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!   Shading frequency is typically lower than geometric frequency 

Shading changes smoothly 

Geometry changes introduce high frequencies 



!   Several algorithms use the fact that shading varies slower than 
geometry 
!   REYES 
!   Irradiance Caching 
!   Upsampling for SSAO 







Great, but no AA 



REYES: Lots of 
geometry, not 
efficient on GPUs 
yet 

Irradiance Caching: 
Difficult to parallize 
well 

Upsampling: 
Low 
frequency 
only 



!   Interpolate in world-space and check if the source/target locations are 
similar enough 

!   In screen-space, use a cross-bilateral filter when upsampling 
!   Guarantees that shading does not get smeared across geometry edges 
!   Requires geometric information 

!   Cross-bilateral interpolation is equivalent to the error metric in 
irradiance cache 
!   Only use a sample if source “location” is similar to target 

!   Upsample low-frequency information like SSAO 
!   Upsampling complex shading results usually in very blurry output 



Shader runs 
 only once! 



Shader must 
run per-sample! 



!   MSAA: Great technique to get anti-aliasing without super-sampling the 
shading 
!   Shade each primitive once per pixel, independent of sample count 

!   Deferred rendering 
!   Has to shade all incoming samples 
!   No efficient way to reconstruct which samples come from the same primitive 
!   With MSAA, deferred shading degenerates to SSAA (!) 
!   Stencil mask tricks work against warp-packing and don’t solve all issues 





!   Pure post-process 
!   Analyses the image content and blurs if something edge-like is found 

!   Finds geometric and shading edges! 
!   Text usually suffers worst (no information that this area should be excluded) 
!   Runtime depends on edge count: Even though strictly a post-process, the 

runtime cannot be bound easily (x5 between best/worst case is common)! 

!   Can be easily used on any kind of pipeline 
!   Has some artifacts 



Eww, enabled AMD's driver-based 
GPU MLAA filter and it attacked our 
innocent 'FrostEd' editor that uses 
WPF 







!   Unlike MLAA, SRAA knows where sub-pixel edges are 
!   Blur only where necessary 

Reference, 
16384x AA 

MLAA SRAA 



!   Capture shading and geometry information at different frequencies 
!   Geometry information is comparatively cheap to get (MSAA’ed G-Buffer has 

very little overhead) 
!   Shading information is expensive (texture lookups, complex shaders, ray-

tracing, you name it) 

!   Using high-frequency geometric information, try to estimate which 
shading sample corresponds to each geometric sample 

!   Works directly with MSAA 
!   Can be used with both deferred and forward rendering 



Shaded sample 
(expensive) 

Geometry sample 
(cheap) 



?









!   We introduce geometry and shading samples 
!   A pixel can contain N geometry samples and M shading samples (M 

<= N) 
!   Geometry samples capture local surface properties: Position & Normal 
!   Shading samples capture color 
!   SRAA 4: N = 4, M = 1 
!   SRAA 16: N = 16, M = 1 



!   Two pass algorithm 
!   Render the depth/normals for the complete scene 

!   Shade a subset of the samples (typically, only the first) 
!   Run the SRAA filter which combines the MSAA’ed depth/normals with 

the shaded data 
!   Post-process the data as usual 
!   For deferred renderers, the only change is to generate the G-Buffers 

with MSAA 
!   For forward renderers, augment the z-Pre-Pass with normals 







Shaded sample 
(expensive) 

Some cheap 
geometric 
information 



!   What‘s cheap? 





Normal edges Depth edges 



!   Magic happens in SRAA kernel 
!   Looks at every geometric sample in a pixel, analyses all surrounding 

shaded samples 
!   Compute a weight for each shaded sample 
!   Reconstruct color for each geometric sample 
!   Box-Filter 

!   Could use more advanced filters here! 
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!   High-quality with depth/normals, SRAA pass only 
!   On a GTX 480, SRAA at 1920x1200 takes ~2 ms 
!   On 1280x720, ~1 ms 



All we want to 
know is which 
samples belong 
together 



Primitive 1 

Primitive 2 



!   We use the geometry samples to reconstruct surfaces 
!   Ideally, we want triangle Ids with adjacency information … 

!   That‘s what MSAA computes actually, but doesn‘t give us access to 

!   Can use basically anything as „geometry samples“ as long as it 
changes at geometry edges 





!   High-quality with depth/normals, SRAA pass only 
!   On a GTX 480, SRAA at 1920x1200 takes ~2 ms  
!   On 1280x720, ~1 ms 

!   SV_PrimitiveID:  1 ms for 1920x1200 on a GTX 460 
!   Ready to deploy as DX11 pixel shader 

!   Sample MSAA’ed depth/normal/primitive buffers 
!   MSAA makes the G-Buffer creation slightly more expensive 



We actually don‘t 
want that one …  



!   Instead of using depth/normal to estimate discontinuities … 
!   Use just depth 

!   Finds most edges 
!   Depending on the depth range, can work with 8 bit depth buffer (See Crysis 2 

images in paper) 
!   Use an object/primitive ID 

!   SV_PrimitiveID does the job quite well, hash it to 8 bit 
!   SRAA becomes very similar to MSAA here! 

!   Any other source of discontinuities 
!   Material IDs 
!   UVs 
!   … 



1.  Generate MSAA Depth/Normal 
2.  Shade a subset of all samples 

•  Forward or deferred! 

3.  Reconstruct per-sample color 
4.  Filter 









!   Use SRAA to guide MLAA 
!   Help MLAA to find all sub-pixel edges 
!   Use MLAA to clean up after SRAA removed sub-pixel aliasing 

!   Investigate higher-quality modes 
!   We have 1.5 shading samples at 16 geometry samples, which starts to look 

equal to 16x SSAA 
!   Both are fully decoupled: Can shade any subset of the geometric samples 
!   Only shade interesting samples 

!   Better edge finder 
!   Tessellation makes SV_PrimitiveID miss in-patch edges 
!   Depth/Normal can fail if depth-range is extremely large 
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