
The Even/Odd Synchronizer: A Fast, All-Digital
Periodic Synchronizer

William J. Dally∗†, Stephen G. Tell†
∗Stanford University, †NVIDIA Corporation

Abstract—We describe an all-digital synchronizer that moves
multi-bit signals between two periodic clock domains with an
average delay of slightly more than a half cycle and an arbitrarily
small probability of synchronization failure. The synchronizer
operates by measuring the relative frequency of the two periodic
clocks and using this frequency measurement, along with a phase
detection, to compute a phase estimate. Interval arithmetic is used
for the phase estimate to account for uncertainty. The transmitter
writes a pair of registers on alternating clock cycles and the
receiver uses the estimate of the transmitter’s phase to always
select the most recently written value that is safe to sample.
We show how to incorporate this design into a FIFO to give
a fast periodic synchronizer with flow control. We present a
number-theoretic argument that the synchronizer works for all
frequency combinations. An implementation of the synchronizer
using standard cells is also presented.

I. INTRODUCTION

Many digital systems are organized into multiple syn-
chronous clock domains each with separate, periodic clocks.
For example, a modern microprocessor and its memory con-
troller may operate off completely separate clocks. A syn-
chronizer is required to pass signals from one clock domain
to another to prevent synchronization failure. Most existing
systems use a FIFO synchronizer [1] to pass signals between
clock domains. These incur a significant area overhead for the
FIFO memory. They also add several cycles of delay as the
Gray-coded input and output pointers of the FIFO must be
synchronized through multiple flip-flops to move them across
clock domains.

Synchronizers that exploit the periodic nature of the phase
relationship to avoid the area and delay overhead of a FIFO
have been described by Stewart & Ward [2][3], Dennison et
al. [4], Dally & Poulton [1], and Frank et al. [5]. However
these systems are either limited to clocks with nearly identical
frequencies [4] or require calibrating analog delay lines to
match the clock period [2][3][5]. Creating such matched delay
lines is costly in area and power and increases system jitter.
Sarmenta et al. [6] have described a periodic synchronizer
for rationally related signals that avoids the use of analog
delay lines. However this synchronizer cannot handle general
periodic signals. Chakraborty and Greenstreet [7] use a single-
stage FIFO to perform mesochronous synchronization with
skew tolerance and then use rate multipliers to apply this
circuit to other types of clocking.

In this paper we present an all-digital synchronizer that
exploits the predictability of periodic clocks to achieve low
(0-1 cycle) delay, and small area. Our synchronizer operates

by digitally measuring the relative frequency between the
transmit and receive clocks and then uses this frequency
measurement to digitally estimate the relative phase of the two
clocks. This phase estimate is used to predict when it is safe
to directly sample with a receive clock signals synchronous
with a transmit clock. Interval arithmetic is used to track the
accuracy of the phase estimate.

The contributions of this paper include:
1) A digital method of, within one clock domain, estimat-

ing the frequency and predicting the phase of a second
clock domain.

2) The design of the even/odd synchronizer that uses a pair
of registers and the phase prediction to provide safe,
low-latency synchronization.

3) The integration of the even/odd synchronizer into a
FIFO synchronizer to provide low-latency synchroniza-
tion with flow control.

4) An analysis of the even/odd synchronizer including a
number theoretic argument of its correctness.

The remainder of this paper describes our digital periodic
synchronizer in more detail. The symbols used in the paper
are summarized in Table I. Typical values are indicated where
appropriate. In Section II we show how a phase estimate can
be used to construct a fast, simple forward synchronizer that
moves a parallel signal from one periodic clock domain to
another. We show how this synchronizer can be employed
in a FIFO synchronizer to provide synchronization and flow
control in Section III. Section IV describes how our system
measures the relative frequency of the two clocks and uses
this estimate to generate a phase estimate with error bounds.
A state diagram for the synchronizer is described in Section V.
We analyze the behavior of the system and give an informal
argument of its correctness in Section VI. We discuss the
properties of the synchronizer in Section VII and conclude
in Section VIII.

II. EVEN/ODD FORWARD SYNCHRONIZER

Fig. 1 shows a forward synchronizer that moves a parallel
signal forward - from the transmit clock (tclk) domain to
the receive clock (rclk) domain - safe from synchronization
failure, but without flow control. The transmitter writes data
alternately to a pair of registers: to the E register on even tclk
cycles and to the O register on odd tclk cycles. The receiver
selects the most recently written register, E or O, that is safe
to sample at the end of the current rclk cycle. This selection
is based on the predicted tclk phase at the end of the current

2010 IEEE Symposium on Asynchronous Circuits and Systems

978-0-7695-4032-0/10 $26.00 © 2010 IEEE

DOI 10.1109/ASYNC.2010.20

75

TABLE I
SYMBOLS USED IN THIS PAPER

Sym Description Units Typ

A Advance in the phase estimator, A = S +1 cycles 5
b Fraction bits in the frequency and phase

estimates
bits 10

C Upper bound on denominator D, C = d 1
2d
e 6

d Half-width of phase detection region , d =
td

ttcy

UI 0.13

D Denominator of a rational fraction N
D

e Difference from “nearest” rational fraction,
f = N

D
+ e

f Relative fractional transmit clock frequency,
f = fT

fR
mod 1. (For purposes of keeping

even and odd cycles, we keep f mod 2.)

UI/Cy 1.33

fg Guard-band frequency (fg = g
A
), the fre-

quency below which a detection will occur
at least A cycles before a keep-out event

UI/Cy 0.02

fj Jitter frequency. Hz
fR Receive clock (rclk) frequency Hz 7.5e8
fT Transmit clock (tclk) frequency Hz 1e9
g Guard band between detection and keep-out

regions, g = d− x
UI 0.1

k Threshold for entering plesiochronous mode,
i.e. we enter plesiochronous mode when
|pu− pl| > k

UI 0.50

N Numerator of a rational fraction N
D

φ Phase UI
p Estimated phase UI
S Synchronizer delay cycles 4
td Delay time used in phase detector ps 130
tjh Bound on absolute value of high-frequency

jitter (jitter with fj > fR
A

). Peak-to-peak
jitter is twice this value.

ps 30

tjm Bound on absolute value of medium-
frequency jitter (jitter with fgfR < fj <
fR
A

)

ps 30

trcy Receive clock (rclk) cycle time ps 1333
ttcy Transmit clock (tclk) cycle time ps 1000
tx Keep-out time (tx = ts + th + tjh) ps 60
x Half-width of keepout region (UI), x =

tx
2ttcy

UI 0.03

Fig. 1. An even/odd forward synchronizer

rclk cycle, p. Because it operates by discriminating even and
odd tclk cycles, we refer to this periodic synchronizer design
as an even/odd synchronizer or E/O synchronizer.

Fig. 2. Phase circle showing even and odd keep-out regions and region in
which the even register is selected

B D F

A C E 0

0.62 0.025 1.424 0.823 0.222

B A C E D F 0

9 B C E F

tclk

even

E

O

rclk

φ

sel

mo

rdata

Fig. 3. Waveforms showing operation of the synchronizer of Fig. 1.

The transmitter phase, φ, is a real number in the range
φ ∈ [0, 2) which we can visualize on a phase circle as shown
in Fig. 2. Odd clock cycles have a phase φ ∈ [0, 1), and
even clock cycles have φ ∈ [1, 2). An odd (even) clock cycle
ends in an odd (even) clock edge, and the signal even is
high during even clock cycles (i.e., when φ ∈ [1, 2)) . To
avoid synchronization failure, is important that the receiver not
sample the even (E) register during the even keep-out period
φ ∈ [2−x, x] and that the O register be avoided during the odd
keep-out period φ ∈ [1 − x, 1 + x] . These keep out periods
are shaded light grey in the figure. The keep out window,
with width 2x, represents the setup and hold window of the
sampling flip-flop. The width of these keep-out regions are
exaggerated in the figure. A typical 40nm flip-flop has a keep-
out window of about 60ps or just 6% of a 1GHz clock period.

To meet our rule of selecting the most recently written
register that is safe to sample, the selection logic selects the
even (E) register when φ ∈ (x, 1 + x] as shown by the dark
grey shaded arc in Fig. 2. The E register is selected as soon
as the phase clears the even keep out region at φ = x. The
E register is safe to sample during the large medium grey arc
shown in the figure, φ ∈ (x, 2− x) (everywhere but the even
keep out region). However it is only the most recently written
safe register up until φ = 1 + x. When φ ∈ (1 + x, x] the odd
register (O) is the most recently written safe register.

A timing diagram illustrating typical operation of the for-
ward synchronizer in the case where tclk is faster than rclk is
shown in Fig. 3. The shaded areas of the figure show the keep-

76

Fig. 4. FIFO Synchronizer using E/O Synchronizers for Head And Tail Pointers

out regions of the transmit clock (tclk).1 Waveform φ shows
the phase that tclk will have at the end of each rclk cycle. The
timing diagram shows that the circuit always samples the most
recently written register that is not in an unsafe region. The
rising first edge of rclk samples the value “B” from register
E because this edge occurs in an odd cycle of tclk. The next
edge samples “C” from register O because this rclk edge is
in the unsafe region, only 2.5% of the way into a tclk cycle.
The third edge samples “E” from register O because it occurs
safely in an even tclk cycle. Finally, the last rclk edge samples
“F” from register E because it occurs in an odd cycle, just
before the odd keep-out region of tclk. Note that value “D”
is never sampled because tclk is faster than rclk. Conversely,
if tclk were slower than rclk, some values would be sampled
multiple times. Ensuring that every value is sampled exactly
once requires a synchronizer with flow control, such as the
FIFO synchronizer described in Section III.

So far we have been assuming that the receiver knows the
tclk phase, φ. In practice, the receiver uses an estimate of tclk
phase, p. To account for the estimation error, ε = |φ− p|, we
either add a guard band to our detection of keep-out region,
or we compute our phase estimate using interval arithmetic
as described in Section IV, giving a bound on ε. When using
interval arithmetic, we make our selection decision using the
lower-bound of the phase (pl), since this always selects the
most recently written register that we are sure is safe to
sample.

III. A LOW-LATENCY FIFO SYNCHRONIZER

A low-latency synchronizer with flow control can be real-
ized by using E/O synchronizers to synchronize the head and
tail pointers of a conventional FIFO synchronizer as shown
in Fig. 4. This eliminates the high delay of the brute-force
synchronizers typically used for pointer synchronization and
also avoids the need to Gray-code the pointers.

1For illustrative purposes, the the keepout region shown in Fig. 3 is much
larger than the typical value of x.

Fig. 4 shows a FIFO synchronizer realized using two E/O
synchronizers that are combined with the head and tail pointer
registers. The FIFO uses a dual-port memory that is written
synchronously and read asynchronously to hold data in transit.
For small FIFOs, this memory is implemented as a flip-flop or
latch array. Larger FIFOs use a RAM or register file macro.
The FIFO memory is written and the tail pointer incremented
on the rising edge of the input clock (iclk) when input valid
(ivalid) is true and full is false. The head pointer selects the
value at the head of the FIFO to appear at the output port of
the memory. The head pointer increments on the rising edge
of the output clock (oclk) when empty is false and output busy
(obusy) is false. The tail pointer and full logic are in the iclk
domain and the head pointer and empty logic are in the oclk
domain.

A pair of E/O synchronizers moves the head and tail
pointers between the two clock domains. For the tail syn-
chronizer tclk=iclk and rclk=oclk while for the head synchro-
nizer tclk=oclk and rclk=iclk. The tail synchronizer keeps even
(ETail) and odd (OTail) versions of the tail pointer. One
multiplexer, controlled by ieven selects the current tail pointer
for use in the iclk domain. A second multiplexer, controlled by
osel selects the most recently written tail register that is safe
to sample in the oclk domain. A frequency estimator, a phase
detector, and a phase estimator, as described in Section IV
are used to generate osel. A second copy of the frequency
estimator, phase detector, and phase estimator are use to
generate isel.

Compared to the conventional approach of using brute-
force synchronizers to pass the head and tail pointers between
clock domains, using even/odd synchronizers has advantages
of speed and simplicity. The latency of the FIFO synchronizer
is reduced because the even/odd synchronizer has a delay of
0.5 cycles on average, compared to a brute-force synchronizer
with a delay of S+0.5 cycles (typically 4.5 cycles), where
S is the delay of a brute-force synchronizer. The design is
also simpler because the head and tail pointers can be kept in

77

Fig. 5. Frequency measurement block diagram

binary form. With conventional brute-force synchronizers, the
pointers must be Gray-coded to prevent more than a single bit
from changing at one time.

IV. FREQUENCY AND PHASE ESTIMATION

The synchronizer of Fig. 1 depends on having an accurate
estimate of the transmit clock phase at the end of each receive
clock cycle. This estimate is generated by first measuring the
frequency of the transmit clock relative to the recieve clock
and then using this frequency estimate, along with a phase
detector, to generate a phase estimate. The phase estimate is
computed using interval arithmetic to maintain an accurate
error bound on phase.

A. Frequency Estimation

Fig. 5 shows the block diagram of the frequency measure-
ment unit which uses a pair of counters to compute f , the
frequency of the transmit clock relative to the receive clock.
The frequency measurement process is initiated by a start
signal, st. The rising edge of st resets the receive counter (CR).
The start signal is also passed into the transmit clock (tclk)
domain through a brute-force synchronizer, producing signal
stT which is used to reset the transmit counter (CT). When
the receive counter reaches a terminal count (e.g., a count of
1023 for a b = 10-bit counter) signal tc is asserted and is
synchronized into the tclk domain. This synchronized terminal
count signal,tcT, stops the transmit counter. The delay of the
st and tc synchronizers are balanced (±1 cycle of uncertainty)
so that the final count out of CT reflects the number of tclk
cycles that occurred during 2b receive clock (rclk) cycles, i.e.,
the relative frequency of the transmitter, f = fT /fR. The
terminal count signal is synchronized back into the rclk domain
to produce signal tcTR which indicates when the frequency
measurement f is ready and enables its capture in the result
register (RR).

Counter CT produces a b+1 bit result so that f is generated
modulo 2. It is a fixed-point number with one bit to the left
of the binary point and b bits to the right. We compute the
transmit frequency estimate modulo 2 rather than modulo 1 so
that the phase estimator (described below) can track whether
the transmitter is in an odd or even clock cycle.

There are three brute force synchronizers in the frequency
measurement block of Fig. 5. These synchronizers are used
only once - when frequency is measured after reset. All of
these synchronizers are off of the critical path, so their delay
can be made arbitrarily high to achieve an arbitrarily low

Fig. 6. Phase Detector

probability of synchronization failure. Typically a delay S of
four or five clock cycles suffices to give a failure probability
of less than 10−40.

The start signal and terminal count synchronizers each intro-
duce one cycle of uncertainty in the frequency measurement.
Hence the output of the frequency measurement block is
accurate to ±1 LSB, i.e., ±2−b.

B. Phase Detection

The phase detector, shown in Fig. 6, detects when a transi-
tion on a transmit data signal falls in a window of ±td around
the receive clock edge. The phase detector samples transmit
signal evenm (signal even after a multiplexer delay) which
toggles every cycle. This signal is high during even tclk cycles
and low during odd tclk cycles. The timing of flip-flop F1 and
the multiplexer match the timing of the E and O registers and
the multiplexer of Fig. 1 so that transitions of evenm occur
with the same timing as transitions of mo (in Fig. 1) except
for component mismatches.

Flip-flop F2 samples evenm with rclk delayed by td giving
dL, a sample of evenm td after the rising edge of rclk, i.e.,
a late sample. An early sample, dE is produced by F3 which
samples evenm delayed by td. If an edge of evenm occurs
between td before rclk and td after rclk, the values sampled
by F3 and F2 will be different. The early and late samples
are synchronized to the receive clock domain by a pair of
brute-force synchronizers generating synchronized early and
late samples dES and dLS respectively. Differences between
the synchronized early and late samples are detected by a pair
of AND gates. If the early sample is high and the late sample
low, an even edge of tclk (one that ends an even cycle) is
detected and dete is asserted. If the early sample is low and
the late sample is high, an odd edge of tclk is detected and
deto is asserted.

There are two brute-force synchronizers in the phase de-
tector that operate every cycle of rclk. These synchronizers,
however, like those in the frequency measurement unit, are
off the critical path, so their delay can be made large to make
the frequency of synchronization failure arbitrarily small. A
combined delay, S, of 4 or 5 cycles for the sampling flip-flop
plus synchronizer is typically adequate to maintain a failure
frequency less than 10−40 Hz.

The delay lines in the phase detector are typically realized
by an even number of inverters connected in series. To
initialize the phase estimator, as described below, we need
to bound the value of td. While it is possible to compute a

78

Fig. 7. Circuit to measure detection interval, d

worst-case upper bound on td, we can get a more accurate
phase estimate if we measure the instantaneous value of td
and then add a guard band to this measurement to account for
variation of td with temperature and voltage.

If the tclk and rclk are not rationally related, we can measure
2d = 2td/ttcy by detecting the fraction of tclk cycles that
result in a detection. This can be accomplished at the same
time we are doing our frequency measurement. If the two
clocks are not rationally related, edges of rclk will be uniformly
distributed across the phase of tclk. A phase detection will
occur 2d = 2td/ttcy of the time. By counting the number of
phase detections that occur in 2b

′
tclk cycles, a measurement of

d is obtained in a form directly usable by the phase estimator.
A guard band is added to this estimate to produce a bound on
d that accounts for voltage and temperature variation and for
medium-frequency jitter (Section VII-C).

The circuit of Fig. 7 operates by counting the number of
tclk cycles during which det (det = dete∨deto) is true during
the 2b

′
tclk cycles it takes for counter CT2 to reach its terminal

count. This gives 2d as a b′-bit binary fraction. We increment
the output of CD to give an upper bound on 2d. We may
add an additional value at this point (not shown) to provide
guard band as described above. Right-shifting this number by
one bit position gives d. The done signal indicates when the
measurement of d is complete.

To give an accurate estimate of d, the width b′ of counters
CT2 and CD must be made large enough to uniformly sample
the phase space for all f ≥ fg . To estimate d with an accuracy
of ε requires that we sample at least 1/ε phase cycles, or at
least 1

εfg
tclk cycles. For example, to get an accuracy of 10%

(ε = 0.1), with fg = 0.02 (Table I) requires at least 500 cycles,
and hence a b′ of at least 9 bits. For frequencies f < fg the
system will operate in plesiochronous mode and the accuracy
of d is not critical.

The circuit shown in Fig. 7 only uniformly samples tclk
phase if the clocks are not rationally related. If they are
rationally related then the receive clock repeatedly visits the
same D (denominator of rational ratio in reduced form) points
on the unit phase circle. If D is large enough, this is sufficient.
The estimation error is less than 1/D. For small D, d can be
measured using an independent frequency source - for example
a ring oscillator - to drive the CD counter.

C. Phase Estimation

Fig. 8 shows the phase estimation logic. Two copies of this
logic are required to produce the lower (pl) and upper (pu)

Fig. 8. Logic for tracking lower (upper) bounds on phase estimate

bound estimates of tclk phase. When the phase estimates are
valid, the transmitter phase is known to be in the interval
[pl, pu]. On each phase detection, the phase estimates are
initialized to [−d, d], because the phase is known to be in
this interval during a detection, the even bit (msb) is set if
an even edge was detected, and then the phase estimate is
advanced in time by A = S + 1 cycles. On cycles when a
detection does not occur, the phase estimates are updated by
adding f −2−b and f + 2−b to pl and pu respectively. We use
f − 2−b and f + 2−b for these updates to account for the ±1
LSB uncertainty in the frequency estimate.

The A-cycle time advance is accomplished by adding A
times the frequency estimate (f − 2−b or f + 2−b) to the
initial phase. The advance A here is S + 1 where S is the
delay of the synchronizers (including the sampling flops) in
the phase detector. Advancing by S cancels the delay of the
phase detector, and advancing one more cycle makes the phase
estimate reflect the tclk phase at the end of the current rclk
cycle (rather than at the beginning).

The operation of the phase estimator is more easily ex-
pressed as verilog code:

always @(posedge rclk) begin
pu <= det ? {dete, bzeros} + d + (f+1)*A

: pu+f+1 ;
pl <= det ? {dete, bzeros} - d + (f-1)*A

: pl+f-1 ;
end

We select the most recent safe register to sample based on
the lower bound of the transmit phase, pl. When pl ∈ (x, 1+x]
we set sel=0 to sample the even (E) register. Otherwise we
sample the odd (O) register. Tracking the upper bound of the
transmit phase allows us to determine when our phase estimate
is no longer accurate enough to be used. The phase estimation
is no longer useful when pu−pl > 1−2x. We can still operate
the synchronizer in this state using plesiochronous mode as
described in Section V. In practice the synchronizer should
enter plesiochronous mode when pu−pl > k = 0.5. A smaller
bound may be used to reduce synchronizer delay.

V. SYNCHRONIZER STATES

A state diagram for the fast periodic synchronizer is shown
in Fig. 9. The states are described in Table II.

On reset the synchronizer enters the frequency acquisition
(FA) state. It starts its pair of counters to measure the fre-
quency of the ”other” clock. During this state the synchronizer
checks to see if there is a phase detection (phase falling into

79

Fig. 9. Synchronizer State Diagram

TABLE II
SYNCHRONIZER STATE DESCRIPTIONS

R Reset Start frequency measurement process
FA Frequency Acqui-

sition
Wait for frequency measurement to
complete.
Record if a phase detection occurs during
this period.
If no phase detection → Plesiochronous
Otherwise → Phase Acquisition

PA Phase
Acquisition

Wait for phase detection (pd).
Time out → Plesiochronous
Otherwise → Tracking

T Tracking Track estimated phase
If pu− pl > k → Plesiochronous

P Plesiochronous Operate in Plesiochronous mode
If phase detection → Tracking

the detection region). If there was no phase detection during
the frequency estimation, then the clocks are plesiochronous
or rationally related (f = N/D) (or nearly rationally related)
with a phase offset so that the D hits around the phase circle
stay out of the detection region. In this case we go to the
P state since the phase precession is guaranteed to be slow
enough that we will detect it before an error occurs.

Once frequency is acquired, we enter the phase acquisition
(PA) state and wait for another phase detection. Once we have
both a frequency estimate, f , and a phase estimate, p, we
enter the tracking state (T). If a timeout occurs before a phase
detection, we enter the P state.

In the tracking state (T) we update our phase estimate each
cycle and use this phase estimate to avoid sampling a register
in its keep-out region. If the uncertainty in our phase estimate
increases by more than a threshold pu− pl > k, we enter the
P state.

If the phase is drifting very slowly (mesochronous or
plesiochronous modulo a rational fraction) we can safely
synchronize without prediction. In this case (the P state) we
directly use the even signal from the tclk domain to select
between the E and O registers. This is safe because the phase
is changing slowly enough, and the guard band, g = d− x, is
large enough, so that a phase detection will occur, returning
us to the T state, before this signal becomes unsafe. In the
rational case as the phase drifts into the detection region, we
will get a 1-of-D detection pattern (where D is the rational
denominator) - going to the T state on the first detection
handles this correctly.

Operation in the T state depends on the frequency being
constant or nearly constant. This is the whole point of a
periodic synchronizer. In some systems, however, frequency

Fig. 10. Safe Plesiochronous synchronization

may change during short periods of time - e.g., when changing
between power states. The FIFO synchronizer of Section III
can be adapted to work in this mode by Gray-coding the point-
ers and operating a pair of brute-force synchronizer in parallel
with the E/O synchronizers. When frequencies are changing,
the FIFO switches to using the brute-force synchronizers. Once
the frequencies stabilize, it changes back to using the fast
periodic synchronizers.

VI. ANALYSIS

When we have an accurate phase estimate, the system
clearly guarantees a safe synchronization. At the sample time,
the transmit phase is known to be φ ∈ [pl, pu], and if pl
∈ [x, 1 + x) the even register is safe to sample. If the system
parameters, b, and d are chosen properly, the system also
guarantees safe synchronization in plesiochronous mode, when
we do not have an accurate phase estimate. In this case, we
show that the frequency will be in a range where a phase
detection will occur sufficiently far in advance of a keep-out
event for the synchronizer to guarantee proper sampling.

To show that the synchronizer operates properly, we need to
show that either (a) detections will occur often enough that we
never enter plesiochronous mode (i.e, that we always have an
accurate phase estimate), or (b) when in plesiochronous mode,
a detection (φ ∈ [−d, d]) occurs at least A cycles before a
keep-out event (φ ∈ [−x, x]).

In this section we assume that ft > 0.5fr. We discuss how
to extend the argument to an arbitrary frequency range in Sec-
tion VII-E. Without loss of generality, we consider f ∈ [0, 0.5]
(f is the fractional relative frequency, f = ft/fr mod 1). The
cases where f ∈ [−0.5, 0) are identical but with the phase
rotating counterclockwise.

Consider the following cases for f :
For f < fg we will have a detection before an error. In this

case the phase moves slowly enough into the detection region
that detection will take place at least A cycles before the phase
enters the keep-out window, giving us time to synchronize the
detection, update the phase estimate, and avoid sampling the
unsafe register. This case is illustrated in Fig.10 which shows
the phase φ (radial lines) over eight clock cycles for a small
value of f . Because f < fg , the phase is in the detection region
for more than A cycles (six in the figure) before entering the
keep-out region.

80

Fig. 11. Cases for f : (a) maximum redetection interval, (b) nearly rational with small De, and (c) nearly rational with large De.

For fg ≤ f < 2d we will have a detection every
N = 1/f < A/g cycles, at least once each time the phase
rotates around the unit circle. As long as 2−b < gk/A,
we will not enter plesiochronous mode because the phase
bounds will diverge by only 2−bA/g between detections. For
example, for the numbers of our example we have gk/A =
(0.1)(0.5)/(5) = .01, and b = 7 bits is sufficient precision.
This case is illustrated in Fig.11a. Because f < 2d, the phase
cannot ”jump over” the detection region and we are guaranteed
to get at least one detection each time the phase rotates about
the unit circle. Because f > fg , this rotation will take at most
1/fg = A/g cycles. Fig.11a shows a detection at least every
nine cycles.

For f > 2d we represent f as a rational fraction with a
bounded denominator plus an error term, f = N/D±e where
D ≤ C = d1/2de. As we shall show below, the properties
of sequences of fractions with bounded denominators, called
Farey Sequences, guarantees that eDC < 1. In this case we
have a repeating pattern of D points around the phase circle
that shifts by De each D-cycle period. This gives us the same
two cases as for f < 2d.

If De < fg , the phase shift each period is small enough
that we will have detection before error, the same as when
f < fg . This case is illustrated in Fig.11b for D = 4. In fact,
the constraint here is a bit easier because D cycles elapse
each time one of the phase ”groups” advances De, hence we
will get detection A cycles before a keep-out event as long as
De < g

dA/De which is a looser constraint.
If fg ≤ De < 2d (Fig.11c) then we will get a detection

every 1
De < A/g cycles so if 2−b < gk/A we will detect

before we accumulate too much error. The requirement on b
here is exactly the same as in the fg ≤ f < 2d case above.

We need to show that for f > 2d > 1/C we can always
represent f as f = N/D ± e with D ≤ C and eDC < 1.
Consider the Farey Sequence F (C), the sequence of rational
numbers between 0 and 1 with denominators D ≤ C. For
two adjacent elements of this sequence, p

q ,
r
s , it will always

be the case that r
s = ps+1

qs where q, s ≤ C and ps + 1 = qr

[8]. Thus, the distance between the two adjacent sequence
elements p

q and r
s is 1

qs . We allocate f ∈ [pq ,
p
q + 1

q(s+q)] to
p
q and f ∈ [rs −

1
s(s+q) ,

r
s] to r

s . Then we have e ≤ 1
q(s+q) ,

so eDC ≤ qC
q(s+q) = C

s+q < 1, because s+ q > C due to the
properties of Farey Sequences [8].

VII. DISCUSSION

A. Rational Frequency

We often need to synchronize signals between two clock
domains that have frequencies that differ by a rational number,
i.e., fT = N

D fR for integer N and D. This happens, for
example, when both frequencies are generated from a com-
mon crystal reference frequency by PLLs that divide down
the reference frequency and then multiply up. With rational
frequencies, we assume that the system provides us with N
and D. The phase between the two clocks is assumed to be
unknown and may be slowly varying.

To handle rational frequencies we modify our synchronizer
design to eliminate the frequency estimator and to keep the
phase estimate scaled by D. We keep all phase values multi-
plied by D to simplify arithmetic. With this representation we
deal only with the numerators of rational fractions. That is, we
represent the phase as a fixed-point number i.f where i is the
integer part and f is the fractional part so that p = i.f

D . The
phase estimator increments this scaled representation modD.
The detection value, d, and keep-out value, x, are similarly
scaled by D. Because we know the frequency exactly, we
keep only the lower bound phase value, pl, and increment pl
by N each cycle. The phase estimate never diverges, so once
the synchronizer enters the tracking state, it remains in that
state indefinitely.

With rational frequency, the phase visits the same D points
on the phase circle each D cycles (the actual number of unique
points is D

gcf(N,D)). If there are no detections in D+ 1 cycles,
the synchronizer enters plesiochronous mode. If there is a
detection, it will repeat every D cycles and will be accurately
predicted by the phase estimate each time.

81

Sarmenta et al. [6] have previously described a synchronizer
for rationally related clocks. Compared to that work, our
approach has two advantages. First, the Sarmenta approach
assumes that the phase difference between the two clocks is
known and static. This is not the case for most real systems
where there may be a significant unknown and slowly varying
skew between the two clock domains. Our approach uses a
phase detection (or lack thereof) to dynamically detect the
phase difference. Second, the Sarmenta approach requires a
table of size D to store the conflict pattern. Our approach dis-
penses with the table by detecting conflicts from the estimated
phase. This saves considerable area, especially for large D.

If the phase between the two clocks changes slowly (by
< ∆p per cycle - i.e., at least temporarily the actual frequency
is fT = N

D fR + ∆p), then the system described above works
as long as ∆p < min(gD ,

g
S). This constraint ensures that the

first step into the detection region (of at most D∆p) will not
penetrate into the keep-out region and also that once detected,
the detection will be synchronized before the phase enters the
keep-out region.

B. Plesiochronous and Mesochronous Frequency

The synchronizer described above works properly for the
special cases of plesiochronous and mesochronous clocks.
For plesiochronous clocks, the behavior is similar to that of
the synchronizer of Dennison et al. [4]. Before the transmit
clock phase drifts into the unsafe region, a detection occurs.
This gives an accurate phase estimate which enables the
synchronizer to avoid sampling the unsafe value. After the
transmit phase drifts out of the detection region, the system
uses the phase estimate to make sampling decisions until
the estimates diverge by threshold, k. Whether this happens
before the next detection depends on the values of b and f .
If divergence does occur before detection, the system enters
plesiochronous mode until the next detection.

Compared to Dennison’s system [4], our system has the
advantage that signals are only sampled by the rising edge
of the transmit clock (into the E and O registers) and the
rising edge of the receive clock (into the output register). In
contrast, Dennison’s system requires sampling on a negative
edge of the transmit clock to generate a half-cycle delay (other
synchronizers also employ negative edge sampling or the use
of delayed clocks [1]) which introduces timing complications.

For mesochronous clocks, the transmit clock phase will
either be in the detection region - in which case our system
stays in the locked state - or outside the detection region - in
which case our system stays in the plesichronous state. Either
way, correct sampling is assured. The system is also tolerant
of a drifting mesochronous phase which moves between the
two states.

C. Jitter

The effect of jitter on the periodic synchronizer described
above depends on the frequency of the jitter. Low-frequency
jitter, fj < fgfr, is completely rejected by the system
and has no effect. This jitter is slow enough not to affect

plesiochronous mode and is tracked when the system is in the
tracking state.

Medium-frequency jitter, fgfr ≤ fj <
fr
A , affects tracking

mode but not plesiochronous mode. Jitter in this portion of
the spectrum, with magnitude tjm (in ps), affects the position
of clock edges between detections and can be accommodated
by adding margin to upper and lower bounds on each phase
detection (i.e., initializing pl to −d− tjm

ttcy
).

High-frequency jitter, fj > fr
A affects both tracking and

plesiochronous mode and can be accounted for by including
the peak-to-peak magnitude of the jitter in the width of the
keep out region, tx = ts + th + 2tjh.

D. Synchronizer Parameters

The two free synchronizer parameters are d, the half-width
of the phase detection region, and k, the threshold for entering
plesiochronous mode. Given a keep-out region, 2x, which is
a property of the synchronizer flip-flops and high-frequency
jitter, choosing d gives the value of the guard band, g = d−x,
which in turn determines the number of bits required for the
frequency and phase estimates, 2−b < gk

A , so b > lg
(
A
gk

)
.

Choosing a small d, gives a more precise phase estimate,
and hence reduces synchronizer delay, but at the expense of
requiring more bits in the frequency and phase estimators to
ensure correct behavior in the presence of a narrow guard
band.

Choosing the value of k, gives a similar tradeoff. Choosing a
small k gives a lower average synchronizer delay - because the
synchronizer will enter plesiochronous mode (with no delay)
sooner. However choosing a small k also requires more bits
of precision in the estimates. In practice a value of k = 0.5
or 0.25 works well and simplifies the check for pu− pl > k.

E. Frequency Range

The even/odd synchronizer works correctly over a large
range of relative tclk and rclk frequencies. The synchronizer
will work for arbitrarily fast ft - until ttcy is so small that
there is not room for safe sampling with reasonable margins.
However, additional precision may be needed for very slow
ft where we need b̂ = dlg

(
fr
ft

)
e additional bits of precision

to make sure our phase estimates do not diverge between tclk
edges.

To analyze low tclk frequencies, represent ttcy as ttcy =
(P+q)trcy for integer P and |q| < 1. Then f =

trcy
ttcy

= 1
P+q =

1
P + r where r = −q

P (P+q) <
1
P 2 . In this case, every P rclk

cycles we get a single tclk edge with phase advanced by at most
1/P - up to one whole rclk cycle - from the last tclk edge. The
situation is identical to a system with ttcy = (1+q)trcy except
that it proceeds P times slower. Hence we need b̂ = lg(P)
additional bits of precision to prevent our phase estimates from
diverging during the P cycles between tclk edges. In most
practical cases, ft and fr are within an order of magnitude of
one another and the additional precision required is at most 4
bits.

82

F. Updating Phase Estimates on non-Detection

The phase estimator of Section IV resets the phase estimate
when detection occurs and simply integrates to advance these
estimates in the absence of a detection. A slightly more
accurate phase estimate can be realized by updating the phase
estimate to exclude the detection region when no detection
occurs. That is, in the absence of detection, we integrate the
phase estimate interval [pl, pu] and then intersect this interval
with [d, 1− d].

Consider, for example a case where f = 1.001 - i.e., the
transmit clock is just slightly faster than the receive clock -
taking 1,000 cycles to advance around the phase circle. On
the first non-detection cycle after a string of detections, the
phase interval, ignoring the advance, will be approximately
[0.001−d, 0.001 +d]. Most of this interval is in the detection
region. However, we know we are outside the detection region
(because there was no detection), so we can tighten our bounds
considerably to [d, 0.001 + d].

This refinement is particularly advantageous with closely
spaced rational clocks where once tightened, this phase esti-
mate does not diverge until the next detection.

G. More than Two Phases

When tcy is very small or tjh is very large, the keep out
region may be so large that it is not possible to build a working
synchronizer with just two phases (even and odd). These cases
can be handled by using a larger number of phases. For
example, one can build a modulo-3 synchronizer where the
E and O registers are replaced by three registers (R1, R2,
and R3), and the phase estimate is kept modulo-3. Like the
E/O synchronizer, the transmitter writes the three registers in
sequence, and the receiver uses the phase estimate to sample
the most recently written safe register. This organization can be
extended to an arbitrary number of phases to handle arbitrarily
small tcy or large tjh.

H. Simulation Results

We constructed a Verilog RTL model of the periodic syn-
chronizer described in Sections II and IV, and used two such
synchronizers to build a flow-controlled FIFO as described
in Section III. The delay lines in the phase detectors were
modeled behaviorally, and all flip-flops were instrumented
with setup- and hold-time checks. Verilog simulations were
performed with one clock fixed at 1GHz and the other clock
set to 2000 randomly chosen frequencies between 500MHz
and 2GHz. The phase of the 1GHz clock was swept slowly
back and forth over a range of 1600ps, changing at a rate of
1ps every 10 cycles, to ensure that all relative clock phases
were tested. No timing errors were detected in any simulation.

I. Implementation

We synthesized the logic for each of the synchronizer’s
components using a TMSC 40nm standard cell library and
targeting a 900 MHz clock frequency. The results are shown
in Table III for several values of estimator precision, b, and
data path width, w. The data path is smaller than the area of

TABLE III
SYNTHESIZED GATE AREA OF COMPONENTS

Component Parameter Area (µm2)
Phase Detector 50

Frequency Estimator b = 8 298

Frequency Estimator b = 10 358

Frequency Estimator b = 12 415

Phase Predictor b = 8 468

Phase Predictor b = 10 589

Phase Predictor b = 12 736

Data Path w = 32 666

Data Path w = 64 1331

Data Path w = 256 5328

TABLE IV
ESTIMATED FORWARD SYNCHRONIZER AREA

b w M Area Calculation Area (µm2)
10 32 1 50+358+589+666 1663

10 64 1 50+358+589+1331 2328

10 256 1 50+358+589+5328 6325

8 64 5 5*(50+468+1331)+298 9543

10 64 5 5*(50+589+1331)+358 10208

12 64 5 5*(50+736+1331)+415 11000

a comparable width brute-force synchronizer. The frequency
and phase estimator area is comparable to the area of a 64-bit
datapath.

Using the sizes from Table III, we estimate the total area
of the complete forward synchronizers shown in Table IV for
different combinations of b, w, and M multiple data paths.
When synchronizing data from M different blocks running at
the same tclk frequency into a common rclk, the various source
clocks may arrive with different phase delays even though
their clocks are derived from a common source. In this case,
the frequency estimator can be shared, but independent phase
detectors and phase estimators are required.

Reduced synchronizer latency allows shallower FIFOs to
be used with no loss of performance. The FIFO needs to
be at least deep enough to cover the round trip latency of
pointer synchronization to operate at full throughput. Table V
compares the area of several alternative w=64-bit wide FIFOs
using flip-flop memories and both brute-force (BF, 4 stage) and
fast-periodic (FP) synchronizers. Table V shows that adding
the fast periodic synchronizer (with b = 10) to a FIFO of depth
11 increases the area by 30%. However, the reduced latency
of FP allows the depth of the FIFO to be reduced to 4 with
no loss of performance and an 33% reduction in area. With
wider FIFOs memory area dominates, so the FP synchronizer’s
lower latency can result in even more area reduction.

Since the phase detector and data path elements involve
two unrelated clocks, the timing requirements between those
clocks can be difficult to capture in a synthesis tool’s constraint
language. Instead of constraining the synthesis, placement,
and routing of these critical elements, for actual silicon im-

83

TABLE V
ESTIMATED AREA OF 64-BIT FIFO USING BF AND FP SYNCHRONIZERS

Sync Depth Area (µm2) Area(%)
BF 11 6741 100%

FP 11 8742 130%

FP 4 4565 67%

plementation we plan to assemble and analyze semi-custom
assemblies of standard cells for the phase detector and data
path, while using traditional synthesis for the phase predictor
and surrounding logic.

When clock skew optimization is performed as part of a
synthesis and timing flow, the clocks to any two flip-flops in
the same clock domain may be skewed by the optimization to
aid overall timing. If the clock to our phase detector is skewed
significantly from the clock to the corresponding synchronizer
data path, phase prediction will produce a select signal that is
correct for the clock arriving at the phase detector but results in
mis-sampling by the data path. Clock distribution to the phase
detector and data path should be designed for equal arrival
times at both blocks. This can be achieved by constraining
the timing optimization or placing the phase detector and data
path into a single semi-custom block.

VIII. CONCLUSION

We have described the even/odd synchronizer, an all-digital
periodic synchronizer with very low latency (0.5+x cycles on
average, where x is the keep-out region of the flip-flop) and
an arbitrarily small probability of synchronization failure. This
performance is achieved by moving synchronization off the
critical path of the synchronizer - into the frequency estimator
and phase detector - where an arbitrarily long time period can
be used to allow metastable states to decay. As with Stewart
and Ward [3] we exploit the periodic nature of the clocks to
predict clock phase several cycles in the future to hide the
synchronization latency. Unlike previous work, however, we
perform this prediction digitally - eliminating the problematic
analog delay lines of previous predictive synchronizers. Unlike
other previous synchronizers (e.g., [4]) we create safe signals
to sample using only the positive edge of the transmit clock
- avoiding timing issues associated with clocking signals on
negative edges or using delayed versions of clocks.

The even/odd synchronizer operates by having the trans-
mitter write to an even register on even clock cycles and
an odd register on odd clock cycles. The receiver digitally
estimates the frequency and the phase of the transmit clock
and uses the phase estimate to select the most recently written

transmit register which is safe to sample. A synchronizer with
flow control can be realized by using a pair of even/odd
synchronizers to pass the head and tail pointers between the
input and output clock domains of a FIFO. The resulting FIFO
synchronizer has very low latency (1.5 +x cycles on average)
and can use binary-coded (rather than Gray-coded) head and
tail pointers. Reducing FIFO synchronizer latency reduces the
area of the dual-port memory required for the FIFO which
must be sized large enough to handle the worst-case round-
trip control latency.

We present a number-theoretic argument for the correct-
ness of our synchronizer. Based on the properties of Farey
Sequences [8] we show that if a sufficient guard band is
provided and the frequency and phase estimates are kept to
sufficient accuracy, then the synchronizer will never sample
an unsafe signal. For one set of frequencies we always have
an accurate phase estimate because detections occur with
sufficient frequency. For all other frequencies, we show that
our phase is changing slowly enough that a detection in the
guard band precedes a keep-out event by more than the delay
of the synchronizer.

The even/odd synchronizer can be adapted to handle a
rational relative frequency (f = N

D) by keeping all phase
quantities scaled by D. In the rational case the frequency
is known exactly so phase estimates, once generated, never
diverge. Compared to the rational synchronizer of Sarmenta et
al. [6], the even/odd synchronizer does not require a table and
can handle an arbitrary, unknown, and slowly varying phase
difference between the two clocks.

REFERENCES

[1] Dally, W.J., and Poulton, J.W., Digital Systems Engineering, Cambridge
University Press, 1998.

[2] Stewart, William K., A Solution to a Special Case of the Synchronization
Problem, MIT BS Thesis, June 1983.

[3] Stewart, W.K., and Ward, S.A., “A Solution to a Special Case of the
Synchronization Problem”, IEEE Transactions on Computers, 31(1):123-
125, January 1988.

[4] Dennison, L., Dally, W.J., and Xanthopoulos, D., “Low-Latency Ple-
siochronous Data Retiming,” Proceedings of the 16th Conference on
Advanced Research in VLSI (ARVLSI’95), Chapel Hill, NC, pp. 304-315,
1995.

[5] Frank, U., Kapshitz, T., and Ginosar, R., “A Predictive Synchronizer
for Periodic Clock Domains,” J. Formal Methods in System Design,
28(2):171-186, 2006.

[6] Sarmenta, L.F.G., Pratt, G.A., Ward, S.A., “Rational clocking,” Proceed-
ings of the IEEE International Conference on Computer Design, ICCD-
95, pp.271-278, 1995.

[7] Chakraborty, A., and Greenstreet, M. R., “Efficient Self-Timed Interfaces
for Crossing Clock Domains,” Proceedings of the Ninth International
Symposium on Asynchronous Circuits and Systems (ASYNC-03), pp. 78-
88, 2003.

[8] Hardy, G.H., and Wright, E.M., An Introduction to The Theory of
Numbers, Chapter 3, Oxford Science Publications, Fifth Edition, 1979.

84

