
Matthäus G. Chajdas1,2
Morgan McGuire2,3
David Luebke2

1 Technische Universität München, 2 NVIDIA, 3 Williams College

Courtesy of Vicarious Visions

!   Shading frequency is typically lower than geometric frequency

Shading changes smoothly

Geometry changes introduce high frequencies

!   Several algorithms use the fact that shading varies slower than
geometry
!   REYES
!   Irradiance Caching
!   Upsampling for SSAO

Great, but no AA

REYES: Lots of
geometry, not
efficient on GPUs
yet

Irradiance Caching:
Difficult to parallize
well

Upsampling:
Low
frequency
only

!   Interpolate in world-space and check if the source/target locations are
similar enough

!   In screen-space, use a cross-bilateral filter when upsampling
!   Guarantees that shading does not get smeared across geometry edges
!   Requires geometric information

!   Cross-bilateral interpolation is equivalent to the error metric in
irradiance cache
!   Only use a sample if source “location” is similar to target

!   Upsample low-frequency information like SSAO
!   Upsampling complex shading results usually in very blurry output

Shader runs
 only once!

Shader must
run per-sample!

!   MSAA: Great technique to get anti-aliasing without super-sampling the
shading
!   Shade each primitive once per pixel, independent of sample count

!   Deferred rendering
!   Has to shade all incoming samples
!   No efficient way to reconstruct which samples come from the same primitive
!   With MSAA, deferred shading degenerates to SSAA (!)
!   Stencil mask tricks work against warp-packing and don’t solve all issues

!   Pure post-process
!   Analyses the image content and blurs if something edge-like is found

!   Finds geometric and shading edges!
!   Text usually suffers worst (no information that this area should be excluded)
!   Runtime depends on edge count: Even though strictly a post-process, the

runtime cannot be bound easily (x5 between best/worst case is common)!

!   Can be easily used on any kind of pipeline
!   Has some artifacts

Eww, enabled AMD's driver-based
GPU MLAA filter and it attacked our
innocent 'FrostEd' editor that uses
WPF

!   Unlike MLAA, SRAA knows where sub-pixel edges are
!   Blur only where necessary

Reference,
16384x AA

MLAA SRAA

!   Capture shading and geometry information at different frequencies
!   Geometry information is comparatively cheap to get (MSAA’ed G-Buffer has

very little overhead)
!   Shading information is expensive (texture lookups, complex shaders, ray-

tracing, you name it)

!   Using high-frequency geometric information, try to estimate which
shading sample corresponds to each geometric sample

!   Works directly with MSAA
!   Can be used with both deferred and forward rendering

Shaded sample
(expensive)

Geometry sample
(cheap)

?

!   We introduce geometry and shading samples
!   A pixel can contain N geometry samples and M shading samples (M

<= N)
!   Geometry samples capture local surface properties: Position & Normal
!   Shading samples capture color
!   SRAA 4: N = 4, M = 1
!   SRAA 16: N = 16, M = 1

!   Two pass algorithm
!   Render the depth/normals for the complete scene

!   Shade a subset of the samples (typically, only the first)
!   Run the SRAA filter which combines the MSAA’ed depth/normals with

the shaded data
!   Post-process the data as usual
!   For deferred renderers, the only change is to generate the G-Buffers

with MSAA
!   For forward renderers, augment the z-Pre-Pass with normals

Shaded sample
(expensive)

Some cheap
geometric
information

!   What‘s cheap?

Normal edges Depth edges

!   Magic happens in SRAA kernel
!   Looks at every geometric sample in a pixel, analyses all surrounding

shaded samples
!   Compute a weight for each shaded sample
!   Reconstruct color for each geometric sample
!   Box-Filter

!   Could use more advanced filters here!

Courtesy of DICE

Courtesy of DICE

Courtesy of DICE

Courtesy of DICE

Courtesy of DICE

Courtesy of DICE

Courtesy of DICE

Courtesy of DICE

Courtesy of DICE

Courtesy of DICE

!   High-quality with depth/normals, SRAA pass only
!   On a GTX 480, SRAA at 1920x1200 takes ~2 ms
!   On 1280x720, ~1 ms

All we want to
know is which
samples belong
together

Primitive 1

Primitive 2

!   We use the geometry samples to reconstruct surfaces
!   Ideally, we want triangle Ids with adjacency information …

!   That‘s what MSAA computes actually, but doesn‘t give us access to

!   Can use basically anything as „geometry samples“ as long as it
changes at geometry edges

!   High-quality with depth/normals, SRAA pass only
!   On a GTX 480, SRAA at 1920x1200 takes ~2 ms
!   On 1280x720, ~1 ms

!   SV_PrimitiveID: 1 ms for 1920x1200 on a GTX 460
!   Ready to deploy as DX11 pixel shader

!   Sample MSAA’ed depth/normal/primitive buffers
!   MSAA makes the G-Buffer creation slightly more expensive

We actually don‘t
want that one … 

!   Instead of using depth/normal to estimate discontinuities …
!   Use just depth

!   Finds most edges
!   Depending on the depth range, can work with 8 bit depth buffer (See Crysis 2

images in paper)
!   Use an object/primitive ID

!   SV_PrimitiveID does the job quite well, hash it to 8 bit
!   SRAA becomes very similar to MSAA here!

!   Any other source of discontinuities
!   Material IDs
!   UVs
!   …

1.  Generate MSAA Depth/Normal
2.  Shade a subset of all samples

•  Forward or deferred!

3.  Reconstruct per-sample color
4.  Filter

!   Use SRAA to guide MLAA
!   Help MLAA to find all sub-pixel edges
!   Use MLAA to clean up after SRAA removed sub-pixel aliasing

!   Investigate higher-quality modes
!   We have 1.5 shading samples at 16 geometry samples, which starts to look

equal to 16x SSAA
!   Both are fully decoupled: Can shade any subset of the geometric samples
!   Only shade interesting samples

!   Better edge finder
!   Tessellation makes SV_PrimitiveID miss in-patch edges
!   Depth/Normal can fail if depth-range is extremely large

!   Johan Andersson, DICE, @repi
!   Anton Kaplanyan, Crytek, @tofic
!   Timothy Lottes, NVIDIA, @TimothyLottes

!   Authors
!   Morgan McGuire, NVIDIA, @morgan3d
!   David Luebke, NVIDIA, @davedotlubke
!   Matthäus Chajdas, TUM, @NIV_Anteru

Courtesy of Crytek

Courtesy of Crytek

