
High Performance Graphics (2010)
M. Doggett, S. Laine, and W. Hunt (Editors)

Real-time Stochastic Rasterization
on Conventional GPU Architectures

M. McGuire†1,2, E. Enderton1, P. Shirley1, and D. Luebke1

1NVIDIA
2Williams College

Abstract
This paper presents a hybrid algorithm for rendering approximate motion and defocus blur with precise stochastic
visibility evaluation. It demonstrates—for the first time, with a full stochastic technique—real-time performance
on conventional GPU architectures for complex scenes at 1920×1080 HD resolution. The algorithm operates
on dynamic triangle meshes for which per-vertex velocity or corresponding vertices from the previous frame are
available. It leverages multisample antialiasing (MSAA) and a tight space-time-aperture convex hull to efficiently
evaluate visibility independently of shading. For triangles whose motion crosses the camera plane, we present
a novel 2D bounding box algorithm that we conjecture is conservative. The sampling algorithm further reduces
sample variance within primitives by integrating textures according to ray differentials in time and aperture.

1. Introduction

Photographs exhibit both motion blur and defocus blur be-
cause cameras integrate across non-zero shutter times and
apertures. High-quality blur effects are ubiquitous and im-
portant in film and offline rendering algorithms, but are rare
in real-time rendering algorithms, which rely on instanta-
neous shutters and pinhole cameras. Instead, most real-time
systems approximate motion and defocus blur with image-
space post-processing that suffers robustness problems. De-
spite advances in real-time ray tracing such as NVIDIA’s
OptiX engine, real-time distribution ray tracing remains
challenging. Several researchers have proposed extending
rasterization algorithms or hardware to stochastically sam-
ple shutter interval and aperture [WGER05, AMMH07,
FLB∗09], but these methods have not yet proven practical
for interactive graphics. In this paper, we introduce several
innovations that enable interactive stochastic rasterization on
existing commodity GPUs today and will likely become in-
creasingly effective on their descendants.

Several properties make a rasterization-based approach
attractive. Unlike ray tracing, the time complexity of ras-
terization scales only weakly with image resolution, for a
fixed scene tessellation. Doubling the number of samples in

† {momcguire, eenderton, pshirley, dluebke}@nvidia.com

an image typically increases the time to rasterize a scene
less than twofold, since much of the visibility computation
is amortized over more samples. We seek an approach that
extends this broad advantage of rasterization — weak scal-
ing with resolution — to the domain of distributed visibility
effects (motion blur, depth of field). On a pragmatic level,
we seek a stochastic rasterization approach that exploits the
tremendous progress of commodity graphics hardware, re-
mains compatible with existing shaders and game art work-
flows, and coud be directly incorporated into future evolu-
tions of hardware and APIs. In particular our test scenes
dominated by “macro-triangles,” triangles whose area is at
least a couple of pixels.

We follow traditional rasterization and proceed in draw
call order, generating for every triangle a conservative
screen-space “footprint” bounding the image of the triangle
when blurred. This footprint is triangulated and rasterized,
invoking a pixel shader for each pixel in which the trian-
gle is potentially visible. The pixel shader uses a stochastic
time and lens position to generate a ray that it then casts
against the original triangle. If the ray intersects the triangle,
texturing and shading proceed as normal using the result-
ing barycentric coordinates. If desired, the pixel shader gen-
erates and casts multiple rays per pixel, achieving a higher
sampling rate for visibility than for shading. This dovetails
well with hardware MSAA, which does the same thing for

c© The Eurographics Association 2010.

McGuire, Enderton, Shirley & D. Luebke / Stochastic Rasterization

Figure 1: A 1.8 million triangle scene at 1920×1080 resolution. (a) Conventional rasterization. (b) Motion blur rendered by
stochastic rasterization at 9 frames per second with 1 shading, 1 visibility, and 4 texture samples per pixel on a GeForce GT
280 GPU. Details of sampling noise at (c) geometric and (d) texture edges. Colors in the second row indicate the number of
fragments rasterized per pixel using (e) the shutter-close positions, (f) the screen-aligned bounding boxes, or (g) the convex
hulls of the moving triangles. The convex hulls provide tighter bounds, resulting in much less overdraw. Those wireframes show
only visible surfaces; (h) is the complete geometry streamed to the rasterizer. (Non-zoomed images in this paper have reduced
resolution to print and display on screen accurately; see http://research.nvidia.com for the full source images.)

conventional rasterization. The efficiency of the approach
depends on the tightness of the screen-space bound. We use
the projected convex hull of the blurred triangle as a good
bound for motion, and bounding boxes as an acceptable al-
though suboptimal bound for defocus. Those few triangles
whose motion spans both the camera plane and the near clip
plane require special handling; we propose a new method for
finding a 2D bounding box that we conjecture conservatively
covers the triangle’s projection.

Our stochastic rasterization algorithm achieves interactive
performance on existing hardware for complex scenes like
the one shown in Figure 1. We anticipate such an approach
will be feasible in games within a couple of GPU genera-
tions, and suggest some hardware improvements that could
bring it about sooner. That prediction is based on three trends
that we currently observe in hardware rendering. These are
an increasing ratio of coverage to shading samples (e.g.,
via MSAA and CSAA); more complex BRDF, indirect il-
lumination, and shadowing algorithms that increase the cost
of shading a sample; and the persistence of power-efficient
fixed-function units supporting rasterization. If these con-
tinue, the advantages of our algorithm over accumulation
buffering will grow because it adapts a conventional raster-
izer to perform many visibility tests across time and lens po-
sition while holding shading rate as low as once per pixel.
Because it stochasticallysampleseyerays, it enjoys the ben-
efits over post-processing and ad hoc methods that different
effects (e.g., stochastic transparency, motion blur, defocus)
work together without any special-purpose tricks, and that
increasing processing power directly increases image qual-
ity.

2. Related Work

We classify related works by how they sample the 5D space
of sub-pixel spatial location (x,y), time t, and lens position
(u,v).

Conventional Render a single image in which (x,y, t,u,v)
are fixed for all pixels. Standard rasterization functions as an
instantaneous pinhole camera, resulting in a strobing “stop-
motion” effect and lack of defocus - objects that should be
blurry are sharp. Images rendered using conventional sam-
pling can be post-processed using image processing blurs.
These post-processing techniques are currently the method
of choice for interactive systems, but are prone to artifacts
([AMHH08] p. 490).

Accumulation Render multiple conventional images and
average their pixel values [HA90, WGER05]. This brute-
force approach fixes the sub-pixel (x,y) offset and (t,u,v)
values across each image. It is powerful but slow, and under-
sampling can result in discrete “ghosting” instead of contin-
uous blur.

Stochastic Render a single image in which each sam-
ple location has an independently chosen (x,y, t,u,v) posi-
tion [CPC84]. The primary artifact is noise — blurry ob-
jects appear dithered — which is typically countered by su-
persampling. The most well-known example of this tech-
nique is the Reyes algorithm in RenderMan [CCC87], used
to make many offline-rendered movies. More recently re-
searchers have investigated how to approach interactivity
using stochastic rasterization [AMMH07, TL08, FLB∗09,
RKLC∗10], but interactive rates remain elusive. Making that
leap is the goal of this paper.

c© The Eurographics Association 2010.

http://research.nvidia.com

McGuire, Enderton, Shirley & D. Luebke / Stochastic Rasterization

Our approach is inspired by a comment by Wexler et
al. [WGER05] in which they considered and then rejected
using bounding volumes plus ray intersections for off-line
GPU rendering of motion and defocus blur. With more
advanced hardware and some algorithmic improvements,
this idea is now practical. The first steps for defocus were
demonstrated by Toth and Linder [TL08], who also identi-
fied the thread coherence problem that currently limits per-
formance for all stochastic methods of this form. The no-
tion of bounding geometry plus per-fragment visibility tests
also appears in many non-stochastic rendering applications,
such as displacement mapping [WWT∗03], GPGPU ray
tracing [HSHH07], and ambient occlusion [McG10, LK10].
Akenine-Möller, Munkberg, and Hasselgren [AMMH07]
suggested bounding motion by the convex hull and identi-
fied the problem with crossing the camera plane (z = 0). We
extend and refine previous ideas into a solution for motion
and defocus blur, addressing robust and efficient 2D convex
hull in detail, as well as texture sampling, multisampling,
conservative ray tests, and the z = 0 problem, for which we
propose a novel 2D bounding box solution.

3. Algorithm

3.1. Overview

Each sample represents a point in 5D space. We denote the
ordinates of the sample under consideration as t∗,x∗,y∗ on
the unit space-time interval within a pixel and u∗,v∗ on the
unit disk of a normalized lens. Sample time is more compli-
cated than a point in screen or lens space because it changes
the actual scene, not just the camera’s view of it. We refer
to four times: t = 0 and t = 1 are the shutter open and close
times; t∗ is the time at which visibility is computed for a
given sample; and ts is the global time at which shading and
shadowing occur.

Each input triangle is defined by its vertex positions at
times t = 0 and t = 1. The camera transform is also defined
at these two times; thus the ends of the interval are conve-
nient choices for ts. We assume the vertices move linearly
during the interval. The camera may also carry depth of field
parameters (which for simplicity we assume to be static).

Each triangle is converted into geometry that conserva-
tively covers the pixels that the triangle could affect, taking
into account its motion and defocus. We then conventionally
rasterize this bounding geometry.

For each rasterized fragment, the algorithm performs a
ray-triangle intersection test to determine actual visibility.
These rays are stochastic samples over time t and lens po-
sition u,v. Samples that pass the intersection test are shaded
and set to their correct depth (which is necessary because the
default fragment depth is that of the bounding geometry, not
the triangle). Visibility between triangles is determined by a
conventional depth-buffer test, which operates correctly be-
cause (t,u,v) are fixed at each screen-space sample location.

In more detail, here is an implementation sketch of the
stochastic rasterization algorithm for a conventional pro-
grammable pipeline API such as DirectX or OpenGL.

1. Shadows: Compute shadow maps from the geometry at
time ts.

2. Host Program: Bind the vertex stream and transforma-
tion matrices for t = 0, plus any texture coordinates and
other shading attributes, as usual. Bind the vertex stream
for t = 1 as an additional vertex attribute, and transfor-
mation matrices for t = 1 as additional state.

3. Vertex Shader: Transform the vertices to homogeneous
clip space at both t = 0 and t = 1.

4. Geometry Shader: Each triangle now provides six
camera-space vertices, including three from the t = 1 at-
tribute. Except for special cases discussed in Section 3.3,
perform the homogeneous division on all vertices and
emit bounding geometry of the resulting 2D projected
points.
For in-focus triangles, we use the convex hull of the pro-
jected vertices (Section 3.2). For out-of-focus triangles,
we need to bound the set of six circles corresponding
to dilation of each vertex by the defocus radius at its
depth. In this case we use a simple axis-aligned bound-
ing box. In either case, the z of the emitted geometry is
set to the minimum z of the projected vertices, so that por-
tions of the hull may be z-culled by the rasterizer. (This
z is clamped to the near plane, to prevent clipping the
hull.) Triangles crossing z = 0 are handled specially, as
described in Section 3.3.
The pixel shader requires as input the complete time-
continuous triangle in camera coordinates, with all six
vertices plus shading attributes. We attach this complete
description to every emitted vertex.

5. Pixel Shader:

a. Read parameters (x∗,y∗, t∗,u∗,v∗) for the current
sample from a precomputed, tiled 1282 buffer.

b. Interpolate the triangle’s camera-space vertices at t∗.
c. Solve for the barycentric weights of the ray-

triangle intersection (Section 3.4). Set the frag-
ment depth to the depth of the intersection. (Di-
rectX “conservative odepth” and the OpenGL id-
iom “max(gl_FragCoord.z, depth)” should both allow
early z testing despite writing to depth.) If there is no
intersection, then discard the fragment.

d. Shade. Compute the texture coordinates, normal, tan-
gent, and other shading inputs by barycentric interpo-
lation. Note that for shadow map tests, specular cal-
culations, etc., the surface position should be interpo-
lated at shading time ts, not sample time t∗.
Here, the fragment shader is performing the attribute
interpolation conventionally performed by the raster-
izer.

c© The Eurographics Association 2010.

McGuire, Enderton, Shirley & D. Luebke / Stochastic Rasterization

yx

Bitonic findmin

yx

yx

yx

yx

Bitonic sort	

θ	

θ	

θ	

θ	

θ	

Fan Vertex

Lower-left-most Vertex

Graham scan	

 Tessellate	

θ	

θ	

θ	

θ	

θ	

θ	

θ	

θ	

θ	

θ	

Move if at least one input is true f Exchange if a.f < b.f

(b.x-a.x)(c.y-a.y) ≤ (b.y-a.y)(c.x-a.x)
a

a

b
b
c

a
b

θ	

a
b b.q (b.xy, Δ.x rsqrt(Δ.x2 + Δ.y2), where Δ = b-a

Legend:

€


ʹ′ h 0

€


ʹ′ h 1

€


ʹ′ h 2

€


ʹ′ h 2

€


ʹ′ h 3

€


ʹ′ h 4

€


ʹ′ h 5

€


ʹ′ ʹ′ h 0

€


ʹ′ ʹ′ h 1

€


ʹ′ ʹ′ h 2

€


ʹ′ ʹ′ h 3

€


ʹ′ ʹ′ h 4

€


ʹ′ ʹ′ h 5

€


ʹ′ ʹ′ h 6

€


ʹ′ ʹ′ h 7

€


ʹ′ ʹ′ h 8

Sample Input

1

2

4

3

5 0

Corresponding Output
(and pre-scan order)

(0)

0

2

4

1
(1) (2)

(3)

(4)

(5)
1 8

4,6
6

1,3,5,7,8
8 8

Figure 2: Our bounding geometry algorithm. The six screen-space vertices of a time-continuous triangle enter on the left in
any order. Vertices forming the tessellation of the 2D convex hull exit on the right in triangle-strip order.

(a) (b) (c) (i) (ii)

Figure 3: Some choices for bounding geometry. We use the
2D convex hull (c) because the cost of computing this tight
bound is repaid in the per-fragment threads that are con-
served. Note that the triangles may have arbitrary orienta-
tion with respect to each other, such as (i) or (ii).

We extend this base algorithm in two ways that intro-
duce error but increase the perceived image quality by re-
ducing variance. The first extension is temporal integration
of texture samples using a single additional ray cast, as de-
scribed in section 3.5. The second is increased visibility sam-
ples per shading computation via multi-sampled antialiasing
(MSAA), as described in section 3.6.

The entire process can be thought of as a source code
transformation on an existing non-stochastic shader chain.
Our system doubles the vertex shader, inserts a fixed epi-
logue in the geometry shader, and inserts a fixed prologue
into the pixel shader.

3.2. Convex Hull

For each triangle, we need to rasterize bounding ge-
ometry large enough to cover the triangle’s entire mo-
tion [AMMH07]. The most conservative bound is the near
plane of the entire view frustum. The tightest bound would
be the front-facing surfaces of the triangle’s swept volume,
but the sides of this volume are curved in the general case
(the start and end positions of an edge may be skew). A com-
mon choice in previous work is the 2D or 3D bounding box
of the six vertices. For diagonal triangles or diagonal mo-
tion, the bounding box can cover O(n2) samples when only

O(n) are covered by the triangle. We instead use the 2D con-
vex hull of the six vertices, which is equal to the 2D convex
hull of the swept volume. (Proof: Since points in the swept
volume are convex combinations of the six vertices, adding
them does not change the convex hull.) See Figure 3.

Figure 2 shows our convex hull algorithm, expressed as
a circuit diagram to demonstrate its suitability for inclu-
sion in a hypothetical hardware stochastic rasterizer unit, as
well as in a geometry shader where dynamic array index-
ing and recursion are inconvenient. This is the Graham scan
algorithm [Gra72], but specialized to N = 6 with the stack
and conditional branches eliminated in favor of conditional
moves between vertex registers. These moves replace ver-
tices that do not lie on the hull with vertices that do, in such
a way that the resulting triangles are degenerate and there-
fore quickly eliminated by the GPU’s rasterizer.

The hull algorithm takes vertices ~h′0...~h
′
5 as input. These

are the post-projective clip-space vertices of the swept vol-
ume, in any order. The findmin stage performs conditional
exchanges to bring the vertex with the lowest y component
to register 0. Ties are resolved in favor of the lowest x value.
The θ field (which we store in the vector’s z field in a ge-
ometry shader) increases with the counter-clockwise (CCW)
angle of each vertex about this new vertex zero. The bitonic
sort then arranges the six vertices in CCW winding order.

Following the sort, vertices 0, 1, and 5 must lie on the
convex hull. The algorithm therefore only needs to classify
the three remaining vertices. If the path ~a→~b→~c turns to
the right for any three CCW-ordered (not necessarily con-
secutive) vertices, then~b cannot be on the convex hull. The
algorithm exhaustively tests vertices in registers 2, 3, and
4 against this property using the sub-circuit denoted by the
hexagon with a right arrow.

Finally, the interleaving pattern on the far right converts
the resulting CCW convex polygon into a triangle strip con-

c© The Eurographics Association 2010.

McGuire, Enderton, Shirley & D. Luebke / Stochastic Rasterization

Figure 4: Left: a roadway, modeled with exceptionally large triangles that frequently trigger the z = 0 crossing case. Middle:
scene with triangles that cross z = 0 removed. Right: visualization of overdraw using our motion blur algorithm (with zero
velocity). Maximum overdraw is 6.

taining some degenerate triangles. (DirectX and OpenGL
geometry shaders cannot emit triangle fans.)

3.3. Crossing z = 0

At the geometry stage, if all six vertices are culled by one
view frustum plane, the triangle can be culled. We conjecture
that if both the shutter-open and shutter-close triangles are
backfacing, a triangle under linear motion is always back-
facing on the entire interval, so we also cull in that case.

Source triangles entirely in front of the camera plane (z =
0) are processed as described in the previous section.

The remaining case is a set of vertices that spans both
the z = 0 singularity and the near plane. Almost all trian-
gles crossing z = 0 are outside the view frustum (which
shrinks to zero width near the singularity); the few remain-
ing typically result from a camera moving low and fast over
a ground plane. Projecting this geometry to 2D is problem-
atic. Straightforward 2D convex hull or bounding box algo-
rithms would require the geometry to be clipped against the
near plane before projection. But since the side “faces” of a
time-continuous triangle are bilinear patches, precise clip-
ping is complicated and produces curved objects. A full-
screen quadrilateral is of course a conservative bound, but
would make rendering impractically slow.

We attempt to improve that bound as follows. A time-
continuous triangle has six vertices. There are 15 ways of
connecting these into edges. We conjecture that those edges
are a superset of the edges in the 3D convex hull (this is why
our algorithm for the common case works). Therefore the
hull that contains both the vertices in the positive half-space
and any intersections of the 15 edges with the near plane is
the hull of the part of the time-continuous triangle that lies
in the positive half-space. It is hard to compute either the 3D
or 2D projection of that hull in a geometry shader because
doing so requires consideration of 15 potential intersections
in addition to the original six vertices. However, it is easy
to compute a 2D bounding box of the projections of those
points.

For triangles that cross z=0, we compute this 2D bound-
ing box, viewport-cull it in 2D, and then for the few boxes
that pass the cull, rasterize the result with our usual fragment

shader. This algorithm produces correct images with practi-
cal performance in the cases we have tried, including hard
scenes like the one in figure 4. We conjecture, but have not
proved, that it produces a conservative bound in all cases.

3.4. Conservative Ray Cast

We encode the statically chosen time t and camera-space ray
direction and origin (from (x,y,u,v)) for each screen-space
sample in two texture maps. The fragment shader reads
these, interpolates the camera-space triangle vertices to the
chosen time t and then solves for the barycentric weights of
the ray-triangle intersection ([AMHH08] p. 750). We con-
servatively accept any intersection for which these weights
are in the expanded range [−ε,1 + ε], in order to accommo-
date different precision between the (typically fixed-point)
rasterizer and the fragment shader computation. To make ε

roughly proportional to half a pixel, we chose the computa-
tionally efficient approximation

ε = min(max(k1 ·d,0),k2), (1)

for Manhattan distance d between the ray origin and the
triangle centroid. If ε is too large, then object contours
that should be blurry will appear solid. We chose k1 =
0.002,k2 = 0.1 empirically for our test scenes, which are at
1920× 1080 and have 45◦ to 70◦ fields of view. Note that
setting the constants on the smaller side or skipping this step
entirely may be acceptable for many applications–at ε = 0
we observed about 1 visibility error per 100,000 pixels.

3.5. Texture Integration

MIP-map sampling computes an average texture at texture
coordinate ~s using an area defined by ∂~s/∂x and ∂~s/∂y. Av-
eraging the inputs to shading rather than its output creates
artifacts when the shading function is nonlinear, which it
almost always is. Yet this practice, like bilinear texture fil-
tering, is widespread because error from nonlinearity is less
perceptible than that from spatial texture aliasing.

To support selection of MIP levels, GPUs compute
screen-space (x,y) derivatives of arbitrary expressions by fi-
nite differences between parallel subexpressions across 4-
pixel quads. Under stochastic rasterization, such automatic
differences may compare samples with different values of

c© The Eurographics Association 2010.

McGuire, Enderton, Shirley & D. Luebke / Stochastic Rasterization

(x,y, t,u,v). This causes surfaces that should not be blurred
at all to correctly exhibit no texture blur; however, it can
cause overblurring of surfaces that should already be some-
what blurry. This is primarily visible under motion blur,
where details become incorrectly blurred perpendicular to
the axis of motion. Whether this artifact is undesirable de-
pends on the application; it may be considered a feature in
some cases, but we chose to address it.

We investigated locking (t,u,v) parameters across quads
to allow built-in derivatives to operate correctly, but found
the resulting increase in variance to be undesirable. So we in-
stead compute t,u,v derivatives explicitly. We cast a second
ray per fragment at t +∆t (ignoring whether it hits inside the
triangle) and estimate ∂~s/∂t by finite differences, |∂~s/∂(x,y)|
by z-distance from the eye, and |∂~s/∂(u,v)| by the radius of
the circle of confusion [PH04, 490] scaled by |∂~s/∂(x,y)|.
Applying a ray differential inside a rasterizer’s shader is our
only contribution here; after that we follow ideas by Lovis-
cach [Lov05] and others. The GLSL call for the texture inte-
gral from gradients is:

textureGrad

(
T,~s,

∂~s
∂t

,

(∣∣∣∣ ∂~s
∂(x,y)

∣∣∣∣+ ∣∣∣∣ ∂~s
∂(u,v)

∣∣∣∣)~1
)

. (2)

For platforms on which textureGrad is unavailable or
slow, we substitute

1
N

N

∑
i=0

texture

(
T,~s+ k3

i−N
N

∂~s
∂t

,

∣∣∣∣ ∂~s
∂(x,y)

∣∣∣∣+ ∣∣∣∣ ∂~s
∂(u,v)

∣∣∣∣) .

(3)
We found that ∆t = 0.01,N = 6,k3 = 0.8 gave good results
on our test scenes. Constant 0 < k3 ≤ 1 jitters the time in-
terval to avoid discrete ghosts from the N point samples. We
used the approximation in eqn. 3 for all of our results. Note
that the algorithm only blurs texture fetches by the ray differ-
entials. There is no post-processed motion or defocus blur.

3.6. Multi-Sample Antialiasing

The efficiency of multi-sample antialiasing (MSAA) raster-
ization extends to ray casting as well. We cast one ray per
MSAA sample, keeping a bit mask to store hit/miss out-
comes for each sample. If the bit mask is all zero, we discard
the pixel. Otherwise we set the MSAA sample mask to the
bit mask and shade the last intersection point. Using the last
point allows us to keep a minimum of state.

Shading only once per pixel per fragment is a great advan-
tage over accumulation methods. Pixels within the intersec-
tion of the shutter-open and shutter-close triangles will have
all their samples covered by the triangle, at various times and
barycentric positions. Just as a single shade suffices for static
MSAA, and those texture look-ups are filtered over the tri-
angle’s intersection with the pixel, a single shade suffices for
stochastic MSAA, particularly when the texture look-ups are
filtered over the blurred triangle’s intersection with the pixel.

The improvement in shading rate depends on the area of

Race Bridge Fairy Fairy Cubes
130 ktri 1.8 Mtri 174 ktri 174 ktri 50 tri

Vis Shade Fig 6. Fig. 1 Fig. 5ur Fig. 5ll Fig. 4

1 1 43.8 9.5 22.8 5.8 104.4
4 1 36.2 4.8 15.5 2.6 59.2
4 4 16.4 4.3 14.1 3.2 31.0

DefocusMotion

Table 1: Frames per second for test scenes at 1920×1080
resolution. Rows vary the visibility samples per pixel and
shading samples per pixel, corresponding to no AA, 4x
MSAA, and 4x SSAA.

the blurred triangle relative to the area of the original triangle
(i.e., the speed of the triangle in proportion to its size). For
8x MSAA, triangles that cover 8x their area will receive no
advantage, as every sample they cover will tend to be in a
different pixel. Micropolygons thus gain less advantage from
MSAA than larger triangles, for a given speed.

4. Experimental Results

We implemented stochastic rasterization in OpenGL on an
NVIDIA GTX 280 GPU system. As expected the algorithm
computes motion blur from combined camera motion (Fig-
ure 1), object motion (Figure 8), and object deformation
(Figure 6), with correct occlusion (Figure 5) and camera blur
of shadows. Figure 6 demonstrates a strength of stochastic
rasterization: motion and defocus blur can be computed cor-
rectly and simultaneously.

Table 1 demonstrates that the algorithm can achieve inter-
active performance for a variety of scenes. Race and Bridge
are high-speed car scenes at two levels of complexity. Fairy
is a standard benchmark scene, and Cubes is a simple scene
of cubes receding through the focus field. The bounding
boxes used for defocus are a weakness of our algorithm
and substantially degrade performance on highly tessellated
scenes. Cubes and Fairy shade approximately the same num-
ber of samples, yet Fairy has many thin triangles that gener-
ate millions of extra failed visibility tests and thus unused
pixel processing units.

As Figure 1 illustrates, using the convex hull algorithm
reduces overdraw by providing much tighter bounds than an
axis-aligned bounding box. The exact performance impact is
highly scene- and animation-dependent, but in practice we
observe that using convex hull decreases frame time signif-
icantly; for example, motion blur on the Fairy Forest scene
renders in 107 ms using convex hulls versus 310 ms using
bounding boxes.

Table 2 shows the performance impact of disabling stages
of the algorithm. This gives intuition for, but is not the same
as, the cost of a specific stage. That is because GPUs are
massively parallel and share units between stages. For ex-
ample, an increase in geometry workload decreases the cores
available for pixel shading. The pixel shader shading time is

c© The Eurographics Association 2010.

McGuire, Enderton, Shirley & D. Luebke / Stochastic Rasterization

amplified by the fact that a thread group must wait for all
pixels to complete shading, even if only one visibility sam-
ple passed the ray test. Since a triangle’s bounding geometry
grows large under motion and defocus blur, this means that
the total cycles devoted to shading can increase dramatically,
even though the total number of shading samples in the final
image remains constant. This can be seen by comparing the
shading cost reported in table 2 for the four subimages in
figure 6, which vary only in defocus and motion blur. This
is a drawback of stochastic rasterization originally identified
by Toth and Linder [TL08] and is a strong incentive to build
stochastic sampling directly into the rasterizer unit in the fu-
ture. The “Overhead” column measures the cost of the draw
calls and vertex shader invocation when the vertex shader
and later stages do no work. The “Bound” time is the rela-
tively negligible cost of the geometry shader plus the larger
cost of the rasterizer in the case where the pixel shader re-
turns a constant color.

Scene BoundTexVis Fig Ov
er
he
ad

Tr
an
sf
or
m

 (V
S)

Bo
un
d

(G
S+

Ra
st)

Vi
si
bi
lit
y

(P
S)

Sh
ad
e

(P
S)

Frame
Bridge 2D Hull 4 1 1e 11 ms + 0 + 1 + 5 + 19 = 36 ms

2D Hull 4 1 1f 11 ms + 0 + 1 + 17 + 75 = 104 ms
AABB 4 1 1g 14 ms + 0 + 1 + 41 + 118 = 171 ms

Cubes AABB 6 4 4l 1 ms + 0 + 0 + 15 + 3 = 19 ms
Race 2D Hull 4 1 6 2 ms + 1 + 0 + 8 + 22 = 33 ms
Fairy 2D Hull 1 1 3 ms + 0 + 1 + 9 + 20 = 32 ms

2D Hull 6 4 5ul 3 ms + 0 + 1 + 16 + 30 = 53 ms
2D Hull 6 4 5ur 3 ms + 0 + 4 + 55 + 98 = 160 ms

AABB 6 4 5ll 3 ms + 0 + 7 + 347 + 154 = 513 ms
AABB 6 4 5lr 3 ms + 0 +19 + 546 + 127 = 695 ms

Table 2: The performance impact of each stage, measured
by progressively disabling subsequent pipeline stages. At
1920×1080, varying texture and visibility samples but al-
ways shading 1x per pixel.

Figure 5: Stochastic rasterization images showing (a) cor-
rect defocus blur and (b) correct motion blur (two rising
boxes). Post-process techniques are challenged by surfaces
revealed by rotation, disocclusion, or defocus, because color
and velocity information are missing.

Image quality is affected by several factors. Figure 8
shows how image quality improves with increased sampling.
Note that stochastic noise, like film grain, is less visible

Figure 6: (upper left) The Fairy Forest scene, with (up-
per right) motion only, (lower left) defocus only, and (lower
right) simultaneous motion and defocus at 4x MSAA.

when animated, so these figures look noisier than the asso-
ciated animations. Figure 7 shows that texture blur can have
a bigger effect even than MSAA samples.

Figure 9 compares accumulation buffering to stochastic
rasterization for fixed rendering budgets in a scene with
significant camera and object motion. As render time in-
creases both converge towards a smooth result. We primar-
ily increased the number of time samples for accumulation
buffering and the number of total samples for stochastic ras-
terization. Accumulation buffering performs best with sim-
ple shaders, since it shades once per time per pixel. Where
there is no overdraw stochastic rasterization only needs to
shade once per pixel. However, stochastic rasterization re-
quires more texture samples at each pixel and presents an
incoherent workload to the GPU. We expect the advantages
of stochastic rasterization to be amplified in the future by
current GPU programming trends: more complex shaders,
higher MSAA or CSAA sampling rates, and better work
scheduling and compaction.

Figure 10 shows the results of our z = 0 crossing case
algorithm for an adversarial scene. Empirically we have not
yet found a case where the algorithm fails, but as future work
we would like to prove the conjecture that it is always con-
servative.

5. Summary and Discussion

We have introduced a stochastic rasterization method built
on conventional rasterization hardware and APIs, compati-
ble with the existing ecosystem of real-time shaders, art as-
sets, and game engines. We use a hybrid renderer in which

c© The Eurographics Association 2010.

McGuire, Enderton, Shirley & D. Luebke / Stochastic Rasterization

Figure 7: 130ktri racing scene with camera and object motion, rendered with motion blur. Along rows: Increasing texture filter
size by the amount of motion or defocus provides improves sampling at texture edges, such between the red and white stripes
in the 10x zoom insets. Along columns: Increasing visibility samples improves noise everywhere, including the geometric edge
against the gray road on the lower-left of the insets, but at higher cost.

1x 4x 16x 64x 256x

Figure 8: The “Ben” animated character in the Sibenik Cathedral, with simultaneous motion and defocus blur, with 10x zoom
of the outlined areas as insets. Variance due to stochastic sampling decreases with visibility samples per pixel. We find motion
noise to be less apparent when viewed on screen under animation, and consider 4x to 16x visibility sampling to be reasonable
for games. For still and film rendering, many more samples are required – only around 256x sampling is noise reduced to the
level one would tolerate anyway from (real or CGI) film grain or camera sensor noise.

2D rasterization conservatively identifies pixels potentially
covered by a time- and lens-continuous triangle, and 5D ray-
casting determines exact visibility and barycentric coordi-
nates for shading. This simple idea, combined with several
algorithmic extensions such as temporal texture filtering and
careful interaction with MSAA, enables us to render com-
plex game-like scenes with depth of field and motion blur,
achieving acceptable quality at high resolution and interac-
tive frame rates. We have suggested features for future hard-
ware that would improve these frame rates further.

We observe that motion and defocus blur differ in two im-
portant practical respects. First, noise from motion blur is

generally less noticeable than noise from defocus blur be-
cause it only occurs on moving objects. Second, motion blur
spreads the object footprint in 1D while defocus blur spreads
it in 2D. These differences will likely affect the cost-benefit
decisions of developers implementing stochastic rasteriza-
tion in games and other real-time applications.

5.1. Limitations and Assumptions

We make several simplifying assumptions, most of them typ-
ical for rendering systems with motion blur. Each assump-
tion implies associated limitations.

c© The Eurographics Association 2010.

McGuire, Enderton, Shirley & D. Luebke / Stochastic Rasterization

40 ms 95 ms 215 ms
A

cc
um

ul
at

io
n

8 time, 1x MSAA, 1x SSAA 19 time, 4x MSAA, 1x SSAA 45 time, 4x MSAA, 1x SSAA

St
oc

ha
st

ic

4 tex, 1x MSAA, 1x SSAA 4 tex, 4x MSAA, 1x SSAA 4 tex, 4x MSAA, 4x SSAA

Figure 9: Comparison of accumulation buffering and stochastic rasterization for the same render times. Accumulation buffering
renders a number of discrete ghosts equal to the number of time samples; stochastic rasterization creates noise. Insets are
zoomed 5x. Images are cropped and downsized for printing from the full 1920×1080 results; see our web page for the original
data.

Figure 10: Top: our stress test for our z = 0 algorithm
includes very large triangles under large relative motion,
which frequently triggers the case. Bottom: visualization of
overdraw that shows moving triangles are worse, but not
substantially worse, than static triangles. The camera for
this image is centimeters above the poorly-tessellated area
shown on the lower right in Figure 4.

Constant topology. We assume that every triangle ex-
ists throughout the exposure interval, and that the posi-
tion of every vertex is known at shutter open and shutter

close. Our implementation generates t = 0 and t = 1 posi-
tions by skinning and transforming each vertex twice every
frame and passing two camera transformations to the vertex
shader. One could avoid the double transformation in a sys-
tem where vertex velocities are available from a physics or
animation system. Either choice requires augmenting a non-
motion-blurred renderer with one extra attribute per vertex.

Constant shading. Following previous work [CCC87,
FLB∗09, RKLC∗10], we shade at a single time per frame
(shutter close in our implementation). This can produce
smeared highlight artifacts but is a generally accepted prac-
tice often used in films. Surprisingly, shadows of mov-
ing objects computed once per frame are often satisfac-
tory [RSC87], perhaps because percentage-closer-filtered
shadows are already blurry. For increased shadow accu-
racy, one alternative is to compute time-varying shadow
maps [AMMH07].

Moderate defocus. Under extreme defocus, a tiny trian-
gle has the potential to contribute to any pixel on the screen.
In that case our algorithm would be too slow for real-time.
When the largest defocus point spread radius is on the order
of three pixels, our algorithm can still produce reasonable
performance. Our implementation currently uses a screen-
space axis-aligned box to bound the Minkowski sum of the
triangle with its circle of confusion. This is correct but overly
conservative, further limiting our performance. Note that
the circle of confusion for a single point on the near plane
quickly encompasses the whole screen as the near plane ap-
proaches zero; a large near plane depth is thus essential for
efficient defocus blur under any stochastic rasterization al-
gorithm. We use 0.5 meters.

Shutter time. Varying the shutter duration increases and

c© The Eurographics Association 2010.

McGuire, Enderton, Shirley & D. Luebke / Stochastic Rasterization

Figure 11: The linear motion approximation gives plausible
results even for modest rotation.

decreases the size and overlap of swept triangles, which di-
rectly impacts performance. This provides a nice knob for
developers to trade off performance for motion blur. Curi-
ously, a shutter open for the entire frame time produces mo-
tion blur that appears too strong to a human viewer. Our im-
ages and videos use a half-frame exposure interval, a typical
value for film rendering.

Linear motion. We assume that all vertex motion is linear
during an exposure. Figure 11 shows that this gives surpris-
ingly good results even for moderate rotational motion.

Interaction with alternate rendering strategies. Our al-
gorithm is directly compatible with traditional forward ren-
dering; super-sampling; bloom, gamma-correction, and tone
map post-processing; stochastic transparency; and deferred
shading (in which case one renders stochastic G-buffers in-
stead of radiance). Screen space methods that rely on the
depth buffer, such as screen-space ambient occlusion, would
have to be altered to consider only adjacent framebuffer val-
ues that correspond to the same (t,u,v) sample. Given the
small number of samples those methods tend to take, we sus-
pect that such an alteration is impractical in many cases.

5.2. Future work

We plan to explore several enhancements including gener-
alization to other distribution ray tracing effects, such as
reflectance function sampling and soft shadows; improve-
ments to bounding geometry for defocus blur; and methods
for objects with highly non-linear motion during the shutter
interval. We would also like to use interactive stochastic ras-
terization to study the effects of sample density, resolution,
etc. on interactive tasks, and the practical ranges of motion
and defocus blur parameters for typical applications.

References
[AMHH08] AKENINE-MÖLLER T., HAINES E., HOFFMAN N.:

Real-Time Rendering 3rd Edition. A. K. Peters, Ltd., Natick,
MA, USA, 2008.

[AMMH07] AKENINE-MÖLLER T., MUNKBERG J., HASSEL-
GREN J.: Stochastic rasterization using time-continuous tri-
angles. In GH ’07: Proceedings of the 22nd ACM SIG-
GRAPH/EUROGRAPHICS symposium on Graphics hardware
(Aire-la-Ville, Switzerland, Switzerland, 2007), Eurographics
Association, pp. 7–16.

[CCC87] COOK R. L., CARPENTER L., CATMULL E.: The
Reyes image rendering architecture. SIGGRAPH Comput.
Graph. 21, 4 (1987), 95–102.

[CPC84] COOK R. L., PORTER T., CARPENTER L.: Distributed
ray tracing. SIGGRAPH Comput. Graph. 18, 3 (1984), 137–145.

[FLB∗09] FATAHALIAN K., LUONG E., BOULOS S., AKELEY
K., MARK W. R., HANRAHAN P.: Data-parallel rasterization
of micropolygons with defocus and motion blur. In HPG ’09:
Proceedings of the Conference on High Performance Graphics
2009 (New York, NY, USA, 2009), ACM, pp. 59–68.

[Gra72] GRAHAM R.: An efficient algorithm for determining the
convex hull of a finite planar set. Information processing letters
1 (1972), 132–133.

[HA90] HAEBERLI P., AKELEY K.: The accumulation buffer:
Hardware support for high-quality rendering. In Proceedings of
the 17th annual conference on Computer graphics and interac-
tive techniques (1990), ACM, p. 318.

[HSHH07] HORN D. R., SUGERMAN J., HOUSTON M., HAN-
RAHAN P.: Interactive k-d tree gpu raytracing. In I3D ’07: Pro-
ceedings of the 2007 symposium on Interactive 3D graphics and
games (New York, NY, USA, 2007), ACM, pp. 167–174.

[LK10] LAINE S., KARRAS T.: Two methods for fast ray-casted
ambient occlusion. In EGSR 2010 (June 2010).

[Lov05] LOVISCACH J.: Motion blur for textures by means of
anisotropic filtering. In Proceedings of the Eurographics Sympo-
sium on Rendering (2005), pp. 7–14.

[McG10] MCGUIRE M.: Hardware-accelerated ambient occlu-
sion volumes. In Proceedings of High Performance Graphics
2010 (Saarbrucken, Germany, 2010), ACM SIGGRAPH and Eu-
rographics Association.

[PH04] PHARR M., HUMPHREYS G.: Physically Based Render-
ing: From Theory to Implementation. Morgan Kaufmann Pub-
lishers Inc., San Francisco, CA, USA, 2004.

[RKLC∗10] RAGAN-KELLEY J., LEHTINEN J., CHEN J.,
DOGGETT M., DURAND F.: Decoupled sampling for real-time
graphics pipelines, 3 2010. MIT Computer Science and Artificial
Intelligence Laboratory Technical Report Series MIT-CSAIL-
TR-2010-015.

[RSC87] REEVES W. T., SALESIN D. H., COOK R. L.: Ren-
dering antialiased shadows with depth maps. In SIGGRAPH
’87: Proceedings of the 14th annual conference on Computer
graphics and interactive techniques (New York, NY, USA, 1987),
ACM, pp. 283–291.

[TL08] TOTH R., LINDER E.: Stochastic Depth of Field using
Hardware Accelerated Rasterization. Master’s thesis, Lund Uni-
versity, Sweden, June 2008.

[WGER05] WEXLER D., GRITZ L., ENDERTON E., RICE J.:
Gpu-accelerated high-quality hidden surface removal. In HWWS
’05: Proceedings of the ACM SIGGRAPH/EUROGRAPHICS
conference on Graphics hardware (New York, NY, USA, 2005),
ACM, pp. 7–14.

[WWT∗03] WANG L., WANG X., TONG X., LIN S., HU S.,
GUO B., SHUM H.-Y.: View-dependent displacement mapping.
ACM Trans. Graph. 22, 3 (2003), 334–339.

c© The Eurographics Association 2010.

