
Image Space Gathering

Austin Robison Peter Shirley
NVIDIA Research

Figure 1: Left: Soft shadows on Bubs, created from a single shadow ray per pixel. Right: Glossy reflections created from a single reflection
ray per pixel. Note the variable glossiness per material; the floor is half the glossiness of the motor and the walls are not reflective at all.

Abstract

Soft shadows, glossy reflections and depth of field are valuable ef-
fects for realistic rendering and are often computed using distribu-
tion ray tracing (DRT). These “blurry” effects often need not be
accurate and are sometimes simulated by blurring an image with
sharper effects, such as blurring hard shadows to simulate soft shad-
ows. One of the most effective examples of such a blurring algo-
rithm is percentage closer soft shadows (PCSS). That technique,
however, does not naturally extend to shadows generated in image
space, such as those computed by a ray tracer, nor does it extend to
glossy reflections or depth of field. This limitation can be overcome
by generalizing PCSS to be phrased in terms of a gather from im-
age space textures implemented with cross bilateral filtering. This
paper demonstrates a framework to create visually compelling and
phenomenologically accurate approximations of DRT effects based
on repeatedly gathering from bilaterally weighted image space tex-
ture samples. These gathering and filtering operations are well sup-
ported by modern parallel architectures, enabling this technique to
run at interactive rates.

1 Introduction

Some of the most sought after effects in graphics are soft shadows,
glossy reflections and depth of field. These effects are accurately
computed using distribution ray tracing (DRT) [Cook et al. 1984].
DRT, however, is expensive, requiring tens to hundreds of rays per

pixel. Many researchers have attempted to intelligently blur “sharp”
images to get the subjective properties of distribution ray tracing
while increasing performance. Such a blurring approach will not
be able to produce exact results but in some scenes can produce
phenomenologically compelling approximations of soft shadows,
glossy reflections and depth of field. This paper describes a frame-
work to produce such approximations using only single sampled
image space textures and texture sampling. This sampling is used
to “gather” a weighted average of sampled values from the texture
maps to produce a final image (Figure 1) by approximating a per-
pixel variable radius spreading operation.

Image space gathering (ISG) is inspired from the observation in
Figure 2 that the rays that might be generated in a distribution ray
tracer have corresponding nearby “rays” in an image produced by
a traditional z-buffer or Whitted-style ray tracing program. While
a correct image can be generated by gathering colors or visibility
from the rays on the left side of Figure 2 , we only have informa-
tion from the “rays” on the right images and “gather” from them
instead. This is not as accurate as distribution ray tracing but is
faster as we can heavily reuse samples. To perform this gather,
we first store texture maps in image space containing information
about depth, normals, hard shadows, sharp reflections, etc. For each
shaded point we then query these textures to determine how far to
look for nearby rays (a parameter search), and we then query those
rays by point sampling the textures (a gather). The approach is ef-
ficient while capturing some of the subjective phenomena we seek
such as contact hardening in shadows and reflections.

We believe the main practical contribution of the paper is the glossy
reflections algorithm. It is a simple algorithm for an important vi-
sual effect and there are currently no viable alternatives to it for non-
planar surfaces. The soft shadow algorithm presented also works
well, but many competing methods exist. The depth-of-field algo-
rithm presented is not yet a viable competitor to previous techniques
and we discuss its limitations.

eye

light

lens

eye

eye

light

eye

lens

glossy
reflection

depth
of

field

soft
shadows

Figure 2: Left: the rays that might be sent in a distribution ray
tracer. Right: the “rays” that are sent in a traditional z-buffer ren-
der. While only the central ray is guaranteed to be in both ray sets,
our goal is to gather information from the right rays that can give
an estimate of the correct gather performed when the left rays are
computed.

2 Related Work

The most popular methods that compute glossy reflections, depth of
field and soft shadows simultaneously are DRT and the accumula-
tion buffer [Haeberli and Akeley 1990]. These require either many
samples per pixel or many images to be generated. Other tech-
niques have computed individual effects with “fat” cone tracing or
pyramid rays which has proven problematic to apply to complex
scenes [Amanatides 1984; Genetti et al. 1998]. Precomputed radi-
ance transfer methods have been used to simulate glossy reflections
and soft shadows, but these methods are best suited to fairly diffuse
effects so are complimentary to our algorithm which works well
with more high frequency phenomena [Kautz et al. 2005].

There are a plethora of approximate shadow algorithms; the most
effective are surveyed by Bavoil [2008]. Of those, percentage-
closer soft shadows (PCSS) is, in our opinion, the most success-
ful in capturing the subjective properties of soft shadows [Fernando
2005]. PCSS uses two passes at each shaded point. The first pass is
a point-based search over a large radius in the shadow map to deter-
mine what blurring radius is appropriate. The second pass is a blur
implemented by point sampling the shadow map within that blur-
ring radius. At each of those sample points a shadow map visibility
query is made to determine if that sample should be counted, effec-
tively implementing a bilateral filter [Paris et al. 2007] to prevent
image space artifacts. Our shadowing algorithm is closely related
to PCSS, but its details are different due to our shadow map being
defined in image space. The lack of light space information makes
preventing artifacts more challenging.

There have been many methods that take a sharp raster image and
blur it to simulate depth of field. These fall roughly into two cat-
egories as surveyed in the recent paper by Lee et al. [2008]: post-
filtering from a single layer or post-filtering from multiple layers.
Methods that “splat” each pixel with its own circle of confusion do
not neatly fit into this scheme but can be thought of as a layer per

pixel as they must be depth sorted. A recent example of such an
approach is presented by Kosloff et al. [2009] who also articulate
why a scattering or spreading method has intrinsic accuracy advan-
tage over gathering, while not mapping as well to modern hardware.
None of these methods both operate from a single layer and allow
an out of focus object in the foreground to blur across an in focus
object. Our method does achieve that, gaining more accuracy than
other single layer methods while retaining most of their simplicity.

Many methods compute glossy reflections from environment maps
which is not the problem we are targeting. There are relatively few
methods for creating glossy reflections of local objects. Arvo com-
putes analytic results when visibility is known [Arvo 1995] but his
method has not been shown to scale well to more complex envi-
ronments. Landis [2002] blurs specular maps to achieve a glossy
look, and shows results that are sufficiently plausible to be compos-
ited into film frames. Hensley et al. [2005] have used fast summed
area tables to compute glossy reflections. Their method can create
appealing contact hardening but it is currently limited to planar sur-
faces. Kulikova et al. [2001] blur specular reflections but do so with
a constant width blur so do not produce contact hardening. Shah et
al. [2007] use brickmaps to prefilter the geometry to decrease the
needed sampling rate for glossy reflection and achieve excellent re-
sults, but their speed is not yet near interactive. Yu et al. [2008]
achieve glossy reflections with contact hardening by using geom-
etry images for their objects so they can do their blurring in an
approximate object space. Their method works well, but places
constraints on the model representation we would like to avoid.

One of the problems with gathering in screen space is preserving
discontinuities in the image, such as depth edges, as well as pre-
serving correct behavior on curved surfaces. To overcome this in
a blurring kernel we must use a signal-dependent kernel function;
one that relies on the image being blurred. Bilateral filtering pro-
vides a framework to do that by adding a range function to deal
with kernel dependencies on the image [Paris et al. 2007]. We use
a cross bilateral filter (also sometimes called a joint bilateral filter)
where the filter’s range function uses a different image than the im-
age being filtered. In rendering, the bilateral filter has been used
effectively for upsampling an illumination field [Sloan et al. 2007],
and we will use it in a similar way but with specialized range func-
tions and importance sampling depending upon the effect we seek
to achieve.

3 Algorithm

Our algorithm is a post-process that operates on images produced
by any rendering technique that can compute sharp shadows and
reflections. We assume that a rendering system has created several
images that will be consumed to produce the final composited im-
age; these images may include normal maps, depth maps, screen
space shadow maps, sharp specular reflection maps, world space
position maps, etc. These images are then combined using a two-
phase cross bilateral filter during a traditional shading pass. The
goal is to simulate a spreading operation with a per-pixel depen-
dent radius using only two gathering steps. We also do not need the
resolution of the input images to match the resolution of the final
image, enabling subsampling of the phenomenon we intend to blur
if desired.

The first filtering phase is the parameter search. This is used to
query the images for information to set the support of the second
filtering phase, the gather. Both of these phases use cross bilateral
information to produce the desired phenomenological result from
only image space information. For example in the soft shadows
case, we want the edges of our hard shadows to be blurred both in-
side the shadow boundary as well as outside of the shadow bound-

ary. By splitting the filtering into two phases, we enable the edges
of sharp images to be blurred in both directions. The purpose of the
parameter search is to look across these boundaries to set the sup-
port of the gather kernel, enabling blurring across these boundaries,
not just within them.

To keep the running time of the algorithm independent of the sup-
port of the filter kernels we employ a point-sampled Monte Carlo
method to evaluate the kernels’ integration that is, itself, indepen-
dent of input image resolution. We will first discuss the details of
these filters and how we importance sample them, followed by a
discussion of tuning the range and spatial weighting functions of
the filter for each target effect.

From here onward we will assume that our images are parameter-
ized by 2D texture coordinates in the range [0, 1]. Our filtering
takes place at the point at 2D image space texture coordinate ~p0.
The cross bilateral filter for that point is:

g(~p0) =
1

k

Z
r(~p, ~p0)| {z }

range fn.

w(~p, ~p0)| {z }
weighting fn.

I(~p)|{z}
image fn.

dA, (1)

where ~p is a point in screen space (the integration variable), I is
the image we are blurring (e.g., opacity values for shadows), and k
enforces a weighted average:

k =

Z
r(~p, ~p0) w(~p, ~p0) dA. (2)

Here the range function is used to set the “relevance” of the point
at ~p to the point ~p0. The spatial weighting function can vary with
~p0 (e.g., it may be related to the reflectance function BRDF at that
point) but it does not depend on any values other than those at ~p0.
This enables different blurring behavior on a per-pixel basis, for
example, enabling differing amounts of glossiness in the reflections
of different rendered materials. While we could evaluate the inte-
grals above by summing over individual pixels, instead we view the
images as continuous functions (i.e., a texture map with an interpo-
lation rule) and point sample them using Monte Carlo integration.
If we use uniform density random variables to sample the domain
of these integrals this yields the Monte Carlo approximation g′:

g′(~p0) =

PN
i=1 r(~pi, ~p0)w(~pi, ~p0)I(~pi)PM
j=1 r(~pj , ~p0)w(~pj , ~p0)

. (3)

To be a traditional Monte Carlo estimator, the numerator and de-
nominator must have independent points to avoid bias, and M and
N need not be equal. We could also importance sample with a
density proportional to w which would likely lower error for large
numbers of samples [Ernst et al. 2006]. However, our main artifact
is geometric undersampling so we instead use a uniform density to
spread the sample points, and thus the gaps between points, more
evenly. We can make several alterations to that basic method to
improve efficiency:

• use stratified or QMC samples [Dutré et al. 2006];

• use the same samples for the numerator and denominator;

• have the sums start at i = 0 thus using the point ~p0 being
processed.

The last two items add bias that vanishes in the limit, and thus they
make our technique a “consistent” Monte Carlo method [Arvo and
Kirk 1990]:

g′(~p0) =

PN
i=0 w(~pi, ~p0)r(~pi, ~p0)I(~pi)PN

i=0 w(~pi, ~p0)r(~pi, ~p0)
. (4)

eye

light

Figure 3: Because some of the image space samples near the
shaded point may be uncorrelated with the rays that we are try-
ing to approximate, we need the range function to downweight or
discount such points. In this example, the bottom sample represents
a ray that is dissimilar from the ray we want to approximate (the
dashed line) so it will be discounted from the filter’s integral.

3.1 Soft Shadows

The basic idea of the algorithm is to approximate the rays we would
send in distribution ray tracing with a set of rays we trace in a tradi-
tional Whitted-style ray tracer as shown in Figure 2. This will not
give us a correct answer, but can give subjectively pleasing results
for most scenes. We assume that we have a shadow map stored in
image space. This map stores, at each pixel, the distance from the
shaded point to the nearest occluder as well as a bit indicating if the
pixel is in shadow. That map could be produced, for example, by
a ray tracer or by a z-buffer with irregular sampling as introduced
independently by Aila and Laine [2004] and Johnson et al. [2005].
To drive our algorithm we make the same assumption as PCSS –
the light, receiver and occluder are parallel and we can approxi-
mate the size of the penumbra using similar triangles. From this
we will compute a final shadow opacity value that can be used in
subsequent shading.

First we need to estimate the distance from the point being shaded
to the virtual area light. We do this via a parameter search that is
analogous to the blocker search in PCSS. We use a user-defined set
of samples within a radius to search for potential occluders from the
point being shaded. By changing the distribution of these samples
it is possible to simulate differently shaped virtual area lights. The
shape of the virtual area light is the convolution of a point and the
shape of the spatial weighting function in the filter, for example, a
disk of samples will simulate a spherical light while a rectangular
array of samples will simulate a rectangular area light.

The parameter search radius, Rp is given by:

Rp = L/zeye, (5)

where L is a scaling factor representing the size of the virtual area
light and zeye is the eye space depth value of the shaded point used
to project the light radius into screen space.

The values the parameter search are filtering are distances to oc-
cluders; the final result of the filtering will be a weighted average
of the distances found in the search. Unlike PCSS, however, we
only have screen space information and thus make use of a range
function to discount samples that have low correspondence with the
rays we are approximating, as seen in Figure 3. We use Equation 4
with a constant weighting function and the following range func-
tion:

r(~pi, ~p0) = e−l
2/σ · inShadow(~pi), (6)

where

eye

virtual eye

θmax

αmax

e

E

Figure 4: Left: the information for a correct reflection is drawn
from a cone with angle θmax. Right: to approximate the left we
gather information from within a cone starting at the reflection of
the eye with an inner angle chosen to create the same cross section
near the primary reflected object.

l = length(~w(~pi)− ~w(~p0)) (7)

Here, ~w(~p) is a lookup into a texture of world space positions for
the screen space point ~p. Effectively the parameter search range
function is a gaussian that gives a similarity metric between two
world space points, which is tunable by the σ parameter, and throws
out filter taps that are not in shadow.

Given the estimated distance to the occluder by the parameter
search, d, we can calculate the screen space shadow penumbra ra-
dius, Rs, by:

Rs = L
d

D − d (8)

where D is the distance from the shaded point to the light. Given
the penumbra radius, we can project to screen space to calculate the
support, Rg , of our gather filter:

Rg = Rs/zeye (9)

The gather then uses the same spatial and range weighting func-
tions as the parameter search but with radiusRg and operating over
the bits that signal a sample being in or out of shadow. We then
arrive at an estimate the opacity of the shadow at the point being
shaded. Figure 7 shows a model with varyingL demonstrating vari-
able penumbra size. Figure 8 shows a comparison with a ground-
truth image.

3.2 Glossy Reflection

To simulate glossy reflection, we will need an input reflection map,
consisting of reflected colors as well as the distance to that reflected
object from the shaded point. A glossy reflection is a result of con-
volution over the hemisphere of incident directions using the BRDF
ρ for the blurring kernel. This kernel can also be expressed in screen
space. As shown in Figure 4, we first assume that the BRDF is zero
outside of a cone with angle θmax. The simulated BRDF may be
zero inside of the cone as well; this angle serves as a bound to the
maximum glossiness at the shaded point (and may vary from point
to point).

Our parameter search, in order to capture the blurring of the reflec-
tion outside the boundary of the image of the reflected object, must
search over the angle θmax. The parameter search support, Rp, is
just the ratio of θmax and the field of view of the camera. (Note that
the layout of the parameter search samples may change its aspect

ratio to match the aspect ratio of the camera to maintain the shape
of the simulated BRDF.)

Similar to soft shadows, our parameter search for glossy reflections
operates over the image of distances to reflected objects, within ra-
dius Rp, to find a single distance value for the shaded point. We
again use Equation 4 with a constant spatial weighting function and
the following range function:

r(~pi, ~p0) = e−
a·l2+b·n2

σ (10)

Where

l = length(~w(~pi)− ~w(~p0)) (11)

n = 1− ~N(~pi) · ~N(~p0) (12)

Again, ~w(~p) represents a texture of world space positions, a, b and
σ are tuning parameters and ~N(~p) is the corresponding texture of
surface normals. This gives us a similarity metric that is sensitive
to both the proximity of two points as well as the similarity of their
surface normals.

Given the distance to a reflected object from the parameter search,
we must now compute the support of the gather kernel. Looking at
Figure 4 we can find the following trigonometric equivalence:

tanα =
E tan θmax

e+ E
(13)

Where e is the distance from the eye to the shaded point, E is the
distance from the shaded point to the reflected object and θmax is our
maximum BRDF angle from above. From this we can compute the
angle we wish to sample over and project it into screen space by di-
viding by the camera’s field of view. This gives us the screen space
support of our gather kernel, Rs. To account for the tightening of
BRDFs at grazing angles, we multiply this radius by the cosine of
the incident angle to obtain our final gather support:

Rg = Rs cos θincident (14)

The gather then operates over the image of reflected colors and uses
the same cross bilateral filter function, with Equation 10 as the
range function and a spatial weighting function that corresponds
to the projection of the shape of the simulated BRDF inside of
the cone into screen space. This can, for example, be constant, a
gaussian falloff or a more complicated function to simulate other
BRDFs.

3.3 Depth of Field

We devoted considerably more time to trying to make a good DOF
algorithm than to shadows and reflections, but in the end it is the
worst of the three algorithms in our opinion. Its weakness is for ob-
jects between the camera and the front focal plane. We believe this
is due to the great difference between the rays needed for the correct
calculation and the rays we have. This can be seen subjectively in
Figure 2. The figure also implies the results might be better for ob-
jects past the front focal plane, and indeed the algorithm performs
well in that region.

To aid our intuition about depth of field, we deal with its effects
in image coordinates. Fundamentally, a lens causes the image of a
point to project to an area of the screen called its circle of confusion
(CoC). In world space, the circle of confusion changes linearly with
distance from the lens, first shrinking as it approached the front fo-
cal plane, and then reaching zero (perfect focus) at that focal plane,
and then increasing linearly with distance from that plane. In screen
space, the radius c of that circle of confusion is:

Figure 5: In each of the pairs of spheres, the two red points would
sample different spheres in the unblurred image. When shading at
those points the pair on the left should get assigned similar colors,
while the pair on the right should not. This example shows why
depth ordering must affect our range function.

c(~pi) =
|z(~pi)− zf |

z(~pi)
c∞ (15)

Where z is the depth lookup texture of the shaded point, zf is the
depth to the front focal plane, and c∞ is the screen space CoC radius
for a point at z = infinity.

Again, we proceed by first using a parameter search (with radius
c∞) to sample the circles of confusion around a shaded point fol-
lowed by a gather to perform the blurring based on the computed
CoC radius of the parameter search. We now need to design range
functions that will capture the depth of field effect. For the case
on the left of Figure 5, one possible regime is to take a parameter
search and use the average of the circles of confusion we encounter
for the second pass. This would work reasonably except for the
case of an in focus object being shaded with an out of focus object
behind it. This is because an out of focus object should blur across
an in focus object, but that is not the case when an out of focus ob-
ject is in back. So for the top right case we should use a gather with
a small gather radius, while for the others we can use a uniform
average of the samples we find. This suggests a range function in-
spired by Riguer et al.’s [2004] rule for handing an analogous case
for blurring (as opposed to the parameter search we are doing):

r(~pi, ~p0) =

(
c(~pi), if z(~pi) > z(~p0), c(~pi) > c(~p0);
c∞, otherwise.

(16)

This main problem with this rule is that when the sampled points
are all on the same surface as the center point there is a transitional
artifact. That artifact has its roots in a related case for point based
rendering where points should be splatted in a way that depends on
whether they are on the same surface [Gross and Pfister 2007]. We
deal with this by employing the smoothstep function to soften the
transition between the two cases in the conditional above.

Once we have a radius, we can simply gather from the new region
with the exception of the right case of Figure 5. Here we do not
want the in-focus foreground object to bleed over the blurry back-
ground object. To accomplish that we again use a variant of the
method of Riguer et al. [2004]:

r(~pi, ~p0) =

(
c(~pi), if z(~pi) < z(~p0), c(~pi) < c(~p0);
c∞, otherwise.

(17)

During the gather, changing the spatial weighting function can
change shape of the final blur and can be used to simulate lens
bokeh effects.

Figure 6: Left: Bubs rendered with depth of field using single sam-
pled color and depth buffers. Right: Depth of field artifact from
missing information behind the spike. Notice that you cannot see
the in focus ring in the background through the blurred foreground
object.

The main limitation of this technique is that when a foreground
object blurs over an in focus background object we are missing
information. A true distribution ray tracer sends rays “around” a
foreground object because the source of the camera rays are from
an area lens, not a single point as in our case. Because of this,
large circles of confusion in the foreground exhibit artifacts in areas
where this information is missing from our single sampled images,
as seen in Figure 6.

4 Results

We implemented our algorithm on an NVIDIA Quadro FX 5800
using OpenGL, Cg and a preliminary version of the NVIDIA Inter-
active Ray Tracing API (NVIRT) [Robison 2009]. For a sampling
pattern we used regular (grid) samples passed, on the fly, through
the square to disk mapping of Shirley and Chiu [2005]. Our spec-
ular reflection and shadow maps were generated with NVIRT and
stored in OpenGL textures. The basic rendering flow was to first
rasterize ray requests into a texture using OpenGL (world space
positions, normals, etc.) then map that texture to NVIRT. These ray
requests are rasterized simultaneously using multiple render targets.
NVIRT then takes the ray requests and casts shadow or reflection
rays, storing the results into an output buffer that has been mapped
from OpenGL. The final pass is a standard OpenGL rendering pass,
where the results of the ray tracer are fed to Cg shaders as the inputs
to the algorithm.

As an example, the soft shadow case needs only rasterize world
space positions as ray requests: NVIRT traces a ray with an origin
equal to the input world space position towards the light source.
Multiple light sources can be handled by tracing multiple sets of
rays from a single request image towards different lights and stor-
ing them into separate output buffers. For glossy reflection, we also
need a texture of normals, which could be generated from triangle
face normal or procedurally; this technique is fully compatible with
bump or normal mapping techniques. The depth of field implemen-
tation does not use NVIRT and exists as a simple Cg shader. The
Cg shaders themselves are very simple texturing lookup and filter-
ing functions, simply sampling the specified images and weighting
those samples, much like PCSS or any type of point-sampled blur.

The running time of the algorithm is roughly proportional to the
number of samples taken in the parameter search and gather, as

212k tri, 1.8 ms base
49.7 ms preprocess 9 25 49 81

9 8.2 14.2 26.3 38.2
25 16.9 19.9 32.4 44.7
49 22.2 31.6 40.9 53.5
81 36.1 42.4 51.7 64.3

322k tri, 3.6 ms base
477.5 ms preprocess 9 25 49 81

9 46 79 128 193
25 84 118 170 238
49 139 174 226 295
81 212 246 299 369

1.8M tri, 0.3 ms base
8.4 ms preprocess 9 25 49 81

9 3.8 6.9 21.7 35.4
25 6.6 9.1 24.8 38.6
49 10.1 11.9 28.9 42.9
81 12.9 14.7 31.6 45.4

Table 1: Total time in milliseconds for rendering the final pass
for various sampling rates at 1024 × 768. The columns vary in
the number of samples taken in the parameter search and the rows
vary in the number of samples taken for the gather. The baseline
time represents the final shading pass without ISG. The preprocess
time includes generating ray requests and invoking NVIRT for soft
shadows and glossy reflections.

summarized in Table 1. The number of samples required is depen-
dent upon the application’s tolerance for undersampling artifacts.
Figure 11 shows a comparison between an undersampled and over-
sampled application of the algorithm. The tuning parameters for
the bilateral filters’ range functions do not require much tuning and
we used values near 1×10−3 scaled by the inverse size of the scene
for σ.

5 Discussion

We have presented a framework for approximating distribution ray
tracing effects by gathering from image space textures. The main
artifacts of ISG are visible in the figures and temporal artifacts are
minimal. Any aliasing that is present in the input images is gener-
ally visible in the output of this algorithm, but given smooth input,
the output will also be smooth. Additionally, these three techniques
can also be used simultaneously, as shown in Figure 9.

From the data in Table 1 it is clear that this technique is not fast
enough for real-time use on current hardware; however, it still
provides interactive framerates with high numbers of samples per
shaded point and high image quality. Additionally, this algorithm
can be used in off-line post-processing or compositing tools that can
tolerate the frame to frame latency for improving the image quality
of single sampled rendered images. The running time is bounded
by the number of texture accesses that occur during the processing
of a fragment; you can see in the data that in the glossy reflections
case having the range function depend upon values of the normal
texture, and incurring twice as many texture reads because of that,
has a substantial impact on performance compared to the soft shad-
ows or depth of field cases.

Note that we have used ray tracing to generate some of our textures,
and rasterization for others; the textures can come from any method
that can generate the required data so the method is not tied to any
particular visibility paradigm. We now summarize the approach’s

Figure 7: Fern model with varying penumbra sizes.

limitations and potential areas for extensions.

Limitations. As with any sample-based method, undersampling
will cause visible artifacts, and it is straightforward to construct
scenes with small bright objects that are arbitrarily hard to sample
accurately. Our method aims to produce phenomenologically cor-
rect effects, not to match ground truths, and thus can produce incor-
rect but plausible results that are unsuitable for some applications.
The textures we gather from contain only information directly vis-
ible to the eye point so it misses objects that are barely hidden but
would contribute to the image produced by a distribution ray tracer.
This is most noticeable with the depth of field technique.

Future Work. Anisotropic reflection as well as grazing reflec-
tion elongation could be added by using an elongated shape for the
gather region. Additionally, the use of different sampling patterns
or shifted/rotated patterns could improve the results for some scenes
or applications.

The number of gathering samples could be made adaptive based
on the results of the parameter search to provide uniform sampling
rates and motion blur might be simulated by adding a texture with
velocity information. Gaining more information about occluded
geometry with a technique such as depth peeling could also improve
the results.

Significance and Novelty. We believe the most novel and im-
portant technique in this paper is the handling of glossy reflections
as we are unaware of viable alternatives that are both efficient and
work on general models. The soft shadow algorithm we present
is closely related to PCSS, but, unlike PCSS, can be used in con-
junction with ray traced shadows. Whether this is significant will
depend on how the future development community weighs hard to
quantify tradeoffs in efficiency, artifacts, algorithmic complexity
and implementation difficulty present when comparing light space
and image space shadow algorithms. Our depth of field technique
is an extension of Riguer et al.’s work to allow blurred foreground
objects but suffers from major artifacts; we believe its subjective
quality suffers more from the lack of occluded information than is
the case for soft shadows or glossy reflections, but is useful when
the accuracy of multilayer techniques is not needed.

Acknowledgements

Thanks to the creators and distributers of the models used for ex-
amples including Ryan Vance, Thomas Luft, Juan Carlos Silva, Al-
varo Luna Bautista, Joel Andersdon, and the Stanford repository, to
Randy Fernando and Louis Bavoil for many helpful discussions, to
the anonymous reviewers for their detailed and constructive com-
ments, and to Annen et al. [2008] for the use of content from Fig-
ure 7 of their paper.

Figure 8: Top: ray traced ground truth image from Annen et
al. [2008]. Bottom: our technique with an untextured model with
the same viewpoint and approximate penumbra size.

References

AILA, T., AND LAINE, S. 2004. Alias-free shadow maps. In Pro-
ceedings of Eurographics Symposium on Rendering, 161–166.

AMANATIDES, J. 1984. Ray tracing with cones. In Proceedings of
SIGGRAPH, 129–135.

ANNEN, T., DONG, Z., MERTENS, T., BEKAERT, P., SEIDEL,
H., AND KAUTZ, J. 2008. Real-time, all-frequency shadows in
dynamic scenes. In Proceedings of SIGGRAPH.

ARVO, J., AND KIRK, D. 1990. Particle transport and image syn-
thesis. In Proceedings SIGGRAPH, 63–66.

ARVO, J. 1995. Applications of irradiance tensors to the simulation
of non-Lambertian phenomena. In Proceedings of SIGGRAPH,
335–342.

BAVOIL, L. 2008. Advanced Soft Shadow Mapping Techniques.

COOK, R. L., PORTER, T., AND CARPENTER, L. 1984. Dis-
tributed ray tracing. In Proceedings of SIGGRAPH, 137–145.

DUTRÉ, P., BALA, K., AND BEKAERT, P. 2006. Advanced Global
Illumination. AK Peters, Ltd.

ERNST, M., STAMMINGER, M., AND GREINER, G. 2006. Filter
Importance Sampling. In IEEE Symposium on Interactive Ray
Tracing, 125–132.

FERNANDO, R. 2005. Percentage-closer soft shadows. In SIG-
GRAPH Sketch.

Figure 9: Top: A conventionally rendered image with “sharp”
shadows, specular reflections and focus. Center: a set of textures
that are a natural byproduct of rendering the top image. (Clockwise
from upper left: screen space shadow map, normal map, depth map
and reflection map.) Bottom: an image computed by gathering val-
ues from the center texture images.

Figure 10: A model rendered with the depth of field technique.

Figure 11: Top: 9 parameter search samples and 9 gather samples.
Bottom: 81 parameter search samples and 81 gather samples. No-
tice the undersampling artifacts present in the top image, both in the
detection of blur radii and within the blurs themselves. Please see
the supplementary materials for images with other sampling rates.

Figure 12: Left: No ISG, this is the unblurred reflection map. Mid-
dle: ISG reflections with a small glossiness factor. Right: ISG re-
flections with a large glossiness factor.

GENETTI, J., GORDON, D., AND WILLIAMS, G. 1998. Adaptive
Supersampling in Object Space Using Pyramidal Rays. CGF 17,
1, 29–54.

GROSS, M., AND PFISTER, H. 2007. Point-based Graphics. Mor-
gan Kaufmann.

HAEBERLI, P., AND AKELEY, K. 1990. The accumulation buffer:
hardware support for high-quality rendering. In Proceedings of
SIGGRAPH, 309–318.

HENSLEY, J., SCHEUERMANN, T., COOMBE, G., SINGH, M.,
AND LASTRA, A. 2005. Fast Summed-Area Table Genera-
tion and its Applications. In Computer Graphics Forum, vol. 24,
Blackwell Synergy, 547–555.

JOHNSON, G. S., LEE, J., BURNS, C. A., AND MARK, W. R.
2005. The irregular z-buffer: Hardware acceleration for irregular
data structures. ACM Trans. Graph. 24, 4, 1462–1482.

KAUTZ, J., LEHTINEN, J., , AND SLOAN, P. 2005. Precomputed
radiance transfer: theory and practice. In SIGGRAPH course
notes.

KOSLOFF, T., TAO, M., AND BARSKY, B. 2009. Depth of field
postprocessing for layered scenes using constant-time rectangle
spreading. In Proceedings of Graphics Interface.

KULIKOVA, A., DMITRIEV, K., AND MOSCOW, R. 2001. Fuzzy
reflections rendering. In The 11-thInternational Conference on
Computer Graphics and Computer Vision, August/September.

LANDIS, H. 2002. Production-ready global illumination. Siggraph
Course Notes 16.

LEE, S., KIM, G., AND CHOI, S. 2008. Real-Time Depth-of-Field
Rendering Using Point Splatting on Per-Pixel Layers. IEEE
Transactions on Visualization and Computer Graphics (Septem-
ber/October).

PARIS, S., KORNPROBST, P., TUMBLIN, J., AND DURAND, F.
2007. A gentle introduction to bilateral filtering and its applica-
tions. In SIGGRAPH Course Notes.

RIGUER, G., TATARCHUK, N., AND ISIDORO, J. 2004. Real-Time
Depth of Field Simulation. ShaderX 2, 529–556.

ROBISON, A., 2009. Interactive Ray Tracing
on the GPU and NVIRT Overview, February.
http://www.nvidia.com/research.

SHAH, A., RITTER, J., KING, C., AND GRONSKY, S. 2007. Fast,
soft reflections using radiance caches. In SIGGRAPH Sketch.

SHIRLEY, P., AND CHIU, K. 2005. A Low Distortion Map
Between Disk and Square. Graphics Tools: The Jgt Editors’
Choice.

SLOAN, P., GOVINDARAJU, N., NOWROUZEZAHRAI, D., AND
SNYDER, J. 2007. Image-Based Proxy Accumulation for Real-
Time Soft Global Illumination. In Pacific Graphics, 97–105.

YU, X., WANG, R., AND YU, J. 2008. Interactive Glossy Re-
flections using GPU-based Ray Tracing with Adaptive LOD. In
Pacific Graphics.

