
OptiX: A General Purpose Ray Tracing Engine

Steven G. Parker1∗ James Bigler1 Andreas Dietrich1 Heiko Friedrich1 Jared Hoberock1 David Luebke1

David McAllister1 Morgan McGuire1,2 Keith Morley1 Austin Robison1 Martin Stich1

NVIDIA1 Williams College2

Figure 1: Images from various applications built with OptiX. Top: Physically based light transport through path tracing. Bottom: Ray tracing
of a procedural Julia set, photon mapping, large-scale line of sight and collision detection, Whitted-style ray tracing of dynamic geometry,
and ray traced ambient occlusion. All applications are interactive.

Abstract

The NVIDIA® OptiX™ ray tracing engine is a programmable sys-
tem designed for NVIDIA GPUs and other highly parallel archi-
tectures. The OptiX engine builds on the key observation that
most ray tracing algorithms can be implemented using a small set
of programmable operations. Consequently, the core of OptiX
is a domain-specific just-in-time compiler that generates custom
ray tracing kernels by combining user-supplied programs for ray
generation, material shading, object intersection, and scene traver-
sal. This enables the implementation of a highly diverse set of
ray tracing-based algorithms and applications, including interactive
rendering, offline rendering, collision detection systems, artificial
intelligence queries, and scientific simulations such as sound prop-
agation. OptiX achieves high performance through a compact ob-
ject model and application of several ray tracing-specific compiler
optimizations. For ease of use it exposes a single-ray programming
model with full support for recursion and a dynamic dispatch mech-
anism similar to virtual function calls.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism; D.2.11 [Software Architectures]: Domain-
specific architectures; I.3.1 [Computer Graphics]: Hardware
Architectures—;

Keywords: ray tracing, graphics systems, graphics hardware

∗e-mail: sparker@nvidia.com

1 Introduction

To address the problem of creating an accessible, flexible, and effi-
cient ray tracing system for many-core architectures, we introduce
OptiX, a general purpose ray tracing engine. This engine combines
a programmable ray tracing pipeline with a lightweight scene rep-
resentation. A general programming interface enables the imple-
mentation of a variety of ray tracing-based algorithms in graphics
and non-graphics domains, such as rendering, sound propagation,
collision detection and artificial intelligence.

In this paper, we discuss the design goals of the OptiX engine as
well as an implementation for NVIDIA Quadro®, GeForce®, and
Tesla® GPUs. In our implementation, we compose domain-specific
compilation with a flexible set of controls over scene hierarchy, ac-
celeration structure creation and traversal, on-the-fly scene update,
and a dynamically load-balanced GPU execution model. Although
OptiX currently targets highly parallel architectures, it is applica-
ble to a wide range of special- and general-purpose hardware and
multiple execution models.

To create a system for a broad range of ray tracing tasks, several

trade-offs and design decisions led to the following contributions:

• A general, low level ray tracing engine. The OptiX en-
gine focuses exclusively on the fundamental computations
required for ray tracing and avoids embedding rendering-
specific constructs. The engine presents mechanisms for ex-
pressing ray-geometry interactions and does not have built-in
concepts of lights, shadows, reflectance, etc.

• A programmable ray tracing pipeline. The OptiX engine
demonstrates that most ray tracing algorithms can be imple-
mented using a small set of lightweight programmable opera-
tions. It defines an abstract ray tracing execution model as a
sequence of user-specified programs. This model, when com-
bined with arbitrary data stored with each ray, can be used
to implement a variety of sophisticated rendering and non-
rendering algorithms.

• A simple programming model. The OptiX engine provides
the execution mechanisms that ray tracing programmers are
accustomed to using and avoids burdening the user with the
machinery of high-performance ray tracing algorithms. It
exposes a familiar recursive, single-ray programming model
rather than ray packets or explicit SIMD-style constructs. The
engine abstracts any batching or reordering of rays, as well as
algorithms for creating high-quality acceleration structures.

• A domain-specific compiler. The OptiX engine combines
just-in-time compilation techniques with ray tracing-specific
knowledge to implement its programming model efficiently.
The engine abstraction permits the compiler to tune the exe-
cution model for available system hardware.

• An efficient scene representation. The OptiX engine imple-
ments an object model that uses dynamic inheritance to facil-
itate a compact representation of scene parameters. A flexi-
ble node graph system allows the scene to be organized for
maximum efficiency, while still supporting instancing, level-
of-detail and nested acceleration structures.

2 Related Work

While numerous high-level ray tracing libraries, engines and APIs
have been proposed [Wald et al. 2007b], efforts to date have been
focused on specific applications or classes of rendering algorithms,
making them difficult to adapt to other domains or architectures.
On the other hand, several researchers have shown how to map ray
tracing algorithms efficiently to GPUs and the NVIDIA® CUDA™
architecture [Aila and Laine 2009; Horn et al. 2007; Popov et al.
2007], but these systems have focused on performance rather than
flexibility.

CPU-based real-time ray tracing systems were first developed in the
1990’s on highly parallel supercomputers [Green and Paddon 1990;
Muuss 1995; Parker et al. 1999]. Subsequent improvements in
acceleration structures [Goldsmith and Salmon 1987; MacDonald
and Booth 1989] and traversal techniques[Wald et al. 2001; Havran
2001; Reshetov et al. 2005; Wald et al. 2007a] enabled interactive
ray tracing on desktop-class machines [Bigler et al. 2006; Georgiev
and Slusallek 2008]. These systems were built using C and/or C++
programming languages with traditional object-oriented program-
ming models, rather than the generic shader-based system described
in this paper.

The RPU [Woop et al. 2005] is a special purpose hardware system
for interactive ray tracing that provides some degree of programma-
bility for using geometry, vertex and lighting shaders written in as-
sembly language. Caustic Graphics [Caustic Graphics 2009] re-
cently demonstrated a special purpose accelerator board but has not

published details about the mechanisms for programming shader
programs.

OpenRT utilized a binary plug-in interface to provide surface, light,
camera and environment shaders [Dietrich et al. 2003] but did not
strive for the generality attempted here. Other interactive ray trac-
ing systems such as Manta [Bigler et al. 2006], Razor [Djeu et al.
2007], and Arauna [Bikker 2007] also provide APIs that are system
specific and not intended as general purpose solutions.

3 A Programmable Ray Tracing Pipeline

The core idea of the OptiX engine is that most ray tracing algo-
rithms can be implemented using a small set of programmable op-
erations. This is a direct analog to the programmable rasteriza-
tion pipelines employed by OpenGL and Direct3D. At a high level,
those systems expose an abstract rasterizer containing lightweight
callbacks for vertex shading, geometry processing, tessellation, and
fragment shading operations. An ensemble of these program types,
typically used in multiple passes, can be used to implement a broad
variety of rasterization-based algorithms.

We have identified a corresponding abstract ray tracing execu-
tion model along with lightweight operations that can be cus-
tomized to implement a wide variety of ray tracing-based algo-
rithms. [NVIDIA 2010a]. These operations, or programs, can be
combined with a user-defined data structure (payload) associated
with each ray. The ensemble of programs conspire to implement a
particular client application’s algorithm.

3.1 Programs

There are seven different types of programs in OptiX, each of which
operates on a single ray at a time. In addition, a bounding box pro-
gram operates on geometry to determine primitive bounds for accel-
eration structure construction. The combination of user programs
and hardcoded OptiX kernel code forms the ray tracing pipeline,
which is outlined in Figure 2. Unlike a feed-forward rasterization
pipeline, it is more natural to think of the ray tracing pipeline as a
call graph. The core operation, rtTrace, alternates between locat-
ing an intersection (Traverse) and responding to that intersection
(Shade). By reading and writing data in user-defined ray payloads
and in global device memory arrays (buffers, see section 3.5), these
operations are combined to perform arbitrary computation during
ray tracing.

Ray generation programs are the entry into the ray tracing pipeline.
A single invocation of rtContextLaunch will create many instanti-
ations of these programs. In the example in Figure 3, a ray gener-
ation program will create a ray using a pinhole camera model for
a single pixel, start a trace operation, and store the resulting color
in an output buffer. With this mechanism, one can also perform
other operations such as creating photon maps, computing baked
lighting, processing ray requests passed from OpenGL, shooting
multiple rays for super-sampling, or implementing different cam-
era models.

Intersection programs implement ray-geometry intersection tests.
As the acceleration structures are traversed, the system will invoke
an intersection program to perform the geometric query. The pro-
gram determines if and where the ray touches the object and may
compute normals, texture coordinates, or other attributes based on
the hit position. An arbitrary number of attributes may be asso-
ciated with each intersection. Intersection programs enable sup-
port for arbitrary surfaces such as spheres, cylinders, high-order
surfaces, or even fractal geometries like the Julia set in Figure 1.
However, even in a triangle-only system, one may encounter a wide

Launch

Traverse Shade

Ray Generation
Program

Miss
Program

Closest Hit
Program

Selector Visit
Program

Intersection
Program

Any Hit
Program

Acceleration
Traversal

Node Graph
Traversal

rtContextLaunch

rtTrace

Exception
Program

Figure 2: A call graph showing the control flow through the ray
tracing pipeline. The yellow boxes represent user-specified pro-
grams and the blue boxes are algorithms internal to OptiX. Execu-
tion is initiated by the API call rtContextLaunch. A built-in func-
tion, rtTrace, can be employed by the ray generation program to
cast rays into the scene. This function may also be called recur-
sively by the closest hit program for shadow and secondary rays.
The exception program is executed when the execution of a partic-
ular ray is terminated by an error such as excessive memory con-
sumption.

variety of mesh representations. A programmable intersection op-
eration facilitates direct access to the native format, which can help
avoid copies when interoperating with rasterization-based systems.

Bounding box programs compute the bounds associated with each
primitive to enable acceleration structures over arbitrary geometry.
Given a primitive index, a simple program of this type may, for
example, read vertex data from a buffer and compute a triangle’s
bounding box. Procedural geometry can sometimes only estimate
the bounds of a primitive. Such estimates are allowed as long as
they are conservative, but loose bounds may degrade performance.

Closest hit programs are invoked once traversal has found the clos-
est intersection of a ray with the scene geometry. This program
type closely resembles surface shaders in classical rendering sys-
tems. Typically, a closest hit program will perform computations
like shading, potentially casting new rays in the process, and store
result data in the ray payload.

Any hit programs are called during traversal for every ray-object
intersection that is found. The any hit program allows the ma-
terial to participate in object intersection decisions while keep-
ing the shading operations separate from the geometry opera-
tions. It may optionally terminate the ray using the built-in func-
tion rtTerminateRay, which will stop all traversal and unwind the
call stack to the most recent invocation of rtTrace. This is a
lightweight exception mechanism that can be used to implement
early ray termination for shadow rays and ambient occlusion. Al-
ternatively, the any hit program may ignore the intersection us-
ing rtIgnoreIntersection, allowing traversal to continue looking for
other geometric objects. An intersection may be ignored, for in-
stance, based on a texture channel lookup, thus implementing effi-
cient alpha-mapped transparency without restarting traversal. An-

RT_PROGRAM void pinhole_camera() {

Ray ray = PinholeCamera::makeRay(launchIndex);

UserPayload payload;

rtTrace(topObject, ray, payload);

outputBuffer[launchIndex] = payload.result;

}

Figure 3: Example ray generation program (in CUDA C) for a
single sample per pixel. The 2-dimensional grid location of the
program invocation is given by the semantic variable launchIn-
dex, which is used to create a primary ray using a pinhole camera
model. Upon tracing a ray, the invoked material hit programs fill
the result field of the user-defined payload structure. The variable
topObject refers to the location in the scene hierarchy where ray
traversal should start, typically the root of the node graph. At the
location specified by launchIndex, the result is written to the output
buffer to be displayed by the application.

other use case for the any hit program can be found in Section 8.1,
where the application performs visibility attenuation for partial
shadows cast by glass objects. Note that intersections may be pre-
sented out of order. The default any hit program is a no-op, which
is often the desired operation.

Miss programs are executed when the ray does not intersect any
geometry in the interval provided. They can be used to implement
a background color or environment map lookup.

Exception programs are executed when the system encounters an
exceptional condition, e.g., when the recursion stack exceeds the
amount of memory available for each thread, or when a buffer ac-
cess index is out of range. OptiX also supports user-defined excep-
tions that can be thrown from any program. The exception program
can react, for example, by printing diagnostic messages or visualiz-
ing the condition by writing special color values to an output pixel
buffer.

Selector visit programs expose programmability for coarse-level
node graph traversal. For example, an application may choose to
vary the level of geometric detail for parts of the scene on a per-
ray basis. In this case, the visit program would examine the ray
distance or a ray differential stored with the payload and make a
traversal decision based on that data.

3.2 Scene representation

The OptiX engine employs a flexible structure for representing
scene information and associated programmable operations, col-
lected in a container object called the context. This representa-
tion is also the mechanism for binding programmable shaders to
the object-specific data that they require. In conjunction with a
special-purpose object model described in Section 3.3, a compact
representation of scene data is achieved.

3.2.1 Hierarchy nodes

A scene is represented as a graph. This representation is very
lightweight and controls the traversal of rays through the scene. It
can also be used to implement instancing two-level hierarchies for
animations of rigid objects, or other common scene structures. To
support instancing and sharing of common data, the nodes can have
multiple parents.

Four main node types can be used to provide the scene representa-
tion using a directed graph. Any node can be used as the root of
scene traversal. This allows, for example, different representations
to be used for different ray types.

Miss
Program

Ray Generation
Program

Context

Geometry
Instance

Material Geometry

Geometry
Group

- Any Hit
Program

Bounding Box
Program

Intersection
Program

Geometry

Bounding Box
Program

Intersection
Program

Geometry
Instance

Acceleration

Closest Hit
Program -

Pinhole Camera Constant Color

BunnyFloor

BVH

Diffuse Triangle MeshParallelogram

Radiance Ray
Programs

Shadow Ray
Programs

1

2

3

4

5

Figure 4: Right: A complete OptiX context for a simple scene with a pinhole camera, two objects and shadows. The ray generation
program implements the camera, while a miss program implements a constant white background. A single geometry group contains two
geometry instances with a single BVH built over all underlying geometry in the triangle mesh and ground plane. Two types of geometry are
implemented, a triangle mesh and a parallelogram, each with their own set of intersection and bounding box programs. The two geometry
instances share a single material that implements a diffuse lighting model and fully attenuates shadow rays via closest hit and any hit
programs, respectively. Left: Execution of the programs. 1. The ray generation program creates rays and traces them against the geometry
group, which initiates BVH traversal. 2. If the ray intersects with geometry, the closest hit program will be called after the hit point is found.
3. The material will spawn shadow rays and trace them against scene geometry. 4. When an intersection along the shadow ray is found, the
any hit program will terminate ray traversal and return to the calling program with shadow information. 5. If a ray does not intersect with
any scene geometry, the miss program will be called.

Group nodes contain zero or more (but usually two or more) chil-
dren of any node type. A group node has an acceleration structure
associated with it and can be used to provide the top level of a two-
level traversal structure.

Geometry Group nodes are the leaves of the graph and contain the
primitive and material objects described below. This node type also
has an acceleration structure associated with it. Any non-empty
scene will contain at least one geometry group.

Transform nodes have a single child of any node type, plus an as-
sociated 4×3 matrix that is used to perform an affine transformation
of the underlying geometry.

Selector nodes have zero or more children of any node type, plus a
single visit program that is executed to select among the available
children. Although not implemented in the current version of the
OptiX libraries, the node graph can be cyclic if the selector node is
used carefully to avoid infinite recursion.

3.2.2 Geometry and material objects

The bulk of the data is stored in the geometry nodes at the leaves of
the graph. These contain objects that define geometry and shading
operations. They may also have multiple parents, allowing material
and geometry information to be shared at multiple points in the
graph; for a complete example, see Figure 4.

Geometry Instance objects bind a geometry object to a set of ma-
terial objects. This is a common structure used by scene graphs to
keep geometric and shading information orthogonal.

Geometry objects contain a list of geometric primitives. Each ge-
ometry object is associated with a bounding box program and an
intersection program, both of which are shared among the geome-
try object’s primitives.

Material objects hold information about shading operations, in-
cluding programs called for each intersection as they are discovered

(any hit program) and for the intersection nearest to the origin of a
given ray (closest hit program).

3.3 Object and data model

OptiX employs a special-purpose object model designed to mini-
mize the constant data used by the programmable operations. In
contrast to an OpenGL system, where only a single combination
of shaders is used at a time. However, ray tracing can randomly
access object and material data. Therefore, instead of the uniform
variables employed by OpenGL shading languages, OptiX allows
any of the objects and nodes described above to carry an arbitrary
set of variables expressed as a typed name-value pair called a vari-
able. Variables are set by the client application and have read-only
access during the execution of a trace. Variables can be of scalar or
vector integer and floating point types (e.g., float3, int4) as well as
user-defined structs and references to buffers and texture samplers.

The inheritance mechanism for these variables is unique to OptiX.
Instead of a class-based inheritance model with a single self or this
pointer, the OptiX engine tracks the current geometry and material
objects and the current traversal node. Variable values are inherited
from the objects that are active at each point in the control flow. For
example, an intersection program will inherit definitions from the
geometry and geometry instance objects, in addition to global vari-
ables defined in the context. Conceptually, OptiX examines each
of these objects for a matching name/value pair when a variable is
accessed. This mechanism can be thought of as a generalization of
nested scoping found in most programming languages. It can also
be implemented quite efficiently in the just-in-time compiler.

As an example of how this is useful, consider an array of light
sources called lights. Typically, a user would define lights in the
context, the global scope of OptiX. This makes this value avail-
able in all shaders in the entire scene. However, if the lights for
a particular object need to be overridden, another variable of the
same name can be created and attached to the geometry instance
associated with that object. In this way, programs connected to that

object would use the overridden value of lights rather than the value
attached to the context. This is a powerful mechanism that can be
used to minimize the scene data to enable high performance on ar-
chitectures with minimal caches. The manner in which these cases
are handled can vary dramatically from one renderer to another, so
the OptiX engine provides the basic functionality to express any
number of override rules efficiently.

A special type of variable, tagged with the keyword attribute can be
used to communicate information from the intersection program to
the closest- and any-hit programs. These are analogous to OpenGL
varying variables, and are used for communicating texture coordi-
nates, normals and other shading information from the intersection
programs to the shading programs. These variables have special se-
mantics — they are written by the intersection program but only the
values associated with the closest intersection are kept. This mech-
anism enables the intersection operation to be completely separate
from the shading operations, enabling multiple simultaneous prim-
itives and/or mesh storage formats while still supporting texturing,
shading normals, and object curvatures for ray differentials. At-
tributes that are not used by any closest- or any-hit program can be
elided by the OptiX compiler.

3.4 Dynamic dispatch

To allow multiple ray-tracing operations to co-exist in a single exe-
cution, OptiX employs a user-defined ray type. A ray type is simply
an index that selects a particular set of slots for any hit and closest
hit programs to be executed when an intersection is found. This can
be used, for example, to treat shadow rays separately from other
rays.

Similarly, multiple entry points in an OptiX context enable an ef-
ficient way to represent different passes over the same set of ge-
ometry. For example, a photon mapper may use one entry point to
cast photons into the scene and a second entry point to cast viewing
rays.

3.5 Buffers and Textures

The key abstraction for bulk data storage is the multi-dimensional
buffer object, which presents a 1-, 2- or 3-dimensional array of a
fixed element size. A buffer is accessed through a C++ wrapper
object in any of the programs. Buffers can be read-only, write-only
or read-write and support atomic operations when supported by the
hardware. A buffer is handle-based and does not expose raw point-
ers, thus enabling the OptiX runtime to relocate buffers for storage
compaction, or for promotion to other memory spaces for perfor-
mance. Buffers are typically used for output images, triangle data,
light source lists, and other array-based data. Buffers are the sole
means of outputing data from an OptiX program. In most appli-
cations, the ray generation program will be responsible for writing
data to the output buffer, but any of the OptiX programs are allowed
to write to output buffers at any location, but with no ordering guar-
antees.

A buffer can also be bound to a texture sampler object, which will
utilize the GPU texturing hardware. Buffers and texture sampler
objects are bound to OptiX variables and utilize the same scoping
mechanisms as shader values. Additionally, both buffers and tex-
ture samplers can interoperate with OpenGL and DirectX, enabling
efficient implementation of hybrid rasterization/ray-tracing appli-
cations.

4 System Overview

The OptiX engine consists of two distinct APIs, one for host-side
and one for device-side code.1 The host API is a set of C func-
tions that the client application calls to create and configure a con-
text, assemble a node graph, and launch ray tracing kernels. It also
provides calls to manage devices used for kernel execution. The
program API is the functionality exposed to user programs. This
includes function calls for tracing rays, reporting intersections, and
accessing data. In addition, several semantic variables encode state
specific to ray tracing, e.g., the current distance to the closest inter-
section. Printing and exception handling facilities are also available
for debugging.

Figure 5 outlines the control flow of an OptiX application. Dur-
ing setup, the application calls OptiX host API functions to pro-
vide scene data data such as geometry, materials, acceleration struc-
tures, hierarchical relationships, and programs. A subsequent call
to the rtContextLaunch API function passes control to OptiX, where
changes in the context are processed. If required, a new ray trac-
ing kernel is compiled from the given user programs. Acceleration
structures are built (or updated) and data is synchronized between
host and device memory. Finally, the ray tracing kernel is executed,
invoking the various user programs as described in Section 3.

After execution of the ray tracing kernel has finished, its result data
can be used by the application. Typically, this involves reading
from output buffers filled by one of the user programs or displaying
such a buffer directly, e.g., via OpenGL. An interactive or multi-
pass application then repeats the process starting at context setup,
where arbitrary changes to the context can be made, and the kernel
is launched again.

5 Acceleration Structures

The core algorithm for finding an intersection between a ray and
the scene geometry involves the traversal of acceleration structures.
Such data structures are a vital component of virtually every ray
tracing system. They are usually spatial or object hierarchies and
are used by the traversal algorithm to efficiently search for primi-
tives that potentially intersect a given ray. OptiX offers a flexible
interface, suitable for a wide range of applications, to control its
acceleration structures.

5.1 Interaction with the node graph

One of the reasons for collecting geometry data in a node graph is to
facilitate the organization of the associated acceleration structures.
Instead of maintaining all scene geometry within a single accelera-
tion structure, it often makes sense to build several structures over
different regions of the scene. For example, parts of the scene may
be animated, requiring an acceleration structure to be rebuilt for ev-
ery ray tracing pass. In this case, creating a separate structure for
the static regions of the scene can increase efficiency. In addition
to only constructing the static structure once, the application can
typically invest a larger time budget into a higher quality build.

The OptiX engine associates acceleration structures with all groups
and geometry groups in the node graph. Structures attached to ge-
ometry groups are low level, built over the geometric primitives the
geometry group contains. Structures on groups are built over the
bounds of the children of that group and thus represent high level

1We use the terms host, device, and kernel in the same way as commonly
done in the CUDA environment: the host is the processor running the client
application (usually a CPU). The device is the processor (usually a GPU)
running the ray tracing code produced by OptiX, called the kernel.

Create Context

Setup

⁃ Assemble Node Graph
⁃ Create and Fill Buffers
⁃ Setup User Programs
⁃ Assign Variables
⁃ ...

Launch

⁃ Validate Context
⁃ Compile/Stitch Programs
⁃ Build Acceleration Structures
⁃ Upload Context Data to GPU
⁃ Launch Final PTX Kernel

Use Result Data

Figure 5: Basic OptiX application control flow. The individual steps during context setup are controlled by the application, the launch
procedure is handled by OptiX.

acceleration structures. These high level structures are useful to ex-
press hierarchical relationships between geometry that is modified
at different rates.

Instancing. An important design goal for the acceleration struc-
ture system was support for flexible instancing. Here, instancing
refers to low-overhead replication of scene geometry by referencing
the same data more than once, without having to copy heavyweight
data structures. As described in Section 3.2.1, nodes in the graph
can be referenced multiple times, which naturally implements in-
stancing. It is desirable to not only share geometry information
among instances, but acceleration structures as well. At the same
time, it should be possible to assign non-geometry data such as ma-
terial programs and variables independently for each instance.

We chose to expose acceleration structures as separate API objects
that are attached to groups and geometry groups. In the instancing
case, it is possible to attach a single acceleration structure to mul-
tiple nodes, thus sharing its data and avoiding redundant construc-
tion of the same data structure. The method also results in efficient
addition and removal of instances at runtime. Figure 6 shows an
example of a node graph with instancing.

Acceleration structures on combined geometry. Dividing the
scene into multiple acceleration structures reduces structure build
time but also reduces ray traversal performance. In the limiting
case of an entirely static scene, one would typically choose a single
acceleration structure. One idea behind acceleration structures on
geometry groups is to facilitate the application’s data management
for that type of setup: instead of having to merge individual geo-
metric objects into a monolithic chunk, they can stay organized as
separate geometries and instances, and easily be collected within
a single geometry group. The corresponding acceleration structure
will be built over the individual primitives of any geometric objects,
resulting in maximum efficiency as if all the geometry were com-
bined. The OptiX engine will internally take care of the necessary

Acceleration
Geometry
Group 1

Geometry
Group 2

Geometry
Instance 1

Geometry
Instance 2

Geometry

Material 1 Material 2

Figure 6: Node graph with instancing. Both geometry groups refer-
ence the same geometry object and share an acceleration structure,
but use different materials. Geometry data is not duplicated.

bookkeeping tasks, such as correct remapping of material indices.

A geometry group can also exploit certain per-object information
when building its acceleration structure. For example, in a geome-
try group containing multiple objects, only a single one might have
been modified between ray tracing passes. OptiX can take into ac-
count that information and omit some redundant operations (e.g.
bounding box computations, see Section 5.3).

5.2 Types of acceleration structures

Ray tracing acceleration structures are an active area of research.
There is no single type that is optimal for all applications under all
conditions. The typical tradeoff between the different variants is
ray tracing performance versus construction speed, and each appli-
cation has a different optimal balance. Therefore, OptiX provides a
number of different acceleration structure types that the application
can choose from. Each acceleration structure in the node graph can
be of a different type, allowing combinations of high-quality static
structures with dynamically updated ones. Most types are also suit-
able for high level structures, i.e. acceleration structures attached to
groups.

The currently implemented acceleration structures include algo-
rithms focused on hierarchy quality (e.g. the SBVH [Stich et al.
2009]), on construction speed (e.g. the LBVH [Lauterbach et al.
2009]), and various balance levels in between.

5.3 Construction

Whenever the underlying geometry of an acceleration structure is
changed, e.g. during an animation, it is explicitly marked for re-
build by the client application. OptiX then builds the so scheduled
acceleration structures on the subsequent invocation of the rtCon-
textLaunch API function.

The first stage in acceleration structure construction acquires the
bounding boxes of the referenced geometry. This is achieved by
executing for each geometric primitive in an object the bounding
box program described in Section 3.1, which is required to return
a conservative axis-aligned bounding box for its input primitive.
Using these bounding boxes as elementary primitives for the accel-
eration structures provides the necessary abstraction to trace rays
against arbitrary user-defined geometry (including several types of
geometry within a single structure). To obtain the necessary bound-
ing boxes for higher level group nodes in the tree, the union of the
primitive bounding boxes is formed and propagated recursively.

The second construction stage consist of actually building the re-
quired acceleration structures given the obtained bounding boxes.
The available host and device parallelism can be utilized in two
ways. First, multiple acceleration structures in the node graph can
be constructed in parallel, as they are independent. Second, a single
acceleration structure build code can usually be parallelized (see
e.g. [Shevtsov et al. 2007], [Zhou et al. 2008], [Lauterbach et al.

2009]). The final acceleration structure data is placed in device
memory for consumption by the ray traversal code.

5.4 Tuning

While acceleration structures in the OptiX engine are designed to
perform well out of the box, it is sometimes necessary for the ap-
plication to provide additional information to achieve the highest
possible performance. The application can therefore set acceler-
ation structure-specific properties that affect subsequent structure
builds and ray traversals.

One example for such a property is the “refit” flag: if the geometry
used by a BVH acceleration structure has changed only slightly, it is
often sufficient to simply refit the BVH’s internal bounding boxes
instead of rebuilding the full structure from scratch (see [Lauter-
bach et al. 2006]). The client application can enable this behavior
on certain types of acceleration structures if it assumes the resulting
total runtime will decrease. Such decisions are left to the applica-
tion, as it usually possesses contextual information that is unavail-
able to OptiX.

Build procedures specialized to certain types of geometric prim-
itives (as opposed to the axis-aligned bounding boxes discussed
above) are a second case where properties are useful. The appli-
cation may, for example, inform an SBVH acceleration structure
that the underlying geometry consists exclusively of triangles, and
where these triangles are located in memory. The SBVH can then
perform a more exact method of constructing the hierarchy, which
results in higher quality.

6 Domain-Specific Compilation

The core of the OptiX host runtime is a Just-In-Time (JIT) compiler
that provides several important pieces of functionality. First, the JIT
stage combines all of the user-provided shader programs into one
or more kernels. Second, it analyzes the node graph to identify
data-dependent optimizations. Third, it provides a domain-specific
Application Binary Interface (ABI) and execution model that im-
plements recursion and function pointer operations on a device that
does not naturally support them. Finally, the resulting kernel is ex-
ecuted on the GPU using the CUDA driver API.

6.1 OptiX programs

User-specified programs, often called a shader, are provided to the
OptiX host API in the form of Parallel Thread Execution (PTX)
functions [NVIDIA 2010b]. PTX is a virtual machine assembly
language that is part of the CUDA architecture. It implements
a low-level virtual machine, similar in many ways to the popular
open source Low-Level Virtual Machine (LLVM) intermediate rep-
resentation [Lattner and Adve 2004]. Like LLVM, PTX defines a
set of simple instructions that provide basic operations for arith-
metic, control flow and memory access. PTX also provides several
higher-level operations such as texture access and transcendental
operations. Also similar to LLVM, PTX assumes an infinite register
file and abstracts many real machine instructions. A JIT compiler
in the CUDA runtime will perform register allocation, instruction
scheduling, dead-code elimination, and numerous other late opti-
mizations as it produces machine code targeting a particular GPU
architecture.

PTX is written from the perspective of a single thread and thus
does not require explicit lane mask manipulation operations. This
makes it straightforward to lower PTX from a high-level shading
language, while giving the OptiX runtime the ability to manipulate
and optimize the resulting code. While PTX also provides parallel

synchronization and communication instructions, these instructions
are neither necessary for nor allowed by the OptiX runtime.

NVIDIA’s CUDA C/C++ compiler, nvcc, emits PTX and is cur-
rently the preferred mechanism for programming OptiX. Programs
are compiled offline using nvcc and submitted to the OptiX API
via a PTX string. By leveraging the CUDA C++ compiler, OptiX
shader programs have a rich set of programming language con-
structs available including pointers, templates and overloading that
come automatically by using C++ as the input language. A set of
header files is provided that support the necessary variable annota-
tions and pseudo-instructions for tracing rays and other OptiX op-
erations. These operations are lowered to PTX in the form of a call
instruction that gets further processed by the OptiX runtime.

While this provides a powerful C++-based shading language, it may
not be useful in all applications. Alternatively, any compiler front-
end that can emit PTX could be used. One could imagine frontends
for Cg, HLSL, GLSL, MetaSL, OpenSL, RSL, GSL, OpenCL, etc.,
that could produce appropriate PTX for input into OptiX. In this
manner, OptiX is shading-language agnostic, since multiple syntax
variants could be used to generate programs for use with the run-
time API.

6.2 PTX to PTX compilation

Given the set of PTX functions for a particular scene, the OptiX
compiler rewrites the PTX using multiple PTX to PTX transfor-
mation passes, which are similar to the compiler passes that have
proven successful in the LLVM infrastructure. In this manner,
OptiX uses PTX as an intermediate representation rather than a
traditional instruction set. This process implements a number of
domain-specific operations including an ABI (calling sequence),
link-time optimizations, and data-dependent optimizations. The
fact that most data structures in a typical ray tracer are read-only
provides a substantial opportunity for optimizations that would not
be considered safe in a more general environment.

Analysis. The first stage of this process is to perform a static
analysis of all of the PTX functions provided. This pass ensures
that the variables referenced in each function have been provided
by the node graph and are of consistent types. At the same time,
we determine whether each of the data buffers is read-only or read-
write to inform the runtime where the data should be stored. Finally,
this pass can analyze the structure of the node graph in preparation
for other data-specific optimizations shown below.

Inline instrinsic operations. The OptiX runtime provides sev-
eral operations beyond the ones provided by CUDA. These instruc-
tions are replaced with an inlined function that implements the re-
quested operations. Examples include access to the currently active
ray origin, direction and payload, a read-write surface store abstrac-
tion, and accessing the transform stack. In addition, we process
pseudo-instructions corresponding to exceptional control flow such
as rtTerminateRay and rtIgnoreIntersection.

Shader variable object model. A program can reference a
shader variable without additional syntax, just as a member variable
would be accessed in C++. These accesses will manifest in PTX as
a load instruction associated with specially tagged global variables.
We detect accesses to these variables using a dataflow analysis pass
and replace them with a load indexed from a pointer to the current
geometry, material, instance or other API object as determined by
the analysis pass. To implement dynamic inheritance of variables, a
small table associated with each object determines the base pointer
and associated offset.

for(int i = 0; i < 5; ++i) {

Ray ray = make_Ray(make_float3(i, 0, 0),

make_float3(0, 0, 1),

0, 1e-4f, 1e20f);

UserPayloadStruct payload;

rtTrace(top_object, ray, payload);

}

Figure 7: A simple CUDA C program snippet that calls rtTrace, a
function that requires a continuation, in a loop.

ld.global.u32 %node, [top_object+0];

mov.s32 %i, 0;

loop:

call _rt_trace, (%node, %i, 0, 0, 0, 0, 1,

0, 1e-4f, 1e20f, payload);

add.s32 %i, %i, 1;

mov.u32 %iend, 5;

setp.ne.s32 %predicate, %i, %iend;

@%predicate bra loop;

Figure 8: PTX code corresponding to the program in Figure 7.
The register %i is live across the call to rtTrace. Therefore, the
continuation mechanism must restore it after the call returns.

Continuations. Consider the shader program shown in Figure 7
and the corresponding PTX shown in Figure 8. This program im-
plements a simple loop to trace 5 rays from points (0,0,0), (1,0,0),
(2,0,0), (3,0,0) and (4,0,0). While not a useful program, this exam-
ple can be used to illustrate how continuations are used. To allow
this loop to execute as expected, the variable i must be saved before
temporarily abandoning the execution of this program to invoke the
rtTrace function.

This is accomplished by implementing a backward dataflow anal-
ysis pass to determine the PTX registers that are live when the
pseudo-instruction for rtTrace is encountered. A live register is one
that is used as an argument for some subsequent instruction in the
dataflow graph. We reserve slots on the stack for each of these
variables, pack them into 16-byte vectors where possible, and store
them on the stack before the call and restore them after the call. This
is similar to a caller-save ABI that a traditional compiler would im-
plement for a CPU-based programming language. In preparation
for introducing continuations, we perform a loop-hoisting pass and
a copy-propagation pass on each function to help minimize the state
saved in each continuation.

Finally, the rtTrace pseudo-instruction is replaced with a branch to
return execution to the state machine described below, and a label
that can be used to eventually return control flow to this function.
This transformation results in the pseudo-code shown in Figure 9.
However, the non-structural gotos in this code will result in an irre-
ducible control flow graph due to entering the loop both at the top
of the loop and the state2 label.

Irreducible control flow thwarts the mechanisms in the GPU to con-
trol the SIMD execution of this function, resulting in a dramatic
slowdown for divergent code. Consequently, we split this function
by cloning the nodes in the graph for each state. After performing
dead-code elimination, the code sequence in Figure 10 is obtained.
This control flow is more friendly to SIMD execution because it is
well-structured. Divergence can be further reduced by introducing
new states around the common code. This final transformation may
or may not be worthwhile, depending on the cost of switching states
and the degree of execution divergence.

state1:

for(int i = 0; i < 5; ++i) {

Ray ray = make_Ray(..., i, ...);

UserPayloadStruct payload;

push i;

state = trace;

goto mainloop;

state2:

pop i;

}

Figure 9: Pseudo-code for the program in Figure 7 with inserted
continuation.

state1:

i = 0;

Ray ray = make_Ray(..., i, ...);

UserPayloadStruct payload;

push i;

state = trace;

goto mainloop;

state2:

pop i;

++i;

if(i > 5) {

state = returnState;

goto mainloop;

}

Ray ray = make_Ray(..., i, ...);

UserPayloadStruct payload;

state = trace;

goto mainloop;

Figure 10: Pseudo-code for the program in Figure 7 with continu-
ation and a split to regain control flow graph reducibility.

6.3 Optimization

The OptiX compiler infrastructure provides a set of domain-specific
and data-dependent optimizations that would be challenging to im-
plement a a statically compiled environment. These include (per-
formance increases for a variety of applications in parentheses):

• Elide transformation operations for node graphs that do not
utilize a transformation node (up to a 7% performance im-
provement).

• Eliminate printing and exception related code if these options
are not enabled in the current execution.

• Reduce continuation size by regenerating constants and inter-
mediates after a restore. Since the OptiX execution model
guarantees that object-specific variables are read-only, this lo-
cal optimization does not require an interprocedural pass.

• Specialize traversal based on tree characteristics such as exis-
tence of degenerate leaves, degenerate trees, shared accelera-
tion structure data, or mixed primitive types.

• Move small read-only data to constant memory or textures if
there is available space (up to a 29% performance improve-
ment).

Furthermore, the rewrite passes can introduce substantial modifica-
tions to the code, which can be cleaned up by additional standard
optimization passes such as dead-code elimination, constant propa-
gation, loop-hoisting, and copy-propagation.

state = initialState;

while(state != DONE)

switch(state) {

case 1: state = program1(); break;

case 2: state = program2(); break;

...

case N: state = programN(); break;

}

Figure 11: Pseudo-code for a simple state machine approach to
megakernel execution. The state to be selected next is chosen by a
switch statement. The switch is executed repeatedly until the state
variable contains a special value that indicates termination.

7 Execution Model

Various authors have proposed different execution models for par-
allel ray tracing. In particular, the monolithic kernel, or megaker-
nel, approach proves successful on modern GPUs [Aila and Laine
2009]. This approach minimizes kernel launch overhead but poten-
tially reduces processor utilization as register requirements grow
to the maximum across constituent kernels. Because GPUs mask
memory latency with multi-threading, this is a delicate tradeoff.
OptiX implements a megakernel by linking together a set of in-
dividual user programs and traversing the state machine induced by
execution flow between them at runtime.

As GPUs evolve, different execution models may become practical.
For example, a streaming execution model [Gribble and Ramani
2008] may be useful on some architectures. Other architectures
may provide hardware support for acceleration structure traversal
or other common operations. Since the OptiX engine does not pre-
scribe an execution order between the roots of the ray trees, these
alternatives could be targeted with a rewrite pass similar to the one
we presently use to generate a megakernel.

7.1 Megakernel execution

A straightforward approach to megakernel execution is simple it-
eration over a switch-case construct. Inside each case, a user pro-
gram is executed and the result of this computation is the case, or
state, to select on the next iteration. Within such a state machine
mechanism, OptiX may implement function calls, recursion, and
exceptions.

Figure 11 illustrates a simple state machine. The program states
are simply inserted into the body of the switch statement. The state
index, which we call a virtual program counter (VPC), selects the
program snippet that will be executed next. Function calls are im-
plemented by setting the VPC directly, virtual function calls are
implemented by setting it from a table, and function returns simply
restore the state to the continuation associated with a previously
active function (the virtual return address). Furthermore, special
control flow such as exceptions manipulate the VPC directly, creat-
ing the desired state transition in a manner similar to a lightweight
version of the setjmp / longjmp functionality provided by C.

7.2 Fine-grained scheduling

While the straightforward approach to megakernel execution is
functionally correct, it suffers serialization penalties when the state
diverges within a single SIMT unit [Lindholm et al. 2008]. To
mitigate the effects of execution divergence, the OptiX runtime
uses a fine-grained scheduling scheme to reclaim divergent threads
that would otherwise lay dormant. Instead of allowing the SIMT
hardware to automatically serialize a divergent switch’s execution,

state = initialState;

while(state != DONE) {

next_state = scheduler();

if(state == next_state)

switch(state) {

// Insert cases here as before

}

}

Figure 12: Pseudo-code for megakernel execution through a state
machine with fine-grained scheduling.

SIMD Scheduling

#
 o

f
e
x
e
c
u
ti
o

n
s

p
e
r

p
ix

e
l

Default Schedule
Priority Schedule

State

Figure 13: The benefit of fine-grained scheduling with prioritiza-
tion. Bars represent the number of state executions per pixel. A
substantial reduction can be seen by scheduling the state transi-
tions with a fixed priority, as described in Section 7.2.

OptiX explicitly selects a single state for an entire SIMT unit to ex-
ecute using a scheduling heuristic. Threads within the SIMT unit
that do not require the state simply idle that iteration. The mecha-
nism is outlined in Figure 12.

We have experimented with a variety of fine-grained scheduling
heuristics. One simple scheme that works well determines a sched-
ule by assigning a static prioritization over states. By scheduling
threads with like states during execution, OptiX reduces the number
of total state transitions made by a SIMT unit, which can substan-
tially decrease execution time over the automatic schedule induced
by the serialization hardware. Figure 13 shows an example of such
a reduction.

7.3 Load balancing

In addition to minimizing SIMT execution divergence with a fine-
grained scheduler, OptiX employs a three-tiered dynamic load bal-
ancing approach on GPUs. Each ray tracing kernel launch is pre-
sented as a queue of data parallel tasks to the physical execution
units. The current execution model enforces independence between
these tasks, enabling the load balancer to dynamically schedule
work based on the characteristics of the workload and the execu-
tion hardware.

Work is distributed from the CPU host to one or more GPUs dy-
namically to enable coarse-grained load balancing between GPUs
of differing performance. Once a batch of work has been submitted
to a GPU, it is placed in a global queue. Each execution unit on the
GPU is assigned a local queue that is filled from the GPU’s global
queue and dynamically distributes work to individual processing
elements when they have completed their current job. This is an ex-

Figure 14: Recreation of Whitted’s sphere scene with user-
specified programs: sphere and rectangle intersection; glass, pro-
cedural checker, and metal hit programs; sky miss program; and
pinhole camera with adaptive anti-aliasing ray generation. Runs at
over 30 fps on a GeForce GTX480 at 1k by 1k resolution.

tension of the scheme used by [Aila and Laine 2009] to incorporate
dynamic load balancing between GPUs.

8 Application Case Studies

This section presents various use cases of OptiX by discussing the
basic ideas behind a number of different applications.

8.1 Whitted-style ray tracing

The OptiX SDK contains several example ray tracing applications.
One of these is an updated recreation of Whitted’s original sphere
scene [1980]. This scene is simple, yet demonstrates important fea-
tures of the OptiX engine.

The sample’s ray generation program implements a basic pinhole
camera model. The camera position, orientation, and viewing frus-
tum are specified by a set of program variables that can be modi-
fied interactively. The ray generation program begins the shading
process by shooting a single ray per pixel or, upon user request,
performing adaptive antialiasing via supersampling. The material
closest hit programs are then responsible for recursively casting
rays and computing a shaded sample color. After returning from
the recursion, the ray generation program accumulates the sample
color, stored in the ray payload, into an output buffer.

The application defines three separate pairs of intersection and
bounding box programs, each implementing a different geometric
primitive: a parallelogram for the floor, a sphere for the metal ball,
and a thin-shell sphere for the hollow glass ball. The glass ball
could have been modeled with two instances of the plain sphere
primitive, but the flexibility of the OptiX program model gives us
the freedom to implement a more efficient specialized version for
this case. Each intersection program sets several attribute variables:
a geometric normal, a shading normal, and, if appropriate, a texture
coordinate. The attributes are utilized by material programs to per-
form shading computations.

The ray type mechanism is employed to differentiate radiance from
shadow rays. The application attaches a trivial program that imme-
diately terminates a ray to the materials’ any hit slots for shadow
rays. This early ray termination yields high efficiency for mutual
visibility tests between a shading point and the light source. The
glass material is an exception, however: here, the any hit program
is used to attenuate a visibility factor stored in the ray payload. As a
result, the glass sphere casts a subtler shadow than the metal sphere.

float3 throughput = make_float3(1, 1, 1);

payload.nextRay = camera.getPrimaryRay();

payload.shootNextRay = true;

while(payload.shootNextRay == true) {

rtTrace(payload.nextRay, payload);

throughput *= payload.throughput;

}

sampleContribution = payload.lightColor * throughput;

Figure 15: Pseudo-code for iterative path tracing in Design
Garage.

8.2 NVIDIA Design Garage

NVIDIA Design Garage is a sophisticated interactive rendering
demonstration intended for public distribution. The top image of
Figure 1 was rendered using this software. The core of Design
Garage is a physically-based Monte Carlo path tracing system [Ka-
jiya 1986] that continuously samples light paths and refines an im-
age estimate by integrating new samples over time. The user may
interactively view and edit a scene as an initial noisy image con-
verges to the final solution.

To control stack utilization, Design Garage implements path tracing
using iteration within the ray generation program rather than recur-
sively invoking rtTrace. The pseudocode of Figure 15 summarizes.

In Design Garage, each material employs a closest hit program to
determine the next ray to be traced, and passes that back up using a
specific field in the ray payload. The closest hit program also cal-
culates the throughput of the current light bounce, which is used by
the ray generation to maintain the cumulative product of through-
put over the complete light path. Multiplying the color of the light
source hit by the last ray in the path yields the final sample contri-
bution.

OptiX’s support for C++ in ray programs allows materials to share
a generic closest hit implementation parameterized upon a BSDF
type. This allows us to implement new materials as BSDF classes
with methods for importance sampling as well as BSDF and prob-
ability density evaluation. Design Garage implements a number
of different physically-based materials, including metal and auto-
motive paint. Some of these shaders support normal and specular
maps.

While OptiX implements all ray tracing functionality of Design
Garage, an OpenGL pipeline implements final image reconstruc-
tion and display. This pipeline performs various post processing
stages such as tone mapping, glare, and filtering using standard
rasterization-based techniques.

8.3 Image Space Photon Mapping

Image Space Photon Mapping (ISPM) [McGuire and Luebke 2009]
is a real-time rendering algorithm that combines ray tracing and
rasterization strategies (Figure 16). We ported the published im-
plementation to the OptiX engine. That process gives insight into
the differences between a traditional vectorized serial ray tracer and
OptiX.

The ISPM algorithm computes the first segment of photon paths
from the light by rasterizing a “bounce map” from the light’s refer-
ence frame. It then propagates photons by ray tracing with Russian
Roulette sampling until the last scattering event before the eye. At
each scattering event, the photon is deposited into an array that is
the “photon map”. Indirect illumination is then gathered in image
space by rasterizing a small volume around each photon from the

Figure 16: ISPM real-time global illumination. A recursive closest hit program in OptiX implements the photon trace.

eye’s viewpoint. Direct illumination is computed by shadow maps
and rasterization.

Consider the structure of a CPU-ISPM photon tracer. It launches
one persistent thread per core. These threads process photon paths
from a global, lockless work queue. ISPM photon mapping gen-
erates incoherent rays, so traditional packet strategies for vector-
izing ray traversal do not help with this process. For each path,
the processing thread enters a while-loop, depositing one photon in
a global, lockless photon array per iteration. The loop terminates
upon photon absorption.

Under OptiX-ISPM we also maintain global lockless input and
output buffers. Trace performance increases with the success of
fine-grain scheduling of programs into coherent SIMT units and
decreases with the size of state communicated between programs.
Mimicking a traditional CPU-style of software architecture would
be inefficient under OptiX because it would require passing all ma-
terial parameters between the ray generation and hit programs and
a variable iteration while-loop in the closest hit program. OptiX-
ISPM therefore follows an alternative design that treats all prop-
agation iterations as co-routines. It contains a single ray genera-
tion program with one thread per photon path. A recursive closest
hit program implements the propagate-and-deposit iterations. This
allows threads to yield between iterations so that the fine-grained
scheduler can regroup them.

We note that the broad approach taken here is a way of unifying
a raster graphics API like OpenGL or DirectX with ray tracing
primitives without extending the raster API. Deferred shading is a
form of yielding, where the geometry buffers are like a functional-
programming continuation that holds the state of an interrupted
pixel shader. Those buffers are treated as input by the OptiX API.
It writes results out to another buffer, and we then effectively re-
sume the shading process by rendering volumes over the geometry
buffers with a new pixel shader.

8.4 Collision Detection

OptiX is intended to be useful for non-rendering applications as
well. The center panel in Figure 1 shows an OpenGL visualiza-
tion from a collision detection and line-of-sight engine built on the
OptiX engine. In this example, the engine is simulating 4096 mov-

Scene Conference Fairy Forest Sibenik

Triangles 283 k 174 k 80 k
Primary 137 78 112

A.O. 120 89 99
Primary 91 59 86

A.O. 72 45 65
Compilation penalty 34% to 40% 24% to 49% 23% to 35%

Primary 252 143 222
A.O. 193 140 173

Primary 192 103 161
A.O. 129 78 114

Compilation penalty 24% to 33% 28% to 44% 27% to 34%

G
TX
28

5
G
TX
48

0
Mrays/s Mrays/s Mrays/sAila-‐Laine

(Manual)

OptiX
(Compiled)

Aila-‐Laine
(Manual)

OptiX
(Compiled)

Mrays/s Mrays/s Mrays/s

Table 1: The cost of OptiX API flexibility and abstraction is a
reduction in performance compared to a domain-specific hand-
optimized GPU ray tracer [Aila and Laine 2009]. On our bench-
mark scenes, this penalty is about 25-35% of peak Mrays/s as of the
time of this writing.

ing objects, tracing rays against a static 1.1 million polygon scene.
The engine traces 512 collision probe rays from each object center
using a closest hit program, and 40962/2 line-of-sight rays between
all pairs of objects using an any hit program. Including time to pro-
cess the collision results and perform object dynamics, the engine
achieves 25 million rays/second on GeForce GTX 280 and 48 mil-
lion rays per second on GTX 480. While a ray casting approch
is not robust to all collision operations, it is an oft-used technique
because of its simplicity.

9 Performance Results

All results in this section were rendered at HD 1080p (1920×1080)
resolution. To evaluate the basic performance reachable by OptiX
kernels, we recreated some of the experiments performed in [Aila
and Laine 2009] using the same scenes and camera positions. We
compared our generated kernels against these manually optimized
kernels to measure the overhead created by software abstraction
layers. We measured raw ray tracing and intersection times, ignor-
ing times for scene setup, kernel compilation, acceleration structure
builds, buffer transfers, etc. Equivalent acceleration structures and
timing mechanisms were used in both systems. Table 1 shows the

Whitted-‐style Path Tracing
FX5800 1.0 fps 0.3 fps

2 x FX5800 2.0 fps 0.6 fps

GTX480 4.5 fps 1.5 fps

Table 2: Design Garage application performance at HD 1080p for
a 910 k-triangle sports car scene, on a variety of GPU configura-
tions. Frame rates include ray tracing, shading, and postprocess-
ing. The path traced result is shown in Figure 1 (top).

results for runs on NVIDIA GeForce GTX 285 and GeForceGTX
480 GPUs averaged over the same 5 viewpoints used in the origi-
nal paper. While, as expected, the flexibility and programmability
of OptiX comes at a price, the performance gap is still acceptable.
The largest gap exists for ambient occlusion rays, which is partially
due to a remaining deficiency in the benchmark. In particular, we
did not perform ray sorting and used a lower number of secondary
rays per pixel for our measurements.

Table 2 shows performance numbers for Design Garage (see Sec-
tion 8.2) on NVIDIA Quadro FX5800 and GeForce GTX 480
GPUs, which is more indicative of a real scene than the above test.
This application is challenging for several reasons. First, it is a
physically-based path tracing code with complex sampling, mul-
tiple materials, and many other features. This results in a large
kernel that requires many registers, thus reducing the number of
threads that can run in parallel on the GPU. Second, threads are
more likely to diverge early due to diffuse or glossy light bounces
that result in different material shaders being executed, causing re-
duced SIMT efficiency. Third, a division of scene geometry into
multiple acceleration structures (to support animation) additionally
increases the number of operations for ray traversal compared to
a monolithic data structure. Nevertheless, the OptiX engine can
successfully combine all of these various programs and still make
Design Garage fast enough to offer interactive modification of the
scene and convergence to a photorealistic image within seconds.

We also compared the OptiX-ISPM implementation to the pub-
lished CPU implementation on an Intel Core 2 Quad computer with
a GTX485 GPU rendering at HD 1080p resolution. We evaluated
20 scenes, including the “Sponza atrium” and “NS2” [McGuire and
Luebke 2009]. Table 3 summarizes performance results for four
representative scenes. All were rendered with 4×4 subsampling in
the global gathering step. Local illumination time includes geome-
try buffers and shadow maps. I/O time measures the data transfers
between OpenGL and CPU or CUDA memory. Net time is Local
+ Global + Trace + I/O. The typical speedup was about 4× for the
trace and 2.5× overall. “NS2” yielded the lowest net speedup, with
the OptiX photon trace 3.0× faster than the CPU one and the net
time 1.8× faster. Note that being on the same side of the PCI bus is
as important as computational performance. Avoiding CPU-GPU
data transfer can reduce I/O time by as much as 50%. Improving
data exchange efficiency between the two APIs will further reduce
the cost of this data transfer.

10 Limitations and Future Work

Currently, the OptiX runtime supports double-precision operations
in programs, but rays are stored in single-precision. For some ap-
plications it would be desirable to have a double-precision ray. Ex-
tensions to the OptiX buffer mechanism would make some applica-
tions easier, such as operations for append, reductions, and sorting
values. In some applicatons, a dynamic memory allocation mecha-
nism may also be required.

Scene Sponza Frog Ironworks NS2

Tris 66 k 104 k 178 k 405 k
Emitted Photons 262 k 121 k 200 k 100 k

Photon Hits 489 k 183 k 390 k 178 k
McGuire-‐Luebke Trace time 106 56 119 37
(Quad Core2) I/O time 44 22 43 14

OptiX Trace time 15 12 17 12
(GTX480) I/O time 17 10 14 5

Local Illum. 13 16 23 15
Global Gather 13 6 20 9

OptiX Trace Speedup 4.7 x 3.6 x 5.2 x 3.0 x
OptiX Net Speedup 3.0 x 2.3 x 2.8 x 1.8 x

All 4x4 subsampling

OpenGL

ms ms msms msms

Table 3: Comparison of trace time and OpenGL↔ray tracer data
transfer at HD 1080p resolution for CPU [McGuire and Luebke
2009] and OptiX ISPM implementations. Both have the same local
illumination and global gather times. The OptiX photon trace is
about 2.5× faster than the CPU one.

As with most compilers, there are endless opportunities for addi-
tional optimization passes that will be added as we gain experience
with the system on important applications. In addition, it would
be interesting to see additional shading languages target OptiX
through PTX.

OptiX acceleration structures are built using the bounding box pro-
gram or a special API that supports only triangle data. To create
better acceleration structures for programmable geometry, it would
be beneficial to generalize the acceleration structure builds to allow
additional programmable operations. This might include a user-
defined box/primitive overlap test among other operations. OptiX
supports several types of acceleration structures, but currently does
not provide a mechanism for the user to implement their own.

11 Conclusion

The OptiX system provides a general-purpose and high perfor-
mance ray tracing API. OptiX balances ease of use with perfor-
mance by presenting a simple programming model, based on a
programmable ray tracing pipeline for single-ray user programs,
that can be compiled into an efficient self-scheduling megakernel.
Thus the heart of OptiX is a JIT compiler that processes programs,
snippets of user-specified code in the PTX language. OptiX asso-
ciates these programs with nodes in a graph that defines the geo-
metric configuration and acceleration data structures against which
rays are traced. Our contributions include a low-level ray trac-
ing API and associated programming model, the concept of a pro-
grammable ray tracing pipeline and the associated set of program
types, a domain-specific JIT compiler that performs the megaker-
nel transformations and implements several domain-specific opti-
mizations, and a lightweight scene representation that lends itself
to high-performance ray tracing and supports, but does not restrict,
the structure of the application scene graph. The OptiX ray trac-
ing engine is a shipping product and already supports a wide range
of applications. We illustrate the broad applicability of OptiX with
multiple examples ranging from simplistic to fairly complex.

Acknowledgments

The car, frog, and engine model in Figure 1 are courtesy of Tur-
boSquid. The bunny model in Figures 16 and 4 is courtesy of
the Stanford University Graphics Lab. Phil Miller was instrumen-
tal in keeping the effort on track. The authors appreciate valuable
comments from Dr. Greg Humphreys and benefited greatly from
groundwork and numerous conversations on ray tracing with mem-
bers of NVIDIA Research and the SceniX team.

References

AILA, T., AND LAINE, S. 2009. Understanding the Efficiency of
Ray Traversal on GPUs. In Proceedings of High-Performance
Graphics 2009, 145–149.

BIGLER, J., STEPHENS, A., AND PARKER, S. G. 2006. Design
for Parallel Interactive Ray Tracing Systems. In Proceedings of
the 2006 IEEE Symposium on Interactive Ray Tracing, 187–196.

BIKKER, J. 2007. Real-time Ray Tracing Through the Eyes of
a Game Developer. In RT ’07: Proceedings of the 2007 IEEE
Symposium on Interactive Ray Tracing, 1–10.

CAUSTIC GRAPHICS, 2009. Introduction to CausticRT.
http://www.caustic.com/pdf/Introduction to CausticRT.pdf.

DIETRICH, A., WALD, I., BENTHIN, C., AND SLUSALLEK, P.
2003. The OpenRT Application Programming Interface – To-
wards A Common API for Interactive Ray Tracing. In Proceed-
ings of the 2003 OpenSG Symposium, 23–31.

DJEU, P., HUNT, W., WANG, R., ELHASSAN, I., STOLL, G.,
AND MARK, W. R. 2007. Razor: An Architecture for Dynamic
Multiresolution Ray Tracing. Tech. Rep. TR-07-52.

GEORGIEV, I., AND SLUSALLEK, P. 2008. RTfact: Generic
Concepts for Flexible and High Performance Ray Tracing.
In IEEE/Eurographics Symposium on Interactive Ray Tracing
2008.

GOLDSMITH, J., AND SALMON, J. 1987. Automatic Creation of
Object Hierarchies for Ray Tracing. IEEE Computer Graphics
and Applications 7, 5, 14–20.

GREEN, S. A., AND PADDON, D. J. 1990. A Highly Flexible
Multiprocessor Solution for Ray Tracing. The Visual Computer
6, 2, 62–73.

GRIBBLE, C. P., AND RAMANI, K. 2008. Coherent Ray Tracing
via Stream Filtering. In Proceedings of the 2006 IEEE Sympo-
sium on Interactive Ray Tracing, 59–66.

HAVRAN, V. 2001. Heuristic Ray Shooting Algorithms. PhD thesis,
Faculty of Electrical Engineering, Czech Technical University in
Prague.

HORN, D. R., SUGERMAN, J., HOUSTON, M., AND HANRAHAN,
P. 2007. Interactive k-d tree gpu raytracing. In I3D ’07: Pro-
ceedings of the 2007 symposium on Interactive 3D graphics and
games, ACM, New York, NY, USA, 167–174.

KAJIYA, J. T. 1986. The Rendering Equation. In Computer Graph-
ics (Proceedings of ACM SIGGRAPH), 143–150.

LATTNER, C., AND ADVE, V. 2004. LLVM: A Compilation
Framework for Lifelong Program Analysis & Transformation.
In CGO ’04: Proceedings of the 2004 International Symposium
on Code Generation and Optimization.

LAUTERBACH, C., EUI YOON, S., AND MANOCHA, D. 2006.
RT-DEFORM: Interactive Ray Tracing of Dynamic Scenes us-
ing BVHs. In In Proceedings of the 2006 IEEE Symposium on
Interactive Ray Tracing, 39–45.

LAUTERBACH, C., GARLAND, M., SENGUPTA, S., LUEBKE, D.,
AND MANOCHA, D. 2009. Fast BVH Construction on GPUs.
Computer Graphics Forum (Proceedings of Eurographics) 28, 2,
375–384.

LINDHOLM, E., NICKOLLS, J., OBERMAN, S., AND MONTRYM,
J. 2008. NVIDIA Tesla: A Unified Graphics and Computing
Architecture. IEEE Micro 28, 39–55.

MACDONALD, J. D., AND BOOTH, K. S. 1989. Heuristics for Ray
Tracing using Space Subdivision. In Proceedings of Graphics
Interface, 152–63.

MCGUIRE, M., AND LUEBKE, D. 2009. Hardware-Accelerated
Global Illumination by Image Space Photon Mapping. In Pro-
ceedings of the 2009 ACM SIGGRAPH/EuroGraphics confer-
ence on High Performance Graphics.

MUUSS, M. J. 1995. Towards Real-Time Ray-Tracing of Combi-
natorial Solid Geometric Models. In Proceedings of BRL-CAD
Symposium.

NVIDIA, 2010. NVIDIA OptiX Ray Tracing Engine Program-
ming Guide Version 2.0. http://developer.nvidia.com/object/-
optix-home.html.

NVIDIA, 2010. PTX: Parallel Thread Execution ISA Version
2.0. http://developer.download.nvidia.com/compute/cuda/3 0/-
toolkit/docs/ptx isa 2.0.pdf.

PARKER, S. G., MARTIN, W., SLOAN, P.-P. J., SHIRLEY, P.,
SMITS, B. E., AND HANSEN, C. D. 1999. Interactive Ray
Tracing. In SI3D, 119–126.

POPOV, S., GÜNTHER, J., SEIDEL, H.-P., AND SLUSALLEK, P.
2007. Stackless kd-tree traversal for high performance gpu ray
tracing. Computer Graphics Forum 26, 3 (Sept.). (Proceedings
of Eurographics), to appear.

RESHETOV, A., SOUPIKOV, A., AND HURLEY, J. 2005. Multi-
Level Ray Tracing Algorithm. ACM Transactions on Graphics
(Proceedings of ACM SIGGRAPH), 1176–1185.

SHEVTSOV, M., SOUPIKOV, A., AND KAPUSTIN, A. 2007.
Highly Parallel Fast KD-tree Construction for Interactive Ray
Tracing of Dynamic Scenes. Computer Graphics Forum 26, 3,
395–404.

STICH, M., FRIEDRICH, H., AND DIETRICH, A. 2009. Spatial
Splits in Bounding Volume Hierarchies. In Proceedings of High-
Performance Graphics 2009, 7–13.

WALD, I., BENTHIN, C., WAGNER, M., AND SLUSALLEK, P.
2001. Interactive Rendering with Coherent Ray Tracing. In
Computer Graphics Forum (Proceedings of Eurographics 2001),
vol. 20.

WALD, I., BOULOS, S., AND SHIRLEY, P. 2007. Ray Tracing De-
formable Scenes using Dynamic Bounding Volume Hierarchies.
ACM Transactions on Graphics 26, 1.

WALD, I., MARK, W. R., GÜNTHER, J., BOULOS, S., IZE, T.,
HUNT, W., PARKER, S. G., AND SHIRLEY, P. 2007. State of
the Art in Ray Tracing Animated Scenes. In STAR Proceedings
of Eurographics 2007, 89–116.

WHITTED, T. 1980. An Improved Illumination Model for Shaded
Display. Commun. ACM 23, 6, 343–349.

WOOP, S., SCHMITTLER, J., AND SLUSALLEK, P. 2005. RPU:
A Programmable Ray Processing Unit for Realtime Ray Trac-
ing. ACM Transactions on Graphics (Proceeding of ACM SIG-
GRAPH) 24, 3, 434–444.

ZHOU, K., HOU, Q., WANG, R., AND GUO, B. 2008. Real-
Time KD-Tree Construction on Graphics Hardware. In ACM
Transactions on Graphics (Proceedings of SIGGRAPH ASIA),
1–11.

