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Figure 1: Left) Photograph and right) image rendered by our algorithm, demonstrating transmissive shadowing phenomena it correctly
simulates, including: a) directly illuminated transmissive surfaces receive no shadowing; b) surfaces indirectly illuminated by transmitted
light exhibit shadows matching the product of the transmitter’s and receiver’s spectra, which also leads to c) colored highlights; and d) the
shadows of multiple transmitters are the product of all the transmitters’ spectra with the receiver’s spectrum.

Figure 2: Left) A Williams shadow map and right) new Colored
Stochastic Shadow Map for the scene shown in figure 1.

Abstract

This paper extends the stochastic transparency algorithm that mod-
els partial coverage to also model wavelength-varying transmission.
It then applies this to the problem of casting shadows between any
combination of opaque, colored transmissive, and partially cov-
ered (i.e., α-matted) surfaces in a manner compatible with existing
hardware shadow mapping techniques. Colored Stochastic Shadow
Maps have a similar resolution and performance profile to tradi-
tional shadow maps, however they require a wider filter in colored
areas to reduce hue variation.
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1 Introduction

Translucent materials are visually appealing. Yet designers of inter-
active programs tend to avoid them because of a lack of rendering
algorithms compatible with translucency. This paper presents an
efficient and practical method for rendering correct shadows in the
presence of colored translucency. It is motivated by a desire to solve
the problem of translucent shadowing in a general way that fits the
architecture and performance constraints of typical real-time sys-
tems like games.

This paper introduces the Colored Stochastic Shadow Map (CSSM)
data structure, which is named both for the fact that it produces the
phenomena of colored shadows and for its appearance when visu-
alized (figure 2). It packs into as few as 32 bits per texel, renders at
about the same rate as a traditional shadow map, and can accurately
simulate shadows between any combination of colored1 opaque,
non-refractive transmissive, and partial coverage (i.e., α-matted)
surfaces, including single-scattering particle systems. CSSM re-
quires only one order-independent pass over geometry to generate
and has no limit on the number of overlapping translucent layers. It
has the nice theoretical property that the primary artifact, stochastic
color noise, can be driven arbitrarily low by increasing the reso-
lution, filter radius, and filter shape—practices already in use to
mitigate aliasing in traditional shadow maps.

As is often the case in real-time rendering, the competing con-
straints of space, time, bias, variance, artistic control and general-
ity make it impossible to declare one technique strictly better than
another. CSSM is good for cases where multiple colored translu-
cent surfaces may be present in a scene and for which realistic and
consistent results are considered important. However, shadowing
through translucent surfaces is a complex phenomenon and render-
ing it correctly is not necessary for all applications. This argument
holds for even opaque shadowing—the dark blob under an object
is the significant perceptual cue, not the precise shape or shade.
In the extreme, simple colored-disk drop shadows may be the best

1“Color” is technically a perception, not a physical property. We follow
the common substitution of “colored” for “wavelength-dependent.”



choice for some applications. In others, limiting translucency to a
single surface may be appropriate [Filion and McNaughton 2008].
CSSM can provide shadowing at about the same performance as
single-transmissive surface algorithms, but it is most valuable for
the generality that allows it to produce shadows for unconstrained
geometry.

This paper contributes:

1. Unification of the contributions of partial coverage and trans-
mission models into a probabilistic colored translucency
model (section 3.1)

2. The CSSM1 algorithm, which directly samples the shadow-
ing of colored translucent surfaces for arbitrary wavelengths
(section 3.2)

3. An optimized CSSM2 algorithm for RGB rendering, which
has comparable time and space performance to traditional
opaque shadow maps (section 3.3)

There are many sources of “translucency” (see Appendix). Our
algorithms address shadows from non-refractive transmissive and
partially covering surfaces, as well as surfaces that are simultane-
ously transmissive and partially covering. Emission, bloom, and
lens flare do not involve an obscuring surface, so they are indepen-
dent of our algorithms. Our algorithms naturally support antialias-
ing of both eye and shadow rays. We do not address motion and
defocus blur, which is an area of active research.

2 Related Work

The classic graphics method of screen-door translucency models
partial coverage by a binary sample coverage mask of fully-opaque
and fully-transparent elements. The fraction of fully-opaque ele-
ments is equal to the amount of partial coverage (α). Enderton et
al. [2010] observed that using random screen-door masks and or-
dinary z-buffer rendering results in the correct image, plus some
stochastic noise, and they introduced several methods for increas-
ing the effectiveness of this method for both eye and shadow rays.
At its simplest, their stochastic transparency shadow map is an or-
dinary shadow map rendered with a random screen-door mask for
each transparent triangle. CSSM extends this algorithm to colored
translucency and optimizes it for RGB wavelengths and low sam-
pling rates. We focus on shadowing instead of eye rays for two
reasons. Viewers are more tolerant of blurry shadows than a blurry
view, so one can do more filtering there. Shadow translucency is a
more significant problem than eye ray translucency for games be-
cause far-to-near rendering of convex parts is inconvenient but suf-
ficient for correct translucency in the camera’s view but does not
solve translucent shadowing.

Yang et. al’s method [2010] for implementing per-pixel linked lists
on a GPU directly applies to the colored translucent shadow prob-
lem. Its benefits are a noise-free solution and full control over the
interaction of layers for a fixed maximum number of layers. Our
stochastic method has no limit to the number of surfaces (e.g. Fig-
ure 6) and works on both new PC GPUs and existing consoles.

Johnson et al. [2009] describe a similar linked list mechanism for
the partial occlusion in the penumbrae of area lights.

Lokovic and Veach [2000] created a deep shadow map that stores
every translucent fragment overlapping a pixel as a linked list or
array. This can be used to produce ideal shadowing. Various meth-
ods have since been developed for constructing and applying this
data structure for real-time rasterization rendering. These use clever
GPGPU methods but are ultimately limited by the fact that the
structure inherently requires unpredictable space and time per pixel.

Figure 3: Light shafts rendered by combining CSSM with
Mitchell’s method [2004]. The light source is a distant white spot-
light representing the sun; colors arise from the translucent shad-
ows cast by the stained glass windows.

CSSM can be viewed as a stochastic equivalent of a deep shadow
map that fits within the existing rendering pipeline.

Gosselin et al. [2004] compute a projective texture for the light
based on transmissive surfaces in the scene. A closely related tech-
nique from Starcraft II [Filion and McNaughton 2008] augments a
traditional shadow map with a color buffer. The shadow depth map
is computed solely from opaque surfaces. The shadow color buffer
is the product of all transmissive surfaces closer to the light than the
opaque depth, as seen by the light. The limitations of these methods
are that they cannot cast shadows on transmissive surfaces, cannot
cast proper shadows on participating media like fog and smoke, are
incorrect for more than one layer of transmission, and cannot model
partial coverage receivers or casters.

Dachsbacher and Stamminger’s [2003] similary-named translucent
shadow maps (TSM) are unrelated to CSSM. TSM are primarily for
modeling subsurface scattering, not transmission and partial cover-
age of discrete surfaces.

Mitchell [2004] describes an extremely practical method based on
work by Dobashi et al. [2002] that is today employed by games
for simulating single-scattering in participating media. His method
renders a traditional shadow map from opaque objects only and then
fills the scene with hundreds of translucent fog planes that receive
the shadowing. This produces compelling light shafts, which can
have color if the light has a projective texture or the fog planes
have colored texture. Under Mitchell’s original method, translucent
objects cannot cast shadows, however, it naturally extends to use the
new CSSM as shown in figures 3 and 4.

Opacity shadow maps [Kim and Neumann 2001], occu-
pancy maps [Sintorn and Assarsson 2009] and Fourier opacity
maps [Jansen and Bavoil 2010] form low-frequency representations
of a transmissive volume. These are well-suited to hair and dense
participating media (like smoke), with uniform spectral response
and no discrete surfaces. CSSM produces more noise and is ineffi-
cient for such materials, but can more accurately and efficiently rep-
resent layered discrete surfaces. Figure 6 contains depth-slicing ar-
tifacts from directly applying CSSM to particle-system smoke. This
is a case where one would prefer some new extension of Fourier
opacity maps to colored translucency.



3 Algorithms

3.1 Combining Coverage and Transmission

Let the following probabilistic events be defined at the incidence of
a photon of wavelength λ and a surface that lies within a triangle:

A = “The photon hits the triangle surrounding the surface”
S = “The photon hits the surface itself”
T = “The photon is transmitted through the surface”

An example of the distinction between a surface and a triangle is
an object like a tree leaf modeled with a triangle larger than the leaf
and the exterior region trimmed away with a region of α = 0, that
should be considered “not present.” Partial coverage is a statistical
representation of this for surfaces like window screens where the
holes are spread throughout the triangles.

Let the probability that a photon strikes the surface, given that the
photon hit the triangle bounding the area spanned by the surface, be
P(S | A) = α. Let the probability that a photon at wavelength λ is
transmitted by a surface, given that it hit the surface, be P(T | S) =
~tλ. For example, the some surfaces might be modeled as:

Material α ~tr ~tg ~tb
Green glass 1.00 0.1 0.9 0.1
“Clear” nylon screen 0.25 0.5 0.5 0.5
Brick 1.00 0.0 0.0 0.0
Black nylon screen 0.25 0.0 0.0 0.0

Transmission ~t and coverage α can vary across a texture map.

The net probability of a photon incident on the triangle being ab-
sorbed or reflected conveniently reduces to:

~ρλ = P(T̄ | A) = 1− P
([

(S ∩ T ) ∪ S̄
]
| A

)
~ρλ = (1− ~tλ)α (1)

In other words, ~ρλ is the fraction of light at each wavelength that
hits the surface and is not transmitted, which is the constant we
require for colored stochastic shadow casting.

3.2 General Algorithm (CSSM1)
Given the derivation from section 3.1, we simply extend stochastic
transparency shadow maps [Enderton et al. 2010] to include non-
refractive colored transmission. We call this algorithm CSSM1. It
requires an array of shadow maps, one for each wavelength (e.g.,
three for RGB.)

The algorithm has two parts: (1) generate color shadow maps based
on ρ, and (2) compute net illumination ~I using the shadow map and
light color ~L. We call part 2 shadowedLightColor() and invoke it for
each shading sample. It is analogous to percentage-closer filtering
(PCF) for traditional opaque shadow maps [Reeves et al. 1987].

In the CSSM1 pseudocode listing, ~ξ is a vector of uniformly dis-
tributed random numbers on [0, 1], which we compute by a hash
of the fragment’s world-space position, following Enderton et al.
Let the boolean→real mapping of the greater-than comparison be:
false→0, true→1. The texture2D function corresponds to the
GLSL 1.50 texture sampling function. The sample and compare
can be replaced with the shadow2D function, which is incorporated
into the overloaded texture function for sampler2DShadow argu-
ments under GLSL 3.30. We present an explicit depth comparison
here to set up the later derivation of the CSSM2 algorithm.

ShadowedLightColor must be applied in the context of some other
algorithm for rendering translucent surfaces with correct eye ray

visibility, e.g., the painter’s algorithm, depth peeling, or an order-
independent transparency method.

There are two drawbacks to the CSSM1 algorithm. The first is that
it must render and sample multiple shadow maps. This increases
the shadow map generation time, memory space, and shadow band-
width required when shading. The second drawback is that CSSM1
may require more shadow samples when shading than a traditional
shadow map to produce pleasingly smooth results. This is because
of the variance inherent in the stochastic sampling during shadow
map generation and is inherited from stochastic transparency, which
also requires many samples per pixel.

CSSM1 ALGORITHM

generateShadowMap():
1. For each wavelength λ:

(a) Bind and clear depth texture shadow[λ]
(b) Set the projection matrix from the light’s viewpoint
(c) Render all surfaces; discard fragments with ~ξλ > ~ρλ

2. Return the shadow array

shadowedLightColor():
1. Let ~sxyz be the projected shadow map texture coordinate

and depth value (as specified by GLSL shadow2D)
2. For each wavelength λ:

(a) Let Iλ = 0
(b) For each sample offset ∆ (of n total):

i. ~Iλ += (texture2D(shadow[λ], ~sxy + ~∆).r > ~sz)
(c) ~Iλ = ~Lλ · ~Iλ/n

3. Return ~I

3.3 Efficient Algorithm for the RGB Case (CSSM2)

The CSSM2 algorithm is a time and space optimization of CSSM1
for the common case of RGB wavelength samples. To avoid ren-
dering three shadow maps, the CSSM2 algorithm packs three depth
buffers into a single color texture. This immediately yields a 3x
performance increase for shadow map generation. It also saves
bandwidth and instructions, increases coherence, and allows vec-
torization in both shadow map generation and fragment shading.

The challenge is encoding depth values in color channels without
losing the hierarchical and early-z tests and basic depth-test func-
tionality, which are tied to depth textures under current GPUs and
APIs. Our approach is to retain a temporary depth buffer for opaque
surfaces and use min-blending of color channels to simulate a depth
test for translucent surfaces. Many real-time systems render all
shadow maps to textures before all visible surfaces to allow mul-
tiple lights in each shading pass. The downside of this approach is
that all shadow maps must be resident simultaneously, and on con-
soles texture memory is fairly limited. Fortunately, the CSSM2 data
structure is just the color texture; the depth texture is only needed
to construct the color texture. Thus the memory for a single depth
texture may be shared among all lights.

CSSM2 addresses the primary drawback of CSSM1 because it
eliminates the triple-shadow map and per-wavelength loops. For
scenes that can be rendered with 10-bit shadow map depth pre-
cision, the CSSM2 algorithm requires only 2/3 the memory of
CSSM1 because it packs into 30 bits per pixel using the OpenGL
GL RGB10 texture format, versus three GL DEPTH16 textures. That is
fairly limited depth precision, although it is reasonable for scenes
with limited vertical range and overhead lights.We rendered all re-
sults in this paper with GL RGB16F textures, which we recommend
for general scenes, and observed no performance difference from
the 50% higher bandwidth.



CSSM2 ALGORITHM

generateShadowMap():
1. Set the projection matrix from the light’s viewpoint
2. Bind and clear the depth buffer and shadow color buffer

3. Disable color write, enable depth write
4. Render all opaque surfaces

5. Enable color write, disable depth write
6. Copy depth to all color channels by rendering a large quad

7. Set MIN blending
(i.e., glBlendEq(BLEND MIN); glBlendFunc(ONE, ONE))

8. Render all translucent surfaces; let each fragment’s color be
max(z, (~ξ > ~ρ)), where z is the fragment’s depth value
(i.e., glFragCoord.z)

9. Return the shadow color buffer texture

shadowedLightColor():
1. Let ~sxyz be the projected shadow map texture coordinate

and depth value
2. Let ~I = ~0
3. For each sample offset ~∆ (of n total):

(a) ~I += (texture2D(shadow, ~sxy + ~∆).rgb > ~sz)
4. Return ~L~I/n

3.4 Choosing the Sample Offsets

As with traditional shadow maps, a regular block of ~∆-offsets is
inferior to a distributed pattern [Reeves et al. 1987]. A regular block
makes adjacent pixels statistically dependent, which leads to low-
frequency noise in light space. In the case of CSSM, that noise
manifests as color splotches in shadows.

Designing a shadow filter for a very low sample count is some-
thing of a black art because theoretical signal processing considera-
tions become swamped by the particulars of human perception, the
scene texture, artifacts from other effects, and the characteristics of
specific noise functions. We informally investigated n-rooks, box,
disk, and random striated filters, then selected and tuned a box-
plus-cross-shaped filter for its empirical performance and aliasing
characteristics. We report that filter here and observe that it gives
a reasonably low variance and consistent shadow term estimate at
high performance, but make no quantitative claims about its vari-
ance reduction properties. We suggest as future work that a better
filter could further improve image quality.

The CSSM2 filter contains 13 single taps placed relative to the cen-
ter, in texels, at locations

~∆i = ~Xi + ~δ(~sxy) (2)
~Xi ∈{(0, 0), (±3,±3), (±4, 0), (0,±4), (±7, 0), (0,±7)} (3)

The micro-offset ~δ provides jittering. It ensures that single-pixel
noise appears instead of large texel blocks when a shadow map texel
projects to multiple screen pixels. This is a common technique that
is an alternative to bilinear interpolation as a texture magnification
method for shadows. We sought to mimic a similar effect from the
Futuremark Games Studio title Shattered Horizon, and chose the
particular jitter function

~δ(~sxy) =
[(5~sxy) mod (2, 2)]− (1, 1)

6
(∣∣∣∣∣∣ ∂~sxy

∂x

∣∣∣∣∣∣
1
,
∣∣∣∣∣∣ ∂~sxy

∂y

∣∣∣∣∣∣
1

) , (4)

in which || · ||1 denotes Manhattan distance. The strange denomi-
nator arises because the Manhattan distance of a spatial derivative
is supported by specific OpenGL/DirectX API calls and GPU hard-
ware that provide derivative estimates by finite differences across
sets of four pixels. This noise function is a simplified version of a
more sophisticated one described by Mittring [2007] that was used
in CryEngine 2. The filter gave results roughly comparable to a
9-tap bilinear filter of diameter five texels for traditional shadow
maps. The CSSM2 filter needs to be wider than the bilinear filter
to reduce stochastic variance because it cannot average four values
per tap using hardware PCF sampling.

3.5 Graphics API Considerations

Like traditional shadow maps, the CSSM algorithm only depends
on some high-level features of a renderer and is therefore largely
independent of the implementation API. Nonetheless, the design
of a specific API can affect the implementation complexity and
constant-factor performance.

Hardware Anti-Aliasing Many renderers use multi-sample an-
tialiasing (MSAA) to shade only once per fragment but sample
visibility at multiple locations, which improves the quality of an-
tialiasing without incurring a proportional cost. Compared to tra-
ditional shadow maps, there is no new interaction with MSAA
when shading visible surfaces. However, when generating the
shadow map one can leverage MSAA to increase performance.
Rendering the CSSM at 1/8 resolution with 8 MSAA samples per
pixel, yields equivalent coverage at reduced rendering cost. To en-
sure that the stochastic masking is performed per sample and not
per pixel, replace the per-fragment discard decision with a per-
coverage-mask element decision (by writing to gl SampleMask[]

in OpenGL 4.0/DirectX 10.1). This approach was not viable for
older GPUs with high-latency multisample texture fetches, but we
consider it the preferred approach for newer GPUs (e.g., NVIDIA
GeForce 480) that natively support multisample buffers.

Percentage-Closer Filtering Optimizations Percentage-closer
filtering (PCF) [Reeves et al. 1987] will average the result of four
depth tests if a single shadow comparison (shadow2D) is made to the
point between four texels in a depth map. This allows those GPUs
to issue fewer texture fetch instructions in the high-level shading
language, which may lead to performance gains depending on the
low-level architecture. Because OpenGL’s shadow2D is only defined
for the red channel of a depth texture, CSSM2 is API-limited to not
use this instruction.

Some GPUs, including the Xbox 360 GPU, do not support PCF and
thus CSSM2 has the same memory behavior as a traditional shadow
map on them (albeit at 3× the bandwidth). Newer GPUs support
the DirectX 11 and OpenGL 3.3 four-texel fetch instruction, which
allows the texture fetch for percentage-closer style filtering to be
issued efficiently across all vendors. CSSM2 should have the same
memory performance as a traditional shadow map if implemented
with this instruction.

4 Results

4.1 Quality

Figure 4 demonstrates the correctness of CSSM in comparison to
previous algorithms, which are denoted by abbreviated citations.
The scene contains a blue crystal statue, pierced by a beam of light
from a high window. The scene is filled with low-coverage, highly
reflective particles that do not cast shadows themselves. These are
rendered as full-screen textured quads that fill the view frustum,
following Mitchell [2004]. This causes the light shaft to be visible.



a) End10/Fil09: no color b) Gos04: wrong color c) CSSM: correct distance-varying color

Figure 4: A blue crystal angel (Stanford’s “Lucy”) statue in a shaft of light, in the Sibenik cathedral. The CSSM result on the right contains
the most correct coloring.

Figure 5: Left) Photograph of a red scarf and red theatre gel
demonstrating different colored translucency shadow phenomena.
The scarf’s appearance arises from partial coverage (α) by opaque
“red” threads. The gel’s appearance is due to preferential trans-
mission of “red” light. Note the difference in shadow color.
Right) A similar virtual scene rendered by CSSM.

The shaft should be white before it strikes the statue and blue af-
terward. Note that the first transmissive surface seen by the light is
the window glass, not the statue. Image (a) shows the result pro-
duced by End10 [Enderton et al. 2010], in which the shaft remains
colorless despite the blue transmitter because that algorithm cannot
represent colored transparency. The Fil09 [Filion and McNaughton
2008] result (not shown) has the same artifact for this scene be-
cause it samples the window color and not the statue color. Image
(b) shows that Gos04 incorrectly colors the entire shaft blue when
implemented as described by Gosselin et al. [2004]. That is be-
cause Gos04 propagates transmissive colors all of the way back to
the light, as if there were a colored gobo in front of it. Image (c) is
the CSSM result. CSSM can represent color varying with distance
from the light, so the shaft is correctly blue on the lower-left and
white in the upper right.

The side-by-side comparisons of real photographs and images ren-
dered with CSSM in figures 1 and 5 demonstrate that the algorithm
is able to simulate the kinds of colored translucency phenomena
observed in the real world. (All result images were rendered with
CSSM2, which produces identical results to CSSM1 with the same
filter.) The rendered images are not intended to match the pho-
tographs exactly, since the model geometry and materials are only
rough approximations and the bottles in figure 1 create some caus-
tics that CSSM does not simulate.

We note one interesting artifact in the photographs: despite being
captured with a midrange (Cannon S90) camera under about 40W
of incident illumination and filtered down to HD resolution, they
exhibit about as much noise as the rendered images.

Figure 6 shows a scene containing dense fog, for which translucent
self-shadowing is important. (This image is an homage to a similar
figure without colored translucency by Lokovic and Veach [2000].)
This scene is modeled as two opaque vertical white pipes, two trans-
missive orange pipes, three opaque cyan pipes, and a particle sys-
tem of opaque, partially-covering fog modeled with texture-mapped
billboards. Note the colored and opaque shadows cast through the
smoke. Also note the self-shadowing of the smoke, causing it to
darken near the bottom. The white vertical pipes are also darker
near the ground because of shadowing from the smoke. Banding ar-
tifacts on the cyan pipes occur because the particles are billboards.
The soft particle method is one algorithm (that we did not imple-
ment) that can be used to conceal this artifact.

4.2 Performance

For performance evaluation we selected four scenes with vary-
ing levels of complexity: the game scene shown in figure 7,
from both a typical viewpoint and the worst viewpoint we could
find for CSSM2, the Sibenik and Sponza benchmark models
by Marko Dabrovic, and the Postsparkasse model (figure 8)
by Christian Bauer that contains a two-layer glass ceiling and
glass floor. The latter three models were downloaded from
http://hdri.cgtechniques.com/∼sibenik2/. The worst case
viewpoint for CSSM2 overhead on the game scene was where the
camera was located so that all surfaces were in shadow.

We evaluated five algorithms. We consider the Wil78 [Williams
1978] algorithm for opaque shadows a baseline, since most game
developers use some variation of it for opaque shadows today. Any
practical translucent shadow algorithm must not be significantly
more expensive than this for deployment on current hardware for
interactive applications. The Gos04 and End10 algorithms generate
incorrect results for overlapping translucent surfaces, as previously
demonstrated. However they are known to have good performance
characteristics and are therefore algorithms one would consider in



Figure 6: Particle-system smoke casting and receiving shadows
with CSSM. The orange pipes are transmissive, the smoke has par-
tial coverage.

Figure 7: Game scene with 1M triangles rendered at 1920×1080,
60 fps with a 20482 shadow map on a GeForce GT 280 GPU. CSSM
adds 0.1-0.9 ms to the opaque shadow render time for this scene,
depending on the viewpoint.

practice, especially for an application that generally could work
within their limitations. CSSM1 and CSSM2 are the new algo-
rithms presented in this paper.

We used the same reconstruction filter for Wil78, Gos04, End10,
and CSSM1. This filter contained 9 bilinear taps placed at the center
and at a 2-texel radius in 45◦ intervals. For CSSM2 we used the

Opaque CSSM2 -
Wil78 Gos04* End10* CSSM1 CSSM2 Wil78

Fig. 7 (typical) Generate 7.6 7.0 7.4 27.4 7.7
1096 kTri Apply 8.4 8.6 7.1 9.8 8.4

Total 16.0 15.6 14.5 37.2 16.1 0.1

Fig. 7 (worst) Generate 6.6 6.8 6.5 28.2 6.5
1096 kTri Apply 7.6 7.5 6.0 8.4 8.6

Total 14.2 14.3 12.5 36.6 15.1 0.9

Sibenik+Lucy Generate 2.6 2.3 3.1 22.9 3.2
80 kTri Apply 4.6 4.0 4.7 4.7 4.6

Total 7.2 6.3 7.8 27.6 7.8 0.6

Sponza Generate 3.3 4.1 3.3 13.5 4.2
66 kTri Apply 4.3 3.2 3.1 6.4 4.1

Total 7.6 7.3 6.4 19.9 8.3 0.7

Postsparkasse Generate 2.6 4.8 3.4 21.1 4.3
267 kTri Apply 6.8 7.1 6.8 8.9 8.3

Total 9.4 11.9 10.2 30.0 12.6 3.2

Translucent

ms	  

* Gos04 and End10 generate incorrect results for these scenes

Table 1: The right-most column shows the net impact on frame
rendering time of replacing traditional shadow maps with CSSM2.
Other columns break down rendering time in milliseconds for
20482 shadow map generation and net lighting application at
1920×1080. All scenes contain four unshadowed lights and one
shadow casting light and are rendered in two passes.

filter described in section 3.4. This is because CSSM2 is unable
to perform bilinear filtering, so it requires more filter taps than the
other algorithms to produce good results. CSSM2 with the 9-tap
filter is faster and produces noisier results; the other algorithms on
the CSSM2 filter are slower and give slightly blurrier results. All
depth maps were encoded in 16-bit floating point (per channel, for
CSSM2) and the Gos04 color map was at 8-bits per channel.

Table 1 summarizes the render time, in milliseconds, of shadow
map generation and actual shading for each algorithm. All timings
were computed with the GL TIMER QUERY extension, which enables
accurate and asynchronous evaluation of the time for commands
to propagate through the GPU pipeline. The right-most column of
the table lists the overhead in milliseconds for CSSM2 compared
to Wil78. This is the per-frame cost of adding colored translucent
shadows to a typical existing rendering engine.

Beware that render times for complex scenes are affected by many
factors beyond per-pixel computation. These factors include mem-
ory and branch coherence, cache hit rate, the pipeline impact of
texture and shader changes, and the sharing of units between vertex
and pixel processing. Thus in some cases an algorithm that per-
forms strictly more computation may still have higher performance,
e.g., Gos04 compared to Wil78 on the Figure 7 scene.

In general, CSSM2 maintains performance close to that of the pre-
vious translucent shadow algorithms, yet it is able to also correctly
model the colored translucent shadows. CSSM2 is two to three
times faster than CSSM1, which demonstrates that the optimiza-
tions in its design successfully reduced most of the overhead of
managing three shadow maps simultaneously.

5 Discussion

We expect that developers would like accurate colored shadows,
but are only willing to add them if the incremental cost over opaque
shadows is fairly low. We have shown that at the same resolution
as a traditional shadow map, CSSM adds at most a few millisec-
onds to a high-resolution frame render time. However, the CSSM
shadows are slightly blurrier than opaque ones because they use a
wider filter to reduce the hue variance in colored shadows. This
can be addressed by increasing shadow map resolution. The cost



Figure 8: The Austrian Postsparkasse building contains two layered glass roofs, a glass floor, and multiple windows. All surfaces are thus
within two or three translucent shadows. The inset shows stochastic sampling noise scaled up 10x. This is a worst-case scene for noise
because there is no surface texture.

of a shadowing algorithm is subjective because the impact of blur,
noise, lack of color, render time, and texture map space depend on
the viewer and the application.

Note that the tradeoff of noise versus blur versus resolution is less
significant for shadow rays than for eye rays. This is why CSSM
looks reasonable with many fewer samples than one would need for
stochastic transparency of eye rays. For static lights and objects,
shadow noise is in world-space, so it blends with texture noise.
For dynamic lights and objects the shadows are in motion, so noise
is less perceptible. Overblurring shadows to reduce variance and
aliasing is often acceptable because that also approximates shad-
owing from an area source or diffusion inside a translucent surface
(at least, viewers often interpret the images that way). We cannot
apply the CSSM reconstruction filter directly to colored stochas-
tic transparency for eye rays because they would blur edges in the
image itself, which is not an acceptable artifact.

Today, CSSM just manages to hold the stochastic noise to an ac-
ceptable level with low overhead compared to traditional shadow
maps. Assuming that GPUs continue to increase in raw processing
power and bandwidth, in the near future this will likely be so neg-
ligible that it will make sense to always use stochastic shadowing.
In general, we suspect that stochastic techniques for rasterization
like stochastic transparency and CSSM offer so many advantages
that they will become widespread. Stochastic methods have long
dominated ray tracing because they allow phenomena to combine
naturally, rather than requiring special purpose “effects.” This re-
duces the software engineering burden and artifacts of combining
phenomena. Motion blur, defocus, and translucency are three phe-
nomena that are currently hard to simulate well under rasterization,
yet they are all trivial when implemented stochastically. Of these,
translucency for shadows offers the best performance because it can
undersample visibility, but we believe that the others will also be vi-
able in the near future as well.
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Appendix: Translucency Phenomena
Multiple distinct light transport phenomena can produce the com-
mon perceptual phenomenon of “translucency.” All result in mul-
tiple objects along a ray contributing to the radiant flux through
a pixel. Real-time approximations of these phenomena are often
built on raster blending modes, which are selected by glBlendFunc

and glBlendEq in the OpenGL API. That commonality leads to a
frequent source of error, in that many renderers conflate phenom-
ena with different underlying causes and attempt to use one blend-
ing mode to simulate all of them. That source of error has in turn
made it challenging to implement correct translucency and translu-
cent shadowing in such renderers.

The following paragraphs describe five distinct phenomena and ef-
ficient methods for coarsely approximating them along eye rays in
OpenGL. This clarifies the scope and terminology of the paper,
which is concerned with applying these ideas to the related prob-
lem of approximating translucent phenomena along shadow rays.

Transmission (e.g., by glass) occurs when light is modulated by
the transmission spectrum of a material that it intersects. For ex-
ample, this causes the back of a white label on a green wine bottle
to appear green when viewed through the bottle. For a transmis-
sive object with uniform material properties, the fraction of light
at wavelength λ transmitted through distance d of material is given
by exp(−4πdκλ/λ), where extinction coefficient κλ is the imag-
inary part of its complex index of refraction [Hecht 2002, 128].
The transmission is non-refractive if the exitant ray has the same
direction as the incident ray, which occurs when the real part, η,
of the index of refraction is the same for both the intersected and
surrounding media.

One method for approximating non-refractive transmission under
strict depth ordering is as follows. Render surfaces from farthest

to nearest. At each, first modulate the previously sampled radiance
at each pixel (e.g., using glBlendFunc(GL ZERO, GL SRC COLOR)) by
the transmission spectrum of the surface, which is zero for opaque
surfaces. Second, add radiance reflected and emitted at the surface
(glBlendFunc(GL ONE, GL ONE)).

A thin surface has fixed thickness d (at normal incidence), so it
is common practice to precompute the net transmission through
that thickness at several wavelengths, which we call ~t, e.g., with
named components ~t = (~tr,~tg,~tb). This is the “source color”
for the OpenGL command. For thick transmitters, more sophis-
ticated methods have been developed for efficiently sampling the
background color from an offset location to approximate refrac-
tion (e.g., [Wyman 2005]), and for computing the varying transmis-
sion levels (e.g., [Bavoil et al. 2007]). Note that in the real world,
physics constrains all transmissive surfaces to also be specularly re-
flective to some extent. Transmission always falls off with the angle
of incidence according to the Fresnel equations.

Partial coverage (e.g., by a window screen) occurs when a sub-
set of the rays within one pixel’s bundle of samples are occluded
by a perforated foreground surface or particle set. The fraction of
rays that are occluded is denoted by α. Note that at the highest
resolution of a model (i.e., level 0 MIP-map) α is ideally either
1 or 0 at every sample. Fractional α arises from taking multiple
binary samples per pixel. This is the case for higher MIP levels,
GL ALPHA TO COVERAGE, and GL POLYGON SMOOTH rendering.

The observed spectrum of multiple uncorrelated partial coverage
layers is given by repeated application of Porter and Duff’s [1984]
linear over operator: αF + (1 − α)B. In this equation, F and
B are the radiance that would be transported to the viewer from a
foreground layer and a background layer in isolation. One method
for approximating partial coverage is rendering objects from far-
thest to nearest with linear radiance interpolation (e.g., using
glBlendFunc(GL SRC ALPHA, GL ONE MINUS SRC ALPHA)). Note that
a surface can be both transmissive and partially covering. In that
case, the observed foreground spectrum contains a term that is a
modulated version of the background spectrum.

Emission by a translucent surface occurs when a partial or
transmissive surface or medium also emits light. Phosphorescent
algae clouds, neon bulbs, and flame are real-world cases. Science
fiction force fields and fantasy magical effects are imaginary ones.
One method for simulating this is simple accumulation of radiance
at a pixel (e.g., by glBlendFunc(GL ONE, GL ONE).)

Bloom and lens flare occur when dispersion and internal reflec-
tions within a lens objective cause bright scene points to affect pix-
els other than those dictated by pinhole projection. Direct simula-
tion of a compound lens as in-scene surfaces tends to be inefficient,
so these effects are commonly approximated by post-processing
with additive blending (e.g., glBlendFunc(GL ONE, GL ONE).)

Motion blur, defocus blur, and antialiasing are cases where
samples over multiple dimensions allow multiple scene points to
contribute to a sample and therefore can create translucency. Be-
cause net radiant flux is the sum over the contribution of each ray, it
is mathematically equivalent to the weighted sum provided by par-
tial coverage. These phenomena can therefore be accurately mod-
eled by extending partial coverage by α′ = α ∗ w, where weight
w is an estimate of the product of the fractional of exposure time,
projected solid angle, and projected area that the surface covers rel-
ative for a pixel, and α is the original partial coverage of the surface.
This is an area of significant current research and product develop-
ment. See Sung et al. [2002] and Barskey and Kosloff [2008] for
surveys of various blurring approximations for eye rays, most of
which cannot be directly applied to the shadowing.


