.4. Spectral Opacity
During geometry processing, we detect whether any primitive
contains spectral opacity, as opposed to monochromatic opac-
ity. Hardware supporting multiple draw buffers [ATI03] can
render spectral opacity in a single pass. Otherwise, three passes
of the whole transparency algorithm are required, one each for
red, green, and blue.

Listing 1 Pseudo-code for the transparency rendering loop
including depth peeling, z-batch management and opacity
thresholding.
for every object from front to back:

if object’s bounding box passes the occlusion test:
if object is splittable:

split object and re-insert split sub-objects
else:

dice object into grid
if diced grid passes the occlusion test:

shade grid
if grid is transparent:

append grid to current z-batch
if current z-batch size exceeds threshold:

save opaque RGBAZ
while not finished rendering all transparent layers:

for every transparent grid in z-batch:
render transparent grid

composite transparent layer under layers so far
store accumulated transparent RGBA
restore opaque RGBAZ

else:
render opaque grid

if transparent grids were rendered:
composite accumulated transparent layers over opaque layer

5. Motion Blur and Depth of Field
Motion blur and depth of field are computed by rendering mul-
tiple passes into a supersampled accumulation buffer stored
on the GPU, with the number of time and/or lens samples a
user-specified parameter. Each pass computes a single instant
in time and lens position for all pixels. This contrasts with the
approach of using a different time and lens position for each
pixel or sample [CPC84, Coo86].

The passes can be accumulated either by rendering into
a single buffer multiple times, or by rendering into multiple
buffers simultaneously (Listing 2). The former reduces mem-
ory usage at the expense of repeated traversals of the geome-
try, while the latter increases memory usage for the buffers, but
minimizes geometry traversals and any per-primitive compu-
tations and state changes. With either method, the same geom-
etry will be rendered the same number of times by OpenGL.
Accumulation is always done on the GPU, to avoid readback.

If the time-sample buffers exceed the available video mem-
ory, performance drops radically, as buffers are swapped back
and forth to CPU memory. Therefore we prefer to use multiple
passes.

Rather than transfering grid data to the video memory for

Listing 2 Pseudo-code for the accumulation algorithms.
Multibuffer accumulation:

for every primitive P:
for every time sample t from 0 to T-1:

render P(t) into buffer[t]
for every time sample t from 0 to T-1:

accumulate buffer[t] into final image

Multipass accumulation:
for every time sample t from 0 to T-1:

for every primitive P:
render P(t) into buffer

accumulate buffer into final image

each pass, we cache them in vertex buffer objects (VBOs)
[SGI03]. This can double motion blur performance. We have
not seen swapping issues with VBOs, perhaps because we use
them only for grids above a certain size, and one bucket will
generally have a limited number of these visible.

Occlusion-culled grids provide another opportunity for per-
formance improvement over CPU culling. Motion-blurred
bounding boxes are particularly inefficient for occlusion
culling, whereas grid culling at each time sample is easily im-
plemented as part of our motion blur rendering.

5.1. Vertex Motion
Each pass renders the geometry for a specific time in the shut-
ter interval, and in the case of depth of field, a specific posi-
tion on the lens. We use a GPU vertex program that performs
the motion blur interpolation, the model-to-view transforma-
tion, and the lens position offset (based on depth; see formula
in [PC81]).

Sampling shutter times and lens positions simultaneously
for the whole bucket, as opposed to having the time and lens
correspondence differ for every pixel, leads to correlated ar-
tifacts (strobing, etc.) at low sampling rates. However, with a
sufficiently high number of passes (relatively inexpensive with
graphics hardware), artifacts become negligible.

We automatically clamp the number of passes for a bucket
based on maximum vertex motion, for motion blur, and max-
imum area of the circle of confusion, for depth of field. This
gives a big speed-up for buckets with little or no blur.

5.2. Per-Pixel Time Sampling
GPUs can also simulate the traditional stochastic sampling
technique of associating a specific time value with each sub-
pixel sample [CPC84, Coo86]. For each triangle, we rasterize
a quadrilateral covering the screen space bounds of the trian-
gle’s entire motion, applying a fragment program that (a) in-
terpolates the triangle’s vertex coordinates to the time values
associated with that pixel, (b) tests the sample point to see if
it intersects the interpolated triangle, (c) kills the fragment if
it fails the intersection test, and otherwise (d) samples the in-
terpolated triangle to compute the fragment’s depth value and
color. This results in an image as shown in Figure 6.

Though straightforward, this approach is inefficient for a
variety of reasons. The GPU contains dedicated hardware for
rasterization, clipping, and culling that is not used by this tech-
nique. The moving triangle’s bounding box must be computed,
either on the CPU or in the GPU vertex program. The result-
ing rectangular bounds contain many points outside the trian-
gle which must be run through the complex fragment program.
The lengthy fragment program that interpolates and tests in-
tersections becomes a bottleneck for GPU throughput. Current
GPUs do not efficiently implement early fragment kill, which
would prevent the computation of the interpolated depth for
pixels that fail the hit test. Finally, the fragment program must
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Figure 6: Using a fragment program to sample a moving ge-
ometry at a different time value per pixel. For clarity, we have
used just one time sample per pixel.

compute and output z; this is called depth replacement and
diminishes GPU performance. We have found the accumula-
tion techniques we describe to have significantly better perfor-
mance.

6. Filtering and Downsampling
Once a bucket has been completely rendered at the supersam-
pled resolution (wq,hq), it is downsampled to the final pixel
resolution (wp,hp) by a two-pass separable filtering algorithm
that runs on the GPU and that supports user-selected high qual-
ity filters with large support regions. The downsampled image
is then read back to the CPU for output. We avoid any readback
of the higher resolution images, since readback is slow.

The first pass convolves the x filter kernel with the rows of
the supersampled image, resulting in an intermediate image
of size (wp,hq). The second pass convolves the y filter kernel
with the columns of the intermediate image.

The fragment program for each pass is generated on the fly
by unrolling the user-specified filter into straight-line code that
includes all filter weights and pixel offsets as numerical con-
stants. This avoids per-pixel evaluation, or even per-pixel tex-
ture lookup, of the filter kernel, and it avoids loop overhead.
Details are available in [WE05].

7. Results
We have implemented these algorithms in the context of a
production-quality renderer (Gelato 1.1). It has been tested on
a wide range of scenes, both real-world and contrived, by our-
selves and by others. Compared to software-based stochastic
sampling renderers, we have found that our algorithm has com-
parable image quality and superior performance.

7.1. Image Quality
Figure 7 shows a portion of a radial test pattern rendered with
our algorithm (top) versus stochastic sampling (bottom) for a
variety of sampling rates (from left to right, 1, 4, 16, and 32
samples per pixel). At low sampling densities, the regular sam-
pling of the hardware rasterization shows egregious aliasing,
but the superiority of stochastic sampling becomes negligible
surprisingly quickly. In real-world examples, noticeable arti-
facts are even less visible than in pathological examples such
as this test pattern.

Figure 8 compares the motion blur of our algorithm’s regu-
lar sampling (top) with that of stochastic sampling (bottom),
for a variety of temporal sampling rates. Below a certain
threshold (dependent on the amount of motion in the scene),
regular sampling suffers from significant strobing artifacts,
while stochastic sampling degrades more gracefully. However,

Figure 7: Antialiasing quality with 1, 4, 16, and 32 samples
per pixel. Top: regular sampling; bottom: stochastic sampling.

Figure 8: Motion blur quality with (from left to right) 1, 4,
16, and 32 temporal samples. Top: regular sampling; bottom:
stochastic sampling. Model courtesy of Headus, Inc.

above that threshold, regular sampling gives a smooth appear-
ance, without the grain of stochastic sampling. Regular sam-
pling (both spatial and temporal) will always have visible arti-
facts or strobing when the sampling rates are not adequate for
the scene geometry or motion. Somewhat more care may be
necessary for users to choose adequate sampling rates, com-
pared to stochastic sampling. But modern hardware can ras-
terize at high resolution and with many passes very rapidly,
making the necessary sampling rates quite practical, even in a
production setting.

7.2. Performance
All of the trials discussed below were timed on a 2.1 GHz
Athlon 3000 running Linux, with an NVIDIA Quadro FX 3000
(NV35). We report the sum of user and system time, since
time spent in the graphics driver can sometimes register as
system time. Rendering times are compared against a highly
optimized commercial renderer that uses CPU-based stochas-
tic point sampling (PhotoRealistic RenderMan 12.0). The test
scene used is either 1 or 8 copies (not instances) of a NURBS
character [Headus] of about 17,000 control points, rendered
with mapped displacement (not just bump mapping), procedu-
ral color, simple plastic shading, and four light sources, one of
which is shadow-mapped.

To isolate the time for hidden surface removal, we would
like to subtract the cost of the other rendering phases such as
geometry management (reading, splitting, dicing) and shading
(which includes reading texture and shadow maps from disk).
We expect those costs to be fixed with respect to spatial and
temporal sampling rates. However, we cannot separate these
phases precisely, since hiding informs shading. A low estimate
of these fixed costs is the time difference between a full render
and one with trivial surface shaders, which we call the shading
delta.

Figure 9 shows rendering time versus spatial sampling for
both renderers. Here we have subtracted a measured shading
delta of 32 sec. for our GPU-accelerated renderer and 44 sec.

c© The Eurographics Association 2005.



Wexler et al. / GPU-Accelerated High-Quality Hidden Surface Removal

 0

 50

 100

 150

 200

 250

 300

 350

 400

 20  40  60  80  100  120  140

s
e

c
o

n
d

s

samples/pixel

Stochastic CPU
Multipass GPU

Figure 9: Performance comparison of our GPU-assisted multipass algorithm versus a CPU-only stochastic point sampling ren-
derer, rendering the displayed frame at 1800×1080 pixels with 1, 2, 4, 8, 16, 32, 64, and 144 samples per pixel. Total render time
minus shading delta.

for the CPU renderer. For both renderers, hiding time appears
linear in the number of samples, but the marginal cost per sam-
ple is 10 times lower for the GPU. At high sampling rates, the
GPU hider is much faster.

Figure 10 shows rendering time versus temporal sampling
rate. The stochastic CPU renderer renders 16 time samples in
about the same time as 1, for a noisy but usable image. At such
low sample rates, the GPU renderer is very fast, but is likely to
strobe. For an image that requires 32 regular time samples but
only 16 stochastic samples, the GPU renderer is still 3 times
faster. Each added sample costs about 0.35 sec. on the GPU or
0.94 sec. on the CPU. The stochastic hider has the constraint
that adding time samples requires adding spatial samples, be-
cause it uses the same samples for both. This is a disadvantage,
particularly since, visually, blurrier scenes require fewer spa-
tial samples, not more.
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Figure 10: Motion blur performance, rendering the full crea-
ture shown cropped in Figure 8 at 1024×786 pixels. The CPU
renderer uses the same samples for time and space; the GPU
renderer was run with 16 pixels per sample.

Figure 11 shows a geometry-heavy scene, an army of 800
NURBS characters. Rendering it with trivial shaders is over
5 times faster with our GPU renderer than with the CPU ren-
derer. ‡ While it is hard to estimate how much of that time

‡ Stochastic CPU: 721 sec. full shaders, 554 sec. trivial shaders. Mul-
tipass GPU: 163 sec. full shaders, 96 sec. trivial shaders.

is hidden-surface removal versus geometry management, it
demonstrates that even though large amounts of grid data are
being transferred to the GPU, our algorithm still behaves very
well.

Figure 11: Army of 800 displaced NURBS creatures, 1800×
1100 pixels, 36 samples per pixel.

A scene using global illumination or other slow shading
methods will be shading heavy. Here the hider’s speed is less
important than how agressively it culls occluded points before
they are shaded. This is more difficult to compare between ren-
derers with differing shading and geometry systems. But as
mentioned earlier, the GPU’s ability to do relatively fast grid
occlusion allows us to cull an extra 10-20% of points, versus a
typical Reyes CPU algorithm.

Our GPU renderer slows drastically for scenes with small
grids, such as a million pixel-sized triangles that each form
a one-micropolygon grid. Small batch sizes are the bane of
GPU performance. A future project is to reduce this problem
by combining nearby grids. We would not expect a CPU hider
to have this issue.

The slowest cases for the GPU-based hider are those that
require many passes. Modest motion blur performs well, as
we’ve seen. But a bucket containing a grid that moves 100 pix-
els will require about 100 motion blur passes to avoid strob-
ing. So extreme motion gets expensive. Extreme motion in-
creases noise in stochastic hiders, but that is usually visu-
ally acceptable. Similar issues apply to depth of field. Scenes
with layered transparency also require the GPU to rasterize
grids multiple times, for depth peeling, whereas the CPU can
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maintain arbitrary lists of fragments per pixel. Combining mo-
tion blur with transparency multiplies the required number of
passes, and eventually the CPU wins. Figure 12 shows a sphere
with 550 transparency-mapped “feathers”. Even without mo-
tion blur, this example runs 50% slower in our renderer than
in the CPU renderer. But in motion with 64 time samples, the
stochastic renderer is nearly 9 times faster (stochastic CPU: 7.5
sec. static, 59 sec. moving; Multipass GPU: 12.0 sec. static,
525 sec. moving).

Figure 12: A case where our algorithm performs poorly: many
stacked motion-blurred transparent objects. The “feathers”
are rectangular strips that use a texture to modulate trans-
parency.

8. Conclusions
We have described an algorithm for hidden-surface removal
that leverages commodity graphics hardware to achieve supe-
rior quality and features compared to traditional hardware ren-
dering, while outperforming traditional CPU-software-based
high-quality rasterization for typical scenes.

This paper makes the following contributions:
• An algorithm that systematically incorporates high-end fea-

tures into a hardware-oriented rendering framework. These
include supersampling at very high rates, user-selected fil-
ters with arbitrarily wide support, motion blur and depth of
field, order-independent transparency, multi-channel opac-
ity, and multiple output channels.

• Two optimizations of the depth peeling technique, opacity
thresholding and z-batches, that allow it to perform in prac-
tice as O(N) rather than O(N2).

• An exploration of the performance of the algorithm in vari-
ous cases, and of a variety of engineering trade-offs in using
GPUs for high-quality hidden surface removal.
It is often assumed that regular spatial sampling will give

inferior results to stochastic sampling. When rates of 4 or 16
samples per pixel were considered high, that may have been
true. But our experience has been that at the dozens to hun-
dreds of samples per pixel that are easily affordable when
leveraging graphics hardware, the deficiencies of regular sam-
pling are visible only with contrived pathological examples,
and not in “real” scenes. If desired, artifacts from regular sam-
pling could be further reduced by using interleaved sampling
[KH01] or multisampling (when supported by graphics hard-
ware).

Using advanced GPU features such as floating point pre-
cision and detailed occlusion queries can cause current GPU
drivers and hardware to run at reduced speed, perhaps 4-16x
slower than the optimized paths. Furthermore, despite our al-
gorithm’s minimal use of readback, we find the GPU is idle
much of the time. With future work to hide more GPU latency,
new GPU designs with fewer penalties for high-precision com-
putation, and the integration of GPU-assisted shading, we hope
to recapture this lost performance.

In conclusion, high-quality rendering systems can now be

built on a substrate of commodity graphics hardware, for of-
fline rendering as well as for real-time or interactive applica-
tions. The considerable power of the GPU can be leveraged
without compromising either image quality or advanced fea-
tures. We expect that similar hybrid hardware/software solu-
tions will become more common as GPUs continue to improve
in speed and capability.
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