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Abstract

With shrinking process technologg/, the primary cause of transient faussniconductors shifts away from high-
energy cosmic particle strikes and toward more mundane and peneaiges—power uctuations, crosstalk, and
other random noise. Smaller transistor features require a lower criticatgh to hold and change bits, which leads
to faster microprocessors, but which also leads to higher transient fatdsr Current trends, expected to continue,
show soft error rates increasing exponentially at a rate of 8% per tel eneration. Existing transient fault
research in general-purpose architecture, like the well-establisiekitectural vulnerability factqiAVF), assume
that all computations are equally important and all errors equally intoléeablowever, we observe that the effect
of transient faults in graphics processing can range from imperceptibleotioersome visual artifacts, to critical
loss of function. We therefore extend and generalize the AVF by introdti@ngsual Vulnerability Spectrum
(VVS). We apply the VVS to analyze the effect of increased transient&te on graphics processors. With this
analysis in hand, we suggest several targeted, inexpensive solutatnsath mitigate the most egregious of soft
error consequences.

Categories and Subject Descript¢ascording to ACM CCS) I.3.1 [Computer Graphics]: Graphics Processors

1. Introduction error rates are projected to continue their current trend of
increasing at a rate of about 8% per technology genera-
tion [HKM 03—making soft error rates at 16-nm nearly
00 times that of the 180-nm generati@of05—they will
oon become a driving concern for graphics architects. Ad-
vanced 3D graphics capabilities and expanding requirements

Exponential device scaling has produced incredible ad-
vances in the capability of today's computing infrastructure.

Graphics processors have taken advar_lta%e of these scalin
trends to achieve dramatic increases in throughput. Semi-
conductor devices, however, have now become so small that¢7 =5 rendering in next generation operating systems, such

they are vulnerable to transient faults caused by cosmic and asMicrosoft Windows Vistawill only exacerbate a problem
terrestrial radiation; and to noise due to crosstdlkgt in- that otherwise would only have been important to compet-

duced voltage droop, and parameter variations. As the im- jtye game players, bringing soft error tolerance quickly to
portance of these phenomena all grow exponentially with tneforefront o?,GPU reliability.

decreased feature size or supply volta§ABR04, the “free
lunch' of Moore's Law for graphics architects approachesits A soft error is distinguished fromlaard error by its tran-
end. Future designs must be more aware of such low-level sient nature—a soft error is random, temporary, and unpre-
physical challenges. dictable. Soft errors are referred to by several names, includ-
. . . L . L ing transient fault, transient errgrandsingle event upset

A transient, single bit corruption in a microelectronic cir-  (SEU). While these are often used interchangeably, soft er-
cuit is termed asoft error. Soft errors have long been an  yor and “SEU' have classically referred only to radiation-
important design constraint in general purpose processor induced transient faults. This subtlety seems to be largely
design, especially in engineering reliable memory systems forgotten, and we choose to ignore it in this paper.
for enterprise servers. They have yet to become a major
consideration in the design of graphics processing systems, Not all errors are cause for concern. If errors do not matter
probably because the primary market is the consumer desk- for architecturally correct executlo(ACE?—ln other words,
top, where reliability requirements are lower. Yet as soft if they do not affect the nal outcome of the computation—
they are harmless. An error might be harmless, for example,
if it strikes a storage location that is not currently in use (i.e.,
not ACE). Figurel illustrates a taxonomy for the classi ca-

Y jws9c@cs.virginia.edu tion of soft errors.
Z david@Iuebke.us The dominant metric for quantifying the chance of an er-
X skadron@cs.virginia.edu ror as a result of a transient fault is tAechitectural Vulner-
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ability Factor or AVF [MEROY. The AVF of a structure is

a fraction from zero to one which represents the likelihood

that a transient fault in that structure will lead to a computa-
tional error. AVF takes into account the total amount of time

that each bit can contribute to a computation, the total num-
ber of bits in the structure, and the size of the structure. More
formally, Architectural Vulnerability Factor is:

&p2Blo
AVF = ———— 1

B D 1)
whereB is the set of all bits in the structurg, is the total
time that bitb is ACE, andDxt is the total time necessary to
complete the computation.

Have we read
a faulty bit?

Benign Fault
(no error)

Is the bit protected?

Benign Fault
(no error)

Will the bit affect
the computation?

Will the bit affect
the computation?

Benign Fault Silent Data False Detected | True Detected
(no error) Corruption Unrecoverabl Unrecoverable
(SDC) Error (DUE) Error

Figure 1: A transient fault can lead to no error due to correction
or the effected bit being un-ACE, silent data corruption—earor
which is never discovered—or a true or false detected umezedle
error. This gure is based on Figure 1 in Mukherjee et. MER0S.

The history of soft errors is long and interesting, dating
back to the mid-1950s and in some cases involving some
amazing detective work to track down causes. The many

hard-learned lessons have had a huge in uence on modern

fab technology. Unfortunately, discussion of this topic is out-

This paper explores the implications of transient faults
in graphics hardware used for interactive consumer appli-
cations. It observes that common CPU metrics for determin-
ing transient fault vulnerability, such as AVF, do not t well
with the workloads and expectations of graphics systems and
presents the Visual Vulnerability Spectrum as a more suit-
able taxonomy for classifying vulnerability on GPUs. Fi-
nally, this paper presents some initial suggestions for fault
%rlc:)tgction and recovery mechanisms speci cally tailored to

S.

2. The Visual Vulnerability Spectrum

For CPU architectures, it must generally be assumed that any
transient fault resulting in a change in the nal computation
is unacceptable. The workload of a graphics processor tends
to be more forgiving of most soft error effects. For this rea-
son, we argue that attempting to apply AVFs to GPUs can be
misleading.

Most soft errors in computation and memory on graph-
ics cards are acceptable or even unnoticeable. Consider, for
example, the color framebuffer. We ran a sequence of 589
frames from id Software'®oom 3with all features enabled
through an instrumented version of Mesa at 1600200
resolution with 32 bits of color. The color buffer for this
application is about 7.32MB. The mean depth complexity
during the sequence was 4.09, implying that many errors in
the color buffer are likely to be overwritten. However, the
AVF depends also on how long non-overwritten values are
resident in the framebuffer, and a detailed calculation using
Equationl (see SectioB.1) gives a framebuffer AVF of 0.48
(some representative images from this study appear in Fig-
ure?2). In other words, any single bit error in the framebuffer
has a 48% chance of affecting the nal image. By traditional
AVF analysis, this is very high, arguing that we should con-
sider the color framebuffer a critical structure and heavily
protect it. Of course, in practice the opposite is true: a user
Is quite unlikely to care about or even perceive a single-bit
error in a single pixel for a single frame!

This example underscores a key point of this paper: be-
cause all errors are not equal in the graphics workload, it is
more useful to think of GPU architectural vulnerability as a
multi-dimensional continuum rather than as a single scalar
chance for an error. We call this continuum tsual Vul-
nerability Spectrunto emphasize its continuous nature, and
identify three primary axes to quantify important and orthog-
onal qualities of graphics computation vulnerability: extent,
magnitude, and persistence.

side of the scope of this paper. Interested readers should1. Extent refers to how many pixels will be affected as a

start with the papers by ZiegleZCM 96, Zie9€g and Nor-
mand Nor9§.

In general-purpose computer systems, any ACE bit must
be assumed important. Even a single error in a low-order bit
in a commercial or scienti ¢ computation can invalidate a

computation. What makes graphics hardware unusual is that 2,

most state on the graphics card—despite being technically
ACE—can tolerate some degree of eriomors only matter

if they affect the user's perceived experienga.error in a
single pixel, for example, may not be noticeable even if it
changes the color from white to black. Errors in other state
may create more visible errors, but if those errors only last a
single frame, the harm is minor.

This observation obviously does not apply to graphics
hardware used in non-visual applications a;.g. GPGPU)
where CPU error metrics are more directly applicable. If
these applications are of suf cient commercial value, they
may require cards with full error protection, such as ECC-

uarded video memory, and an ef cient implementation of
that for graphics cards is left for future work.

result of a soft error. Qualitatively, this axis ranges from
unnoticeableto whole screenFor example, our frame-
buffer example posited an error affecting one pixel in the
nal image, which is probably unnoticeable extent, while
an error in a coef cient of the modelview matrix could
easily have a whole screen extent.

Magnitude describes the severity of the error across the
affected region of the nal image. In principle, magnitude
is a complex perceptual function; in practice we approx-

imate magnitude using tHe? error in RGB color space
across affected pixels. Qualitativelg, the magnitude axis
ranges fromunnoticeableo insufferable A change to the
low-order bit of a color channel would probabIY be unno-
ticeable, a clipping error that clipped away all geometr
at affectedJ)iers would probably be considered insuf-
ferable, and an error changing global anti-aliasing state
might fall somewhere in between.

Persistencerefers to how long the effect of a soft
error will remain active. Persistence is measured in
frames, typically 16-33 ms in real-time rendering appli-
cations such as video games. Qualitatively, persistence

3.
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Figure 2: (a) and (d) are depth complexity maps of the frames displayéd) and (e) respectively. (c) and (f) are the respectivé Aaps.

In the depth maps, white corresponds to a depth complexi

rof while black represents a depth complexity of 51—tgldsit in our 589

frame sampling. In the AVF map, white represents an AVF ohilewlack is an AVF of 0. In (a), the depth complexity is ressay consistent
across the frame, and so using any of mean or median will glasanable estimates of AVF. In (d), most of the frame hée ¢ittmplexity.

The majority of the fragments are generated by a particleusfatron that is entirely occluded from the vantage pointto$ timage—note that
the complexity is not due to the foreground object in (e)!Hevlarti cially drives up the AVF of the frame. The bottomrine has a depth
complexity of 4.80 and an AVF of 0.65, while the top has 2.2#(a48 respectively, even though, as is apparent from théhdegps, both of

these frames have similar complexity save the particle lsition.

ranges fromtransient—the effect disappears after a sin-
gle frame—tadnde nite. An error in depth or color buffer
would be transient, since these are cleared every frame,
while an error in the value of a vertex buffer cached in on-
card memory could last an inde nite number of frames.
A hard error in our taxonomy would simply have a per-
sistence opermanent

While many subtleties of soft error impact are not directly
captured in these three axes—for example, the severity of an
error that corrupts a vertex buffer which is rendered repeat-
edly throughout a frame depends in part on the exact intra-
frame timing of the erro—we argue that the Visual Vulner-
ability Spectrum provides a suf C|entl?/ rich characterization
of the range of soft error effects to allow graphics architects
to usefully analyze soft error impact and protection schemes.

2.1. Application

To illustrate such an analysis, we have applied our taxonomy
to the OpenGL 2.0 state vect@®A04 and identi ed a short

list of state structures as high-priority candidates for soft er-

ror protection. Of course, there is no direct mapping between
the OpenGL API and actual hardware structures, but suit-
able architectural details are not usually %ublicly available

and the GL state is suf cient to delineate the different cate-

gories of vulnerability and indicate what types of hardware

protection, if any, might be justi ed.

Matrix stack: Almost any error in the matrix stack can
produce errors in the nal image with large extent and

¢ The Eurographics Association 2006.

magnitude. A matrix stack error at the base of the stack
could persist for several frames.

Scissor, depth, and alpha test enable bits and func-
tions: For example, if the programmer enables the depth
test but a transient fault disables it, all subsequent geome-
try will write to the framebuffer. For simple applications,
this effect could potentially persist until the application is
terminated.

Viewport function coef cients: Errors in the viewport
will affect how much of the scene is displayed or how
large the scene appears in the available viewport.

Depth range: With errors in the depth range state, order-
dependent occlusion errors could appear in the output im-
age. This piece of state is often set during the initializa-
tion phase of an application or game and never modi ed
again, so an error here will likely persist until the applica-
tion completes.

Clip plane function coef cients: Arbitrary errors in
the clipping planes can cause clipping of geometry that
should appear in the nal image. Like the depth range,
this state will often be unmodi ed by the programmer af-
ter initialization.

Lighting enable bits: Enabling lighting in a scene with
no lights will yield a black screen, while disabling it
will eliminate most lighting effects—assuming that xed-
function OpenGL lighting is being used rather than pro-
grammable shading.

Culling enable bits: Toggling the state of back- or front-
face cuIIin% enable bits will change which geometry is al-
lowed to change the image.
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Polygon state including offset, stipp”ng’ and |l Architectural Vulnerability Factor and Inverse Depth Complexity
modes: Changes to these state can drastically affect the ! ‘ ‘ " Architectiral Vanerabity Factor
appearance of rendered polygons. 0s neerse Dep Complexty
Texture enable, active texture, and current texture
unit: Errors here will change which, if any, texture is ap-
plied to geometry. 07 ,
Individual texture state: Though individual texels are MM
not high priority, errors that corrupt the associated tex-
ture state—texture dimensions, the format of the texels,
clamping or wrapping mode, etc.—can have high extent, ‘
magnitude, and persistence. AN R I B U ,,,,,, |
Current drawbuffer: Advanced applications making oaf | h 1
heavy use of render-to-texture often change render targets,
but simpler applications may never modify the render tar- 1
g?et, so that an error corrupting the render target could eas- o1
ily resultin a black screen until the application terminates. . ‘ ‘ ‘ ‘ ‘
Uniform and control-related shader state: This in- 0 100 200 200 400 500 600
cludes the compiled program store, instruction counter, Frame Number

and uniform registers shared by all invocations of a Figure 3: AVF in the framebuffer tends to move with the inverse of
shader. An error to a uniform register could affect all ver-  depth complexity, but is more complicated since it accofortthe
tices or pixels processed by the shader for the remainder exact timing of when the nearest value at each pixel is writte

of the frame, and possibly (for simple applications using

only one shader) persist for many frames. Errors in control

state such as shader instruction counters could potentially Extont Eror

crash the GPU. 0 anoiicion

Structures of intermediate importance include: !
Vertex array enable bit, size, type, stride, pointer, high-

order bits of vertex array elements, and the entire con- .

tents of all index arrays: Some experiments and results | IL]

with this state are discussed in Secti®n JELE N ..

Vertex attribute arrays: Similarly for normal, fog, color, R &
edge, index, and texture coordinate arrays. Pl
High levels of the hierarchical z-pyramid: An incorrect (a) Errors on the extent axis
depth test due to an error in the z-pyramid will have an ex-

tent ofx” X" pixels, wherexis typically 8 pixels andh is

the level of the pyramid where the error occurred. Hard-

ware using more than a single-level hierarchical depth test
might want to protect those levels witt> = 2. However,

such errors only persist for one frame. .
Texture contents: A corrupted bit in a texel could occa- z ’—L
sionally have large extent, for example if the texel is mag- |

ni ed or wrapped across many pixels. While the texture 3
is cached on the card, the error may have a persistence of

many frames. However, most errors will have relatively (b) Errors on the magnitude axis
low magnitude.

Here are a few examples of items that are not important in  Figure 4: Histograms showing soft error extent and magnitude.
most rendering applications:

The framebuffer: A single bit error in the framebuffer
Willll prfotl)lably OR!yre]lffectrc]Jne pixel. V\éhile this will Ior'ﬁen-
tially fall very high on the magnitude axis, it will have it
a very low extent (1 pixel) and persistence (1 frame). 3. Characterization and Results

Note that if the framebuffer stores something other than We describe two example experiments to illustrate the con-
raw frame data—like compressed data or context switch cepts in this paper. The rst calculates a traditional AVF for
objects—then itis more vulnerable at least in terms of ex- the depth buffer; the second illustrates how the VVS could
tent and perhaps in other dimensions. . be characterized for a particular structure, in this case the
Shader data registers:Unlike the uniform registers men-  vertex buffer.

tioned above, the input and temporary registers that vary

with each pixel or vertex being processed will have a per-

sistence of no more than one frame, and in the case of 3.1, Calculating AVF of GPU Structures

pixel shaders, an extent of no more than one pixel.

Antialiasing state: An error in antialiasing state will We instrumented Mesa-6.4.P [06] to count depth buffer
IiI_<e|Ié/_ persiﬁg fﬂrthe remaining Iifetirtr)\e of the appllli%atif)n, reads and writes and to dump this data, per frame, to disk.
yielding a high persistence value, but extent will be low, : : _ Bl

Lince the errors wil only show up only at high-frequency W& implemented Equatiosi, AVF = rg#5, in Mesa by
edges, as will magnitude which will be determined by a placing a framebuffer sized—1600.200—matrix, contain-
weighted average of colors that correctly occur in or near Ing: arrays of 51 sequence numbers and ACE bit counters; an
any given sample. index into those arrays; a depth (so that we can easily per-
Various non-array vertex attribute state: Including form a depth complexity analysis); and read and write coun-
color, texture coordinates, normals, and generic shader at- ters. From a previous, simpler experiment, we know that no
tributes. This state can drastically affect all polygons us- frame in the 589 framdemol sequence—a demo path that
ing the corrupt vertex, but will not persist. ships with Doom 3—has a depth complexity of greater than
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Affected Pixels Total Frame RMS Error
0.6 T 25 T

T T
No Protection No Protection
2 Bits of Protection -~ 2 Bits of Protection -
4 Bits of Protection ------- 4 Bits of Protection -------
8 Bits of Protection 8 Bits of Protection
05 | 16 Bits of Protection B 16 Bits of Protection
20 |-

04 E
15 -

Fraction of Pixels Affected
o
w
T
I
RMS Error

300 500 600 200 300 400
Frame Number Frame Number

be
(a) Fraction of total pixels affected by an error. (b) RMS error per frame.

Figure 5: These traces show error per frame from a set of referenceemagoth graphs are based on the same set of faults in ventay ar
data and the same reference images. Further, this data isdas the assumption that the vertices have been download8&t) memory
but are not updated over the course of these 589 frames—adohdual error persists for the duration of the simulatiddote that while
frame RMS error tends to move with extent, or affected pidety are not directly proportional since frame RMS erros@lncorporates the
magnitude of the error.

51. Each time a new fragment is tested, a global sequence Chromium, all vertices come to our fault injection SPU in
number is incremented and stored in the sequence numberthe form ofglVertex3fv() calls. We randomly choose
element indexed by the current index for that sample, and 32 a vertex and a ip a random bit from that vertex's position
depth tests are performed—Mesa uses a 32 bit depth buffer—values. We pass the new, corrupt value on to the renderer, and

one for each bit in the depth value XORed witH 2At the perhaps back into memory. Implementing the high-order bit
end of each frame, we compute per pixel AVFs by, for each Memory protection scheme discussed in Seatiznas sim-
element in the matrix: subtracting from each sequence num- P!€ as not performing bit ips in the protected high-order
ber number in the sample's array the sequence number be- Its.
fore it (subtracting zero from the rst element); multiplying Figure 4 analyzes the extent and magnitude of errors
that difference by the corresponding ACE bit count; and di- caused by individual vertex faults. Figmef% shows a his-
viding by 32 times the nal sequence number (32 bits of data togram of errors classi ed by the number of affected pixels.
oversequence numbenits of time). Of course this assumes  Most errors affect zero pixels, such as when the corrupted
that fragments are tested at constant intervals, but this is notvertex is occluded or ofﬁscreen, or when the corruption is
a poor assumption. A global sum is used to calculate the per- too small to visibly affect the geometry. However, about 10%
frame AVF. of the errors have nonzero extent. Note that the histogram
bucket size increases exponentially: each column represents
errors affecting twice as many pixels on average as the pre-
3.2. Vertex Fault Injection vious column. Thus errors captured in the right side of the
. . histogram are much more severe than errors on the left side.
To llustrate how a specic class of errors can be an- The gure compares the severity of the errors resulting from
alyzed with the VVS framework, we implemented a protecting the high-order 8 and 16 bits of the 32-bit posi-
Chromium HHN 02] Stream Processing Uni(SPU) to tion values to the errors that occur with no protection. These
simulate transient faults in graphics memory by injecting er- results show that protecting even a fraction of the bits signif-
rors into vertex position arrays. These faults are injected un- icantly reduces the number of errors with severe extent.

der various constraints to simulate different memory man- Fi b imilar hi how the distri
agement con gurations and transient fault protection tech- -igure 4(b) uses a similar histogram to show the distri-

niques. We then analyze the extent, magnitude, and persis-Pution of error magnitudes, measured as RMS difference
tence of the resulting errors. of affected pixels in RGB color sCPace. Again, protecting a

fraction of the bits signi cantly reduces error magnitude. In
Cosmic and terrestrial ray ux is uniformly distributed  other words, not only are fewer pixels affected by errors, but
over small areas and over time; transient faults due to other the effect of the errors on those fewer pixels is also reduced.
r Ik, vol r Jm I niform ; ; :
causes (crosstal votage droop, etc) may be less Unfor  when analyzing he persisence ofsoteror coruption to
hardware knowledge. We therefore assume that all vertices \éﬁg ecxacﬁe% \\,/veertrg)l(Jsbu?foer;gl I%rtheo ?gtegggr?;r'ig r\?srrpel;]gd\z:\?er{
are equally likely to b% cofrrupted,dand inject f?ults Into Ver- i<streamed from system main memory, downloaded to the
tices being processed after random intervals averaging 1 graphics card each frame. Thus all errors will have a persis-
fault per 100,000 vertic&s After some transformations in  tence of one frame. To implement, we modify only the data
that is passed downstream in the Chromuim SPU chain to
ensure the resulting errors only affect the current frame.

Y This corresponds with approximately one corruption per frame The more interesting analysis of persistence occurs in the
our Doom 3 trace—much higher than would be expected from cos- Second scenario of cached vertex buffers, which once down-
mic radiation, but not unreasonable for an aggressivelyotveked loaded to graphics memory remain there and are not modi-
GPU built on a near-future semiconductor technology node. ed for some time. Persistence is now a function of when and
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(a) A corrupted frame with 8 bits of protectidi) The same frame with 16 bits of protection.

per vertex.

(c) Two frames before Figuré(a)

(d) Corrupted pixel map of (a).

(e) Corrupted pixel map of (b)

(f) Corrupted pixel map of (c).

Figure 6: Images (a) and (b) show the same frame from two differenexextray fault injection sequences in Doom 3. The sequerate th
produced (a) protected the high-order 8 bits of each vengxile the sequence that produced (b) protected the 16 higirdsr bits. (d)

and

an ée) are corrupted pixel m
is in

istinguishable from the re

atps of (a) and (b) respectivEhe reference image is not included since, while (b) is noeregt image, It
erence. The triangle thas been affected by the error in (b) moved such a small distéimat most of the

fragments it generates map to exactly the same color an@sepace position. (c) and (f) show the same error as the ateges, but two
frames earlier, in the frame in which the error actually ooed. In the sequence that generated these images, vertieesassumed to be
downloaded each frame, so errors do not persist betweeresatherefore this error no longer exists in this sequengenduhe frame in (a)
and (b), and in fact, in this sequence, the frame in (a) andg(jentical to the reference image.

for how long the corrupted geometry appears on the screen,
which in turn depends on the scale of the error and the mo-
tion of the player. To implement, we modify the vertex array
data directly, causing the errors to persist for many frames.
Figure 5 shows a plot of total error over the course of the
589-frame trace sequence, measured both as eXaémj (
and total frame RMS erroi5(b)), which essentially repre-
sents extent times magnitude. In these plots, soft error per-
sistence manifests as the tendency of errors to remain con-
stant for several frames. Figubalso illustrates the effect of
protecting varying numbers of bits in the inﬁut. Once again,
protecting only a few bits greatly reduces the total effect of
most errors.

In truth, Doom 3 falls somewhere between these two mod-
els: while some objects are downloaded for rendering every
frame, most of the vertex data is stored in VBOs and is only
downloaded by Doom 3 once. VBOs are managed by the
graphics driver, which generally attempts to cache them on-
card whenever possible for optimal performance.

4. Transient Fault Protection Schemes for GPUs

The fact that typical consumer applications for graphics
hardware can tolerate some errors allows novel, low-cost er-
ror protection that still successfully limits severity of soft er-

protection and hope that future work will explore additional
techniques.

As discussed in Sectioh 1, only a small amount of state
requires any protection, especially if visually signi cant er-
rors can be tolerated for short periods of time—on the order
of one to a few frames. The frame buffer can be left com-
pletely unprotected, because single errors will likely affect
only one pixel. Even the z-buffer can be left unprotected, be-
cause errors will only persist for at most one frame. Most of
the remaining large objects in memory, such as vertex stor-
age, textures, etc. will bene t from protection, because they
may not be reloaded every frame. But this protection need
only detect errors, assuming all this state can be reloaded;
and detection need onlly operate on approximately a once
per frame basis. A small amount of state that is rarely modi-
ed, such as various enable bits, coef cients, etc. is more im-
portant and should be fully protected. Other persistent state,
such as vertices and shader code, requires only periodic error
detection, just to prevent persistent errors.

4.1. Full Protection

Speci cally, we propose full protection for the various en-

able bits, array state (not array data), viewport and clip plane
coef cients, depth range, polygon state, current drawbuffer
ID, uniform and control-related shader state and the matrix

rors. As mentioned, this differs from general-purpose hard- stack. The likelihood that these small state elements will be
ware, where any error to ACE state should be corrected. Here corrupted by radiation strikes is in nitesimally small, but the
we propose some initial possibilities for graphics-speci ¢ effects could be dramatic and lasting. More importantly, this
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state is vulnerable to errors from non-ideal circuit behavior
and stability due to deep-submicron scaling.

Since these items are all small, the overhead of this pro-
tection is also small. Simple choices include upsizing the
devices used to implement this state, hence increasing their
critical charge Qi (the size of the disruption needed to
change a transistor's state), or ECC. Full redundancy is a
possibility but requires an XOR to compare the two copies
and detect an error, as well as some mechanism to recover
from the error. Triple redundancy allows correction but re-
quires even more overhead.

4.2. Simple Parity Protection

The shader program store at each shader unit may not be
updated for long periods of time, especial(ljy if organized
as a cache. Errors in the shader code could be catastrophi
and persistent. Simdple detection suf ces, because the shad
code can be reloaded and re-initialized. This suggests con-
ventional parity protection on a per-line basis for the pro-
gram store. This may be more important for vertex shaders,
because errors in a vertex can affect a large extent, while er-
rors in a fragment are limited to a pixel. In a uni ed shader
model, all shader stores will require this capability.

4.3. Periodic Error Detection

The dominant graphics memory today is Samsung and ATI's
GDDR3. This is high-bandwidth, double data-rate VRAM is
engineered speci cally for graphics, with neither error de-
tection nor correctiongamO0%. This memory is the primary
store for most off-chip objects, including vertices, shader
code, textures, and the z-buffer.

We can take advantage of the fact that most of the off-
chip graphics state we are concerned with, including ver-
tices, shaders, textures, normals, texture coordinates, an
other such data, is replicated in the CPU-side driver space
and hence resides in the CPU's main memory. In a modern,
fault-tolerant system, it is safe to assume that this is pro-
tected with ECC.

Even in persistent state such as vertices and shaders, er
rors disrupting a few frames are usually tolerable. What we
wish to protect against are persistent errors that would not go
away without added hardware protection. To achieve this,
we need only implement a low-cost, low-frequency detec-
tion mechanism, using the driver's copy of data to replace
erroneous ﬂ
call this techniqué®eriodic Error Detectiorand present two
ways of implementing it here. The key is to observe that we
need only detect errors over large objects, and this compu-
tation is off the critical path, allowing hardware implemen-
tations optimized to avoid any impact on access latency or
bandwidth. Depending on the anticipated error rate, a single
parity bit per object may suf ce, or a slightly more sophisti-
cated check may be needed, suc
any solution of this nature requires driver support, the impl
mentation of which may be non-trivial.

e-

The advantage of this graphics-speci c approach is that

ddriver to cause the entire state of the

raphics data whenever an error is detected. We

h as a checksum. Of course

checks is undesirable. There are two ways to achieve this
functionality with minimal overhead. The rst piggybacks

on the existing refresh mechanism inside the GDDR. The
second piggybacks on existing streaming accesses, such as
accessing a vertex array.

4.3.1. Refresh-based techniques.

DRAM cells do not maintain a connection to the power sup-
ply and hence cannot maintain their contents. The charge
stored in a cell gradually leaks away over time. SRAM, in
contrast, maintains a connection to the power supply, at the
expense of additional transistors, inferior area ef ciency, and
higher power.

This means that DRAM requires periodrefresh in
which a row of the DRAM is read out of the data array and
immediately written back. A typical retention time for data

CGis on the order of 10s of milliseconds; the datasheet for the
€IGDDR [Sam05 speci es that data must be refreshed every

32ms, which conveniently is about the time for processing
1-2 frames. Since the chip contains 4K rows, this means
that a row must be accessed for refresh everyst.8hese
refreshes are mandatory, and while the bits are available in
the buffer before writeback, an error detection such as parity
can be computed. The error detection is therefore performed
one row at a time, as each row is accessed. This requires at
most one element of check state per row (e.g. 1 parity bit
per 16 Mbit row), and at least one element of check state
per bank (e.g. 1 parity bit per 64 Mbit bank). This requires
only a simple error-checking circuit on the DRAM chip that
is capable of completing the computation for a single row in
7.8us, and possibly the abiliéy to combine that with results
from a prior row if the error detection is aggregated instead
of being performed on a per-row basis.

When an error is detected, the driver must be noti ed to
reload appropriate state. A brute-force solution is for the
Igﬂlraphics computation
to be reloaded. While the expense of this is considerable, it
may be tolerable if errors are relatively rare.

The cost of error recovery can be reduced if the driver can
attribute errors to speci c objects that must be reloaded, such
as vertex arrays. This presupposes driver-level data struc-
(textures, vertex buffers, depth or color render targets, etc.L
are resident at the given address, so that those objects can be
reloaded if necessary when a fault occurs at that address. A
simple ordered list of all objects requiring protection would
suf ce. Only objects requiring protection need to be entered

into this list. Then if a row does not match an object in the
list, the error can be ignored.

tures capable of identifying which, if any, memory objects

4.3.2. Demand error checking.

In demand error checking, the graphics driver calculates
check state for each object of interest and associates that bit
with the data structure that it downloads to the GPU. Each
time that object is accessed, error detection is performed.
Since the error detection is only done in conjunction with
an access that would be performed anyway, and since it is
not time-critical, the overhead should be small, for exam-

only a few error checks are needed, the state to be stored isple a parity checker that operates while data streams off the

small (e.g., one parity bit per row in the RAM), and the de-
tection need only be performed on a relatively infrequent ba-
sis. Conventional DRAM, on the other hand, providesdparity
on a per-byte basis, or ECC on a per-word basis; and every
DRAM access requires error detection/correction.

The one problem with the graphics-speci ¢ approach is
that, if we only detect errors across an entire row, it requires
the ability to perform error detection across a large quantity
of data. Reading all this data off the GDDR just for parity
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GDDR. Buffering the data allows for a simpler, lower-cost
error checker that can lag behind the data streaming off the
memory, performing the check computations as the main
graphics operations proceed. The error check is not in the
critical path and only imposes the cost of the fanout. On de-
tecting an error, the check circuitry alerts the graphics driver
to download a new copy of the data.

‘Demand parity is best used with large blocks of state that
will be read in a repeatable manner; vertex and index arrays
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are an obvious target for this technique. For objects that are improved upon: more effective and ef cient protection tech-
accessed with different ranges, such as index arrays, eachniques are another important area for future work. Cost-
possible range requires a check value. This requires a table,effective ways to support full protection are also needed for
probably stored in graphics memory as well. GPGPU and other applications that do not offer the visual
latitude assumed here. Application of ideas from the Redun-
. . . dant Multithreading [MKRO0Z2] literature look like viable so-
4.4. High-Order Bit Protection lutions in such domains, especially when it becomes impor-

Unlike general-purpose computations, high-order bits are %antt tdhat combinational logic, in addition to state, be pro-
more important for graphics than low-order bits. SecBah ected.
demonstrﬁtes this fog_vgrt@l( a@_ dﬁta. Th(ijs mt?tivasces a r[])ro-
tection scheme in which only thehighest order bits of eac
array element are protected. Based on the results in Sec-6' Acknowledgments
tion 3.2, 16 bits seems to be suf cient here, protecting the This work was supported in part by NSF grants CCF-
sign, the exponent, and the 7 highest-order bits of the man- 0429765, CCR-0306404, the Army Research Of ce under
tissa in IEEE single-precision oating point. This idea can grant no. W911NF-04-1-0288, a research grant from Intel
be implemented in conjunction with one of the previous two MRL, and an ATI graduate fellowship. We would like to ex-
techniques: either placing the highest order bytes of all array tend out sincere thanks to the anonymous reviewers for their
data in protected memory or implementing error detection detailed and helpful comments.
only across the highest order two bytes and leaving the re-
maining bytes unchecked.
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