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Figure 1: Equal-time comparison of rendered images of a bathroom scene with realistic lighting fixtures. The scene includes highly glossy
reflections and complex caustics due to lighting fixtures which are both typical in interior design. Existing approaches of light transport
simulation, Monte Carlo path integration and photon density estimation, are inefficient to render this type of scenes. Our new framework
of light transport simulation automatically combines Monte Carlo path integration and photon density estimation by extending the sampling
space of light transport paths, and produces a significantly more accurate solution in the same computation time.

Abstract

We propose a new sampling space for light transport simulation
which allows us to unify two popular algorithms with orthogonal
strengths: unbiased Monte Carlo path integration and photon den-
sity estimation. Traditionally, unbiased Monte Carlo path integra-
tion had been considered the only approach for accurate light trans-
port simulation. However, recent work in photon density estimation
has demonstrated that there are several practical scene configura-
tions where photon density estimation is more efficient and accu-
rate. In order to take the best of both worlds without relying on
a heuristic choice of the algorithms, we combine both algorithms
through a theoretically rigorous application of multiple importance
sampling. Our contributions are two-fold: first, we introduce a path
space extension that serves as a basis for a unified view of unbi-
ased Monte Carlo path integration and photon density estimation.
This extension gives us a mathematical ground for fully robust light
transport simulation algorithms; second, we extend the theoretical
analysis of provably good multiple importance sampling strategies
by considering the presence of a density estimation method. This
analysis leads to important conditions for obtaining a nearly op-
timal combination of unbiased Monte Carlo path integration and
photon density estimation. We demonstrate that the resulting al-
gorithm can robustly render many scene configurations that were
previously considered intractable.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Raytracing;

1 Introduction

Efficiently solving the light transport problem under various scene
configurations has been a core research topic in photorealistic im-

age synthesis for more than 25 years. Since the rendering equa-
tion [Kajiya 1986] formulates the light transport problem as a re-
cursive integral equation, solving the light transport problem is es-
sentially equivalent to solving integrals. Although there are many
ways to solve integrals, in photorealistic image synthesis, Monte
Carlo integration has been a popular approach due to its generality.

The main difficulty is that many scene configurations introduce ill-
behaved features in integrals such as discontinuities and singulari-
ties. Such features can significantly slow down the convergence of
Monte Carlo integration. For example, path tracing [Kajiya 1986]
rapidly converges to an accurate solution if a scene consists of dif-
fuse materials and direct diffuse illumination. However, by adding
an object with specular reflections and a small light source, path
tracing can suddenly converge very slowly, because its sampling
techniques do not efficiently capture light transport paths under
such a configuration. In other words, path tracing is not robust to
such changes in a scene configuration.

One notable development on improving robustness of light trans-
port simulation is multiple importance sampling [Veach and Guibas
1995]. The main idea is to combine multiple Monte Carlo integra-
tors such that the combined integrator gives us a more accurate so-
lution than using each integrator alone. Multiple importance sam-
pling led to the development of bidirectional path tracing [Lafor-
tune and Willems 1993; Veach and Guibas 1995], which is still
considered one of the most robust light transport simulation algo-
rithms.

Since multiple importance sampling builds upon unbiased Monte
Carlo integration, bidirectional path tracing considers only modes
of light transport that can be sampled with unbiased sampling tech-
niques. This is an inconvenient restriction since it is known that
there are certain paths of light that cannot be sampled with any form



of unbiased local path sampling [Veach 1998]. In other words, even
bidirectional path tracing is not fully robust. Indeed, recent work on
photon density estimation [Hachisuka et al. 2008; Hachisuka and
Jensen 2009; Knaus and Zwicker 2011], which is a biased estima-
tor, has demonstrated that the biased methods can be more efficient
than the unbiased ones in several cases. Ideally, we would like to
take the best of both in order to obtain a single robust light transport
algorithm.

Combining photon density estimation with unbiased Monte Carlo
path integration through multiple importance sampling presents two
major challenges: the first is a fundamental difference in the di-
mensionality of the sampling spaces representing paths of a given
length. Figure 2 shows all the bidirectional path tracing and pho-
ton density estimation techniques that can sample a given path of
length two. While all bidirectional path tracing techniques require
three vertices to construct this path, photon density estimation re-
quires four. This difference is formalized by the area measure of the
respective probability density functions of the same path, which is
dA−3 in the Monte Carlo integration case and dA−4 in the density
estimation case. The second challenge is the need to quantify the
effect of bias on the optimality of the known multiple importance
sampling weighting strategies.

We introduce a novel path space that extends the sampling space of
light transport paths by vertex perturbations. Using this framework,
we can describe Monte Carlo path integration and photon density
estimation under the same space. Figure 3 illustrates the basic idea.
Our second contribution is an extended theoretical analysis of the
original multiple importance sampling framework in the presence
of bias. The results of this analysis allow us to combine these two
algorithms with a provably good combination strategy.

These two contributions allow us to build a new rendering algo-
rithm, unified path sampling, that subsumes Monte Carlo path in-
tegration and photon density estimation under a single framework.
This new algorithm is considerably more robust than of the two ap-
proaches alone. Figure 1 highlights our results under a typical scene
configuration in interior design.

2 Background
Multiple importance sampling [Veach and Guibas 1995] is a power-
ful framework that allows the use of multiple unbiased Monte Carlo
integration techniques with different probability density functions
to solve an integral. The basic idea is that, if we need to compute
an integral

I =

∫
Ω

f(x)dµ(x) (1)

over some domain Ω, we can combine M different techniques to
generate samples in this same domain Ω. Each i-th technique has a
different probability density function pi(x) and approximates dif-
ferent parts of the integrand f better than the others. We then weight
contributions of individual samples to build an estimator for the
given integral. To be precise, if the i-th technique is used to gen-
erate ni samples {Xi,j : i = 1, . . . ,M, j = 1, . . . , ni}, multiple
importance sampling gives us the unbiased estimator of I as

I = E

[
M∑
i=1

1

ni

ni∑
j=1

wi(Xi,j)f(Xi,j)

pi(Xi,j)

]
, (2)

as long as
M∑
i=1

wi(x) = 1 (3)

and wi(x) = 0 whenever pi(x) = 0.

Monte Carlo Path Integration Photon Density Estimation

Unified Path Sampling

Figure 2: Key concept of our unified path sampling framework.
Monte Carlo path integration considers only connections of sub-
paths via local path sampling (left). On the other hand, photon
density estimation considers only connections of subpaths via range
query (right). The concept of our unified path sampling framework
is to combine all such previous sampling techniques under a single
framework using multiple importance sampling. The white circles
are light vertices sampled from the light source, and the black cir-
cles are eye vertices sampled from the eye. The dotted lines/circles
are path connections using local path sampling and range query,
respectively.

One notable application of multiple importance sampling in light
transport simulation is bidirectional path tracing [Lafortune and
Willems 1993; Veach and Guibas 1994]. Bidirectional path tracing
generates a family of complete light transport paths by connecting
two subpaths traced from the eye and a light source. By chang-
ing the length of each subpath, we can consider multiple sampling
techniques with different probability density functions that sample
the exact same path. Veach and Guibas [1995] showed that we can
apply multiple importance sampling to combine them by evaluating
and combining their probability density functions.

Bidirectional path tracing is robust to many different types of il-
lumination. However, fundamental limitations of unbiased Monte
Carlo integration methods do not allow bidirectional path tracing
to capture some important light transport paths [Veach 1998]. To
be precise, following Heckbert’s regular expression of light trans-
port [1990]1, any path that does not contain a substring DD (i.e.,
two subsequent “diffuse” interactions) cannot be sampled by any
unbiased Monte Carlo path sampling technique.

Such transport paths include specular reflections of caustics due to
a point light source seeing through a pinhole camera. At the mo-
ment, capturing these phenomena (or even variations that are es-
sentially analogous such as using a small area light source instead)
is practical only with photon density estimation [Jensen 1996] and
its recent progressive extensions [Hachisuka et al. 2008; Knaus and
Zwicker 2011]. This situation forces users to choose between unbi-
ased Monte Carlo path integration (e.g., bidirectional path tracing)
and photon density estimation, depending on the scene configura-
tion.

Some recent work proposed a combination of these two algorithms
to a various degree, and presented a more robust algorithm than us-
ing one of the algorithms alone [Bekaert et al. 2003; Hachisuka
and Jensen 2009; Vorba and Křivánek 2011], however, none of
exiting work attempted to fully unify unbiased Monte Carlo path
integration and photon density estimation. Our main contribution
over prior work is a novel mathematical framework that achieves
the complete unification of these two algorithms for the first time.

1Under Heckert’s terminology, “D” is used to represent any non-singular
scattering phenomena, which indeed includes glossy reflections, whereas
“S” is used to represent singular scattering only.



(b) Corresponding paths in density estimation(a) A path in MC path integration (c) Corresponding path in our extended space

Figure 3: Path space extension for unifying Monte Carlo path integration and photon density estimation. A path sampled in Monte Carlo
path integration corresponds to one of the infinitely many possible paths in photon density estimation. The probability density of the path in
(a) is not in the same space as the corresponding path in (b). We propose to use an extended path space of Monte Carlo path integration by
considering a random perturbation of the last connecting light vertex within the neighborhood of the originally sampled vertex as in (c). With
this extension, both Monte Carlo path integration and photon density estimation covers exactly the same path space.

3 Theory
In the following subsections, we first introduce path space exten-
sion via vertex perturbation, which defines an extended path space
that covers unbiased Monte Carlo path integration and photon den-
sity estimation under a unified definition. Figure 3 illustrates this
idea. We then describe some important conditions that need to be
considered when we apply multiple importance sampling for biased
estimators. Table 1 summarizes our notations that are used through-
out the paper.

Notation Description

Ei ith vertex generated from the eye
Li ith vertex generated from the light source
r radius of range query in photon density estimation
NL the number of light vertices
NE the number of eye vertices
M the number of techniques
pmc probability density in MC integration
pde probability density in density estimation
pemc probability density in extended MC integration
pups probability density in unified path space
ANE contribution from the eye subpath with NE vertices
ANL contribution from the light subpath with NL vertices

Table 1: Descriptions of the notations used in the paper.

3.1 Path Space Extension via Vertex Perturbation
3.1.1 Problem with Existing Path Spaces

Suppose that we generated NL = 2 vertices traced from a light
source and NE = 3 vertices traced from the eye. Monte Carlo path
integration generates a complete path of length NL + NE − 1 by
connecting the last eye vertex and the last light vertex. The proba-
bility density function of a complete path is given by the multipli-
cation of probability density of each sub path [Veach 1998]:

pmc (E1E2E3L2L1)

= p(E1)p(E2|E1)p(E3|E2)p(L2|L1)p(L1),
(4)

where p(x|y) is probability density of x given y. We assume that
the processes of generating light subpaths and eye subpaths are sta-
tistically independent. Note that probability density functions do
reflect the sampling procedure such as importance sampling.

We now consider photon density estimation to generate the same
complete path. The important point is that photon density estima-
tion generates a complete path of length NL +NE − 2 by consid-
ering the last eye vertex and the last light vertex as a single vertex,
not NL + NE − 1 as in Monte Carlo path integration. Therefore,
in order to generate a complete path of length four, we need to use
six vertices, not five. We can divide the number of vertices in an
arbitrary way, however, suppose for now that we use NL = 3 light

vertices and NE = 3 eye vertices. The left side of Figure 4 illus-
trates this case. The probability density of a complete path is

pde (E1E2E3L3L2L1)

= p(E1)p(E2|E1)p(E3|E2)p(L3|L2)p(L2|L1)p(L1).
(5)

Note that the size of a query region does not change the probability
density function, but only the path contributions.

It is rather tempting to consider that the probability density of a
complete path in photon density estimation is proportional to the
size of a range query πr2. One can see that this is incorrect by not-
ing that such a wrong definition results in an extra division by πr2

due to the division by the incorrect probability density and the con-
version of flux to radiance. Conceptually, we can think of photon
density estimation as connection of paths via range query. Similar
to the connection procedure via shadow rays in bidirectional path
tracing, this connection procedure does not affect the probability
density function.

Equation 4 and Equation 5 highlight the problem of combining
these two techniques. Suppose that those probability density func-
tions use the area measure dA (i.e., each vertex is a point on sur-
face) [Veach 1998]. Since Equation 4 is a multiplication of five
probability density functions, the overall probability density func-
tion is defined with the measure dA−5. However, since Equation 5
is a multiplication of six terms, the overall probability density func-
tion is defined with the measure dA−6.

Therefore, these two probability density functions are defined in
different spaces with different numbers of dimensions. Figure 3 (a)
and (b) illustrate this difference. These probability density func-
tions have different measures because a single complete path in
Monte Carlo path integration corresponds to a single path out of in-
finitely many in photon density estimation over dA. In other words,
the two probability density functions do no cover the same sam-
pling space. It is thus incorrect to use them in multiple importance
sampling which is made to combine samples in the same domain.

3.1.2 Path Probability Densities in Unified Path Space

We resolve this inconsistency by extending the path space used for
Monte Carlo path integration via random perturbation of the con-
nection vertex. Figure 4 illustrates this idea. We add a randomly
perturbed copy of E3 at the connection as a new light vertex, L3,
within a query range with the area πr2 of photon density estimation.
With this extension, the two probability density functions have ex-
actly the same measure for the same path. The probability density
function of a complete path in this extended space is

pemc (E1E2E3L3L2L1)

= pmc (E1E2E3L2L1) p(L3|E3L2)

= pmc (E1E2E3L2L1) p(L3|L2)

= p(E1)p(E2|E1)p(E3|E2)π−1r−2p(L2|L1)p(L1).

(6)



We have p(L3|E3L2) = π−1r−2 = p(L3|E3) since we pick an-
other vertex uniformly within a query range around E3 with the
area π−1r2, given the connection E3L2. Since generations of
E3 and L2 are independent Markov processes, we can derive that
p(L3|E3L2) = p(L3|L2) = p(L3|E3).

In order for photon density estimation to generate L3 with the same
probability density function, we assume that the probability density
is constant within the query range. This is a reasonable assump-
tion that has been used in recent work on photon density estimation
techniques as an asymptotic case [Hachisuka et al. 2008; Knaus and
Zwicker 2011].

Using this extended path space, the probability density function of
a complete path in both Monte Carlo path integration and photon
density estimation is uniformly defined as

pups (E1 . . . ENELNL . . . L1)

= pde (E1 . . . ENELNL . . . L1)

= pemc (E1 . . . ENELNL . . . L1)

=

NE∏
i=1

p(Ei|Ei−1)

NL∏
i=1

p(Li|Li−1).

(7)

The difference between Monte Carlo path integration and pho-
ton density estimation is handled by the definitions of LNL and
p(LNL |LNL−1). For photon density estimation, they are the same
as before: LNL is the last light vertex and p(LNL |LNL−1) is the
probability density function of generating LNL given LNL−1. For
Monte Carlo path integration, LNL is a random perturbation of
ENE and p(LNL |LNL−1) = p(LNL |ENE ) = π−1r−2. The rest
of the definitions stay the same.

Figure 6 highlights the importance of considering the correct path
space. As we mentioned earlier, the number of dimensions of the
space of Monte Carlo path integration is lower than the number of
dimensions of the space of photon density estimation for the same
path. If we ignore this difference, the multiple importance sam-
pling weight becomes scene-scale dependent. In other words, just
by scaling the entire scene, which should generate the exact same
image, the weights for each method can become arbitrarily larger
or smaller. With our extended path space of Monte Carlo path inte-
gration, we can achieve scale invariance as expected.

Photon density estimation Extended Monte Carlo sampling

r r

E1

E2 L2

L1E1

E2 L2

L1

E3 L3 E3 L3

Figure 4: Subpaths connections with our extended Monte Carlo
sampling and photon density estimation.

3.1.3 Path Contributions in Unified Path Space

Our framework also provides a unified definition of the contribu-
tion of a complete path in unbiased Monte Carlo path integration
and photon density estimation. Given the contributions from eye
subpath and light subpath, we can use this single definition of the
contribution of the complete path AC

AC = ANECups(ENE , LNL)ANL , (8)

where we defined a new connection term Cups(ENE , LNL) =

π−1r−2 which denotes a connection via range query.

In the case of Monte Carlo path integration, we have

AC = ANECups(ENE , LNL)ANL

= ANECups(ENE , LNL)
Cmc(LNL , LNL−1)ANL−1

p(LNL |LNL−1)

= ANEπ
−1r−2Cmc(ENE , LNL−1)ANL−1

π−1r−2

= ANECmc(ENE , LNL−1)ANL−1,

(9)

where Cmc is defined as the connection term as in bidirectional
path tracing [Veach 1998]. This is exactly the same as the un-
weighted contribution in bidirectional path tracing.

For photon density estimation, we have

AC = ANECups(ENE , LNL)ANL

= ANEπ
−1r−2ANL ,

(10)

which is also exactly the contribution of a single photon. In our final
algorithm, the contribution will be weighted according to multiple
importance sampling as we will describe later.

3.1.4 Other Possible Extensions

We have found this unified path space a powerful concept beyond
combining Monte Carlo path integration and photon density estima-
tion. Although we used a random perturbation of the last eye vertex
as a new last light vertex in order to describe these two approaches,
this is not the only possibility.

For example, considering vertex perturbation at the last light ver-
tex (not at the eye vertex) makes this unified path space compatible
with virtual spherical light sources [Hašan et al. 2009] (Figure 5
(a)). Such a path space can potentially provide another set of sam-
pling techniques in Monte Carlo path integration via importance
sampling according to incoming radiance. Note that local path sam-
pling usually performs importance sampling according to BRDFs,
not incoming radiance [Lafortune and Willems 1993; Veach and
Guibas 1995].

It is also possible to consider random perturbation at multiple loca-
tions (Figure 5 (b)). This set of multiple perturbations corresponds
to performing photon density estimation at multiple locations. Such
a technique has not been explored as far as we know and it might po-
tentially be efficient for a certain type of light transport. Since there
are many possibilities and our focus is the combination of Monte
Carlo path integration and photon density estimation, we have not
tested such other extensions. However, we believe that our unified
path space can lead to many different sampling techniques.

One can also consider that our framework completes the duality
between implicit and explicit connections only partially present in
bidirectional path tracing. In forward path tracing with next event
estimation, there are two kinds of paths; paths that hit a light source,
which are often called implicit connections, and paths that are gen-
erated by sampling a light source and performing an explicit con-
nection to this point. In bidirectional path tracing, however, vertices
are connected only by explicit connections. In other words, even if
an eye vertex and a light vertex land on the exact same location,
bidirectional path tracing does not consider this case as an implicit
connection between the eye subpath and the light subpath. This
is because the probability of such a connection happening is zero
since each vertex is a point. Our framework completes this dual-
ity of implicit-explicit connections by introducing implicit subpath
connections via density estimation. Although this fact does not af-
fect our implementation, we found it an interesting theoretical ob-
servation.



(a) VSLs (b) Multiple density estimation

Figure 5: Other possible extensions of the path space. (a) If we
perturb the last light vertex, our extended path space covers the
same path space as virtual spherical light sources [Hašan et al.
2009]. (b) It is also possible to consider multiple perturbations,
which suggest unexplored sets of sampling techniques.
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Figure 6: Importance of considering the correct path space. Sim-
ply scaling the scene should result in exactly the same image, thus
each contribution from density estimation and Monte Carlo path
integration should stay the same. Without considering the correct
path space, the contribution from each technique becomes scene-
scale dependent. Our correct sampling space is scale independent
as expected.

3.2 Multiple Importance Sampling with Density Estimation

We now consider how multiple importance sampling can be ap-
plied to the combination of photon density estimation and Monte
Carlo path integration. As we mentioned earlier, we provide a the-
oretical analysis on how bias in photon density estimation affects
this combination. The end result is simple, but surely affects the
implementation: we should use progressive photon density estima-
tion [Hachisuka et al. 2008] with its alpha parameter equal to 2

3
.

We describe our analysis in the following.

3.2.1 Problem with Biased Estimators

Veach and Guibas [1995] introduced a few weighting strategies
which are provably good, in the sense that the resulting error is
within constant away from that of the best possible weighting strat-
egy. One such strategy is the balance heuristic defined as

wi(x) =
nipi(x)∑n
k=1 nkpk(x)

. (11)

where wi is the weight for a sample that was generated by the ith
technique, pi is the probability density function of the ith technique,
and ni is the number of samples for the ith technique. Optimality
of the resulting estimator F̂ is shown as

Var[F̂ ]−Var[F ] ≤
(

1

mini ni
− 1∑

i ni

)
µ2, (12)

where Var is an operator that returns variance, F is any estimator
that is possible with multiple importance sampling, and µ is the

exact solution. In other words, no other estimator F can further
reduce variance from the balance heuristic more than the bound
defined by the right hand side of this inequality. The left hand side is
also called “variance gap” [Veach 1998]. This inequality also shows
that the balance heuristic has a provably small additional error over
all other strategies, since error in unbiased techniques are solely
characterized by variance.

From this optimality claim and all the detailed derivations by Veach
in his dissertation [1998], we can see that the original formulation
of multiple importance sampling considers combinations of unbi-
ased Monte Carlo integrators only2.

This is undesirable since we would like to include density estima-
tion into the multiple importance sampling framework, which is
neither an unbiased method nor a pure Monte Carlo integrator. We
would also like to have a provably good combination of unbiased
Monte Carlo integration and biased photon density estimation, not
just any combination that can be arbitrary worse than the unknown
truly optimal combination. Since error in biased estimators is char-
acterized by both bias and variance, having provably small variance
does not necessarily mean that a combined estimator also has prov-
ably small error. We thus need to extend the theoretical analysis of
multiple importance sampling to include photon density estimation.

3.2.2 Bias-Aware Balance Heuristic

In Appendix A, we show how to extend the original derivations of
the balance heuristic to the case where one of the techniques is a
biased estimator. This can be the case in our setting if we consider
photon density estimation only at the vertex at which we actually
performed photon density estimation. A provably good weighting
strategy in this case is

ŵi(x) =
nip
′
i(x)∑M

k=1 nkp
′
k(x)

, (13)

where

p′i(x) =

{
pi(x) (i 6= n)

pn(x) 1
(1+rn)2+nnpn(x)Ar2n

(i = n),
(14)

A is a constant, and rn is the relative magnitude of the contribu-
tion of the bias to the sampled value. Here the nth technique is
biased. Note that if there is no bias rn = 0, we obtain p′i = pi and
Equation 13 turns into the original balance heuristic in Equation 11.
Note also that taking an infinite number of samples limN → ∞
turns the weight for a biased method into zero, which makes the
combined estimate converge to the correct solution even if rn 6= 0.

Using this bias-aware balance heuristic as a combination strategy,
the resulting estimator F̂B satisfies the following inequality:

Error[F̂B ]2 − Error[F ]2 ≤
(

1

mini ni
− 1∑

i ni

)
µ2. (15)

Notice the difference from Equation 12. This inequality is defined
with the operator Error that returns error which includes both bias
and variance. Similar to “variance gap”, we call the left hand side as
“error gap”, which is the difference of errors between the provably
good combination and any other combination.

2Note that just ensuring consistency of biased estimators is not enough.
The problem we are considering in this paper is finding a nearly optimal
combination of biased and unbiased estimators with a finite number of sam-
ples, not any combination or infinite number of samples. Note also that bias
we consider in this paper is bias from density estimation, not bias that comes
from one estimator not covering the entire sampling domain.



Unfortunately, we cannot use this provably good strategy in prac-
tice. In order to use this strategy, one would have to evaluate the
magnitude of bias relative to the sampled value, ri. Even if we
had a method to estimate ri, the provably good weighting strat-
egy would require the additional ability of estimating ri of samples
which were not even sampled by a biased technique.

We propose one practical solution to this problem, which is to use
the original balance heuristic in combination with progressive pho-
ton mapping [Hachisuka et al. 2008]. Since bias in progressive pho-
ton mapping is guaranteed to converge to zero [Knaus and Zwicker
2011] as we add more samples, the difference between the original
balance heuristic (Equation 11) and the bias-aware balance heuristic
(Equation 13) are expected to converge to zero at an infinite num-
ber of samples. The challenge however is that we still would like
to pursue a provably good combination with any number of sam-
ples. In the following subsections, we describe a condition on this
approach that keeps the resulting combination provably good.

3.2.3 Error Gap of the Balance Heuristic

In order to analyze the influence of bias, we first look at the con-
sequence of using the original balance heuristic by ignoring bias in
biased estimators. In any biased estimator, error is characterized by
the following bias-variance decomposition:

Error[F ]2 = Var[F ] + Bias[F ]2. (16)

We then look at the error gap (not the variance gap) of the original
balance heuristic

Error[F̂ ]2 − Error[F ]2

= Var[F̂ ] + Bias[F̂ ]2 −Var[F ] + Bias[F ]2

= Var[F̂ ]−Var[F ] + Bias[F̂ ]2 − Bias[F ]2. (17)

Substituting this equation to Equation 12, we obtain

Error[F̂ ]2 − Error[F ]2

≤
(

1

mini ni
− 1∑

i ni

)
µ2 + Bias[F̂ ]2 − Bias[F ]2

≤
(

1

mini ni
− 1∑

i ni

)
µ2 + Bias[F̂ ]2. (18)

Therefore, the error gap of the original balance heuristic under the
presence of biased estimator is bounded by the original bound plus
the additional term due to bias. Comparing this inequality and the
inequality in Equation 15, using the original balance heuristic can
be further away from the truly optimal (unknown) combination than
the bias-aware balance heuristic by the additional term Bias[F̂ ]2.
This result shows that, depending on how bias changes according
to the number of samples, the balance heuristic can be arbitrary
away from a provably good strategy under the presence of a biased
estimator.

3.2.4 Condition for a Provably Good Strategy

As we mentioned at the beginning, we use progressive photon den-
sity estimation [Hachisuka et al. 2008] with the hope that the origi-
nal balance heuristic is still close to the provably good combination
of the bias-aware balance heuristic. We show that setting the alpha
parameter of progressive photon density estimation to 2/3 can in-
deed achieve such a combination with the original balance heuristic
in the Veach’s sense [1995].
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Figure 7: Error gaps due to different α values. The graph plots
RMS errors of the rendered images of the torus scene with different
values for the alpha parameter. RMS errors are normalized such
that the graph shows the difference in convergence rates. As pre-
dicted by our theoretical analysis, α = 2/3 gives us the fastest
convergence rate.

Knaus and Zwicker [2011] showed that the asymptotic convergence
rates of bias and variance in progressive density estimation are

Var = O

(
1

nα

)
Bias = O

(
1

n1−α

)
, (19)

where α is the parameter that controls the reduction rate of the ra-
dius in progressive density estimation. Substituting this result into
Equation 18 yields

Error[F̂ ]2 − Error[F ]2 ≤
(

1

nαn
− 1∑

i ni

)
µ2 +

C

n
2(1−α)
n

,

(20)

where C is a constant. We used mini ni = nαn by considering the
fact that the variance of progressive photon mapping converges at
the rate of O

(
1
nα

)
. We take the effect of slower convergence rate

into account by replacing nn by nαn . Note that this does not affect
the derivation of the bias-aware balance heuristic since the deriva-
tions do not try to achieve the optimal distribution of the number of
samples.

Our goal is to find conditions such that(
1

nαn
− 1∑

i ni

)
µ2 +

C

n
2(1−α)
n

≈
(

1

nαn
− 1∑

i ni

)
µ2 (21)

for large enough N =
∑
i ni. Note that the right hand side also

uses the equation mini ni = nαn since we are now combining pro-
gressive photon density estimation and Monte Carlo path integra-
tion.

Now, consider the difference between the convergence rates of the
bounds of the error gap in the original balance heuristic and the
bias-aware balance heuristic:(

1

nαn
− 1∑

i ni

)
µ2 +

C

n
2(1−α)
n

∈ O
(

1

nαn

)
+O

(
1

n
2(1−α)
n

)
(

1

nαn
− 1∑

i ni

)
µ2 ∈ O

(
1

nαn

)
. (22)

The difference in convergence rates of the two bounds is minimized
at α = 2/3, which is the solution for α = 2(1−α). In other words,



using α = 2/3 makes sure that the bound of the error gap from any
other combination strategies reduces with the convergence rate of
the bias-aware balance heuristic. The resulting error gap is

Error[F̂ ]2 − Error[F ]2 ≤
(

1

nαn
− 1∑

i ni

)
µ2 +

C

n
2(1−α)
n

≤ (C + 1)

(
1

nαn
− 1∑

i ni

)
µ2 (23)

Note that any other values of the alpha parameter makes the bound
arbitrary away from above with given N . Figure 7 shows the re-
sults of a numerical experiment that confirms our theory. We have
found that using the alpha value other than 2/3 results in slower
convergence rates. The condition α = 2/3 is not only theoretically
critical, but also practically important.

3.2.5 Number of Samples in Density Estimation

It has been known that density estimation can be formulated as
Monte Carlo integration

E [L(x)] = E

[
1

πr2N

N∑
i=1

K(x, xi)Φi(xi)

]
(24)

An important point in our context is the number of samples used
to evaluate this estimator. Consider a case of bidirectional path
tracing where we trace one eye subpath and one light subpath per
pixel [Lafortune and Willems 1993; Veach and Guibas 1994]. If we
have N pixels, we will trace N light sub-paths over the image and
each pixel uses exactly one sample in Monte Carlo path integration.
However, for photon density estimation, each estimator uses all of
the light paths that are traced. In other words, each estimator uses
N samples, not a single sample as in Monte Carlo path integration.
This needs to be reflected in the computation of weight by setting
nn = N . Assuming the equal number of samples for unbiased
Monte Carlo method, the end result is simple. We just multiply the
probability density of photon density estimation byN , and perform
the weight computation as usual.

4 Implementation
Given our unified path space, an implementation of our framework
is a relatively straightforward extension of a typical implementation
of bidirectional path tracing. Figure 9 shows a pseudocode of our
implementation.

4.1 Main Rendering Process

We store eye paths and light paths to buffers, EyePaths and
LightPaths, that have the same number of entries as the number
of pixels in the image. Our theory does not require us to use the
same number of eye subpaths and light subpaths, however, we have
found that using this number of subpaths makes the implementa-
tion compatible with a typical implementation of bidirectional path
tracing.

We generate eye paths and light paths for all pixels via
GENEYEPATH() and GENLIGHTPATH() which are exactly the
same as bidirectional path tracing. Note that only GENEYEPATH()
takes pixel locations. We then build a photon map over all the
light vertices by BUILDPM(). In our implementation, we used a
spatial grid as an acceleration data structure, but it is possible to
use different data structures such as a kD-tree. We reduce the ra-
dius for photon density estimation according to the alpha parameter
and the number of iterations so far using the probabilistic formula-
tion of progressive photon density estimation [Knaus and Zwicker

procedure RENDERING(Scene,Camera, Image,N itr)
for all Pixels(i, j)

do
{

EyePaths(i, j)← GENEYEPATH(Scene,Camera, i, j)
LightPaths(i, j)← GENLIGHTPATH(Scene)

BUILDPM(LightPaths)
DERadius← CALCRADIUS(α,N itr)
for all Pixels(i, j)

do COMBINEPATHS(EyePaths,LightPaths, i, j)

procedure COMBINEPATHS(EyePaths,LightPaths, i, j)
Ceye ← CONNECTEYE(EyePaths(i, j),LightPaths(i, j))
CONNECTLT(LightImage,EyePaths(i, j).V[0],LightPaths(i, j))
Cde ← CONNECTDE(EyePaths(i, j),LightPaths)
EyeImage(i, j)← EyeImage(i, j) + Ceye + Cde/NumPixels

procedure BALANCEHEURISTIC(Path, NE , NL)
PDF Sum← 0
for s← 0 to Length(Path) + 1

do



t← Length(Path) + 1− s
PDF MC← PDF UPS(Path, s, t, true )
PDF DE← PDF UPS(Path, s, t, false ) ∗ NumPixels
if (s = NE & t = NL) PDF Path← PDF MC
if (s = NE & (t+ 1) = NL) PDF Path← PDF DE
PDF Sum← PDF Sum + PDF MC + PDF DE

return (PDF Path/PDF Sum)

Figure 9: Pseudocode for our framework.

2011]. It is also possible to use the original stochastic progressive
photon mapping [Hachisuka and Jensen 2009] for this part. Fi-
nally, COMBINEPATHS() connects eye subpaths and light subpaths
to compute contributions to the image.

4.2 Subpath Connections

We have three connection procedures that need to be implemented
separately. CONNECTEYE() connects the given eye path with at
least two vertices and the light path by tracing shadow rays between
vertices. This is the same procedure as bidirectional path tracing,
except that the weight computation is extended to include photon
density estimation. Note that, even though we consider a random
perturbation of a vertex in our probability density functions, we do
not need to actually perform this random perturbation. The prob-
ability density of sampling the exact vertex again is the same, so
we do not need to perform such perturbation in practice within the
sampling procedure.

CONNECTLT() connects the first eye vertex and all the vertices in
the light path via shadow rays. This procedure accumulates contri-
butions to a separate image buffer called LightImage than other two
connection procedures. This is also the same as bidirectional path
tracing with the extended weight computation.

CONNECTDE() connects the given eye path and all the light paths
by range queries. A range query should be performed once for each
eye vertex, not just only at the end of the eye path. The contribu-
tion is divided by NumPixels, which is necessary for correctly tak-
ing into account the difference in the number of samples for path
contributions. We also need to take this factor into account in the
weight computation.

The contributions from CONNECTLT() can be accumulated
to any pixels in the image, whereas the contributions from
CONNECTEYE() and CONNECTDE() are accumulated to a given
pixel location (i, j). The final image is simply a sum of two image
buffers, EyeImage and LightImage.
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Figure 8: Weighted contribution of Monte Carlo path integration and photon density estimation within our unified path sampling framework.
The scene has a Buddha statue with glossy reflections, and two small light sources with different colors (blue and yellow) where the yellow
one is enclosed by a metal tube and a lens. The images show computed illumination due to Monte Carlo path integration (left, equivalent
to techniques used in bidirectional path tracing), photon density estimation (center, equivalent to techniques used in progressive photon
mapping), and the combined result (right). Each approach covers a different component of illumination based on our unified definition of
probability density functions of paths. Note that a significant part of illumination can be efficiently covered by photon density estimation as
predicted by multiple importance sampling.

4.3 Weight Computation

Each connection procedure internally calls BALANCEHEURISTIC()
in order to properly weight the contribution of each sample, not
the accumulated contribution such as Ceye and Cde. Inside this
procedure, we just call the evaluation procedure of the probability
density function based on our unified path space. The boolean value
given to PDF UPS is true if we are considering the probability
density function for Monte Carlo path integration. This boolean
value is used for switching how to handle the last light vertex as
we described. NumPixels is multiplied to the probability density
function of photon density estimation in order to properly account
for the difference in the number of samples between Monte Carlo
path integration and photon density estimation.

4.4 Compatibilities with Other Rendering Methods

This implementation of our framework subsumes implementations
of multiple rendering methods. If one would like to use bidirec-
tional path tracing, we just need to disable the connection by den-
sity estimation (CONNECTDE()) and also disable the correspond-
ing probability density evaluation inside BALANCEHEURISTIC().
Likewise, our framework can be converted into (bidirectional) path
tracing, light tracing, (progressive) photon mapping, and stochas-
tic progressive photon mapping just by limiting a set of sampling
techniques.

Our implementation supports full bidirectional connections and full
photon density estimation connections, but some cases are excluded
since they are not always useful in practice. In particular, photon
density estimation with only one eye vertex or light vertex is ex-
cluded. Using only one eye vertex is not possible with a pinhole
camera, though this technique can be useful to simulate lens flare.
Using only one light vertex in general does not provide benefit since
we usually know the exact flux coming from the eye path hit point
on a light source. Using photon density estimation in such a case
introduces unnecessary bias. We however emphasize that it is easy
to add such excluded connections back into our framework.

5 Results

We implemented bidirectional path tracing (BPT) [Veach and
Guibas 1995], progressive photon mapping (PPM) [Hachisuka et al.
2008], stochastic progressive photon mapping (SPPM) [Hachisuka
and Jensen 2009], and our unified path sampling (UPS) under the
same framework. Although our theoretical framework supports dif-
ferent radius per pixel, we chose to use a global radius for all the
photon density estimation for simplicity and picked the initial ra-
dius by hand. Since our sampling framework subsumes all of these
methods, actual implementation of each method is realized by sim-
ply turning off certain sampling techniques under the single im-
plementation of our complete framework. The reference solution to
Figure 12 was rendered by BPT and others were rendered by SPPM
with manual classifications of specular/non-specular materials for
glossy reflections.

Note that comparisons with Markov chain Monte Carlo (MCMC)
algorithms do not make sense since the contribution of our work is a
new combination of existing sampling methods, not a new sampling
method. The two concepts are completely orthogonal and can be
combined naturally. Likewise, vertex perturbations are not related
to mutations in MCMC.

We ran all the experiments on an Intel Core i7-2600 at 3.40 GHz
with a single thread. The resolution of the images are either
512 × 512 or 640 × 480. We left the images intentionally un-
converged to reveal error. Table 2 summarizes the total average
number of samples per pixel in our test cases. Overall, we have
found that unified path sampling can take more samples than bidi-
rectional path tracing by counting a complete path as one sample.
This is because connections via photon density estimation are com-
putationally less costly than connections via local path sampling in
our implementation.

Figure 1 highlights the advantage of our method in a realistic illu-
mination setting for interior design. We have modeled a realistic
lighting fixtures with emitters and reflectors. The dominant illu-
mination is thus due to caustics, as it is the case in many lighting
fixtures of the real world. Bidirectional path tracing, which is la-
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Figure 10: Scene features high geometric complexity and illumination complexity. The scene has glass plates and coins and a crown with
glossy metal illuminated by a small diffuse light source. The image on the left is rendered by our framework (UPS). The close-ups show parts
of the images rendered by various methods using the same rendering time (120 min). Bidirectional path tracing (BPT) cannot efficiently
render caustics seeing through glass, while glossy reflections are relatively less noisy. Progressive photon mapping (PPM) captures such
indirectly visible caustics, but produces noisy results for glossy reflections. Stochastic progressive photon mapping (SPPM) captures all the
illumination features reasonably well, but direct illumination is relatively noisy. Our framework (UPS) takes the best of all three approaches
and captures all the illumination features efficiently.

beled as Monte Carlo path integration, is efficient for computing
some contributions from direct illumination and glossy reflections,
yet indirectly visible caustics exhibit significant amount of noise
(e.g., caustics seen through water in the bathtub). Progressive pho-
ton mapping, which is labeled as photon density estimation, han-
dles such caustics and reflections of caustics robustly, but a sharp
BRDF lobe of the highly glossy material becomes a source of noise.
Our unified framework combines the strength of each method under
a single framework without any user intervention, and produces a
more accurate solution in the same rendering time.

The graph in Figure 11 shows the convergence of the RMS (Root
Mean Square) errors of the same scene with different methods. In
this graph, we used the equal number of samples as a comparison.
This comparison is in favor of bidirectional path tracing in our im-
plementation since Table 2 concludes that bidirectional path tracing
is the most computationally costly method per sample. We choose
this comparison in order to test if each sample in our framework is
fundamentally more efficient than samples in other methods. Even
under such a comparison, the graph confirms that our method pro-
vides an order of magnitude more accurate solution than both meth-
ods for the same number of samples.

Figure 10 compares all of the rendering methods in our tests for
another scene using the same rendering time. This scene also fea-
tures highly glossy reflections, which are difficult to capture effi-
ciently with photon density estimation, and indirectly visible caus-
tics, which are difficult to capture efficiently with Monte Carlo path
integration. The comparison includes stochastic progressive photon
mapping that already demonstrated efficient rendering of glossy re-
flections by tracing one bounce ray from a visible point through
each pixel [Hachisuka and Jensen 2009]. The issue however is that
whether we trace such rays or not is based on a heuristic classifi-
cation of diffuse/non-diffuse materials. Our unified path sampling
framework avoids introducing such a heuristic and combines all the
possible techniques with a provably good strategy. Note that diffuse
direct illumination is significantly less noisy with our unified path
sampling in comparison to stochastic progressive photon mapping.

The reason is that Monte Carlo path integration automatically dom-
inates the contribution for such light transport with a provably good
combination strategy.

Figure 12 shows another equal-time comparison with bidirectional
path tracing for a scene that has only diffuse materials. This scene
does not feature any light transport that is particularly challenging
for bidirectional path tracing. Even in such a scene configuration,
our unified path sampling is still comparable to bidirectional path
tracing since our framework subsumes bidirectional path tracing.

Figure 13 shows sequences of rendered images of a simple scene
where we have a Cornell box with a glossy box and a glass box
with a small diffuse area light source. Despite its relatively sim-
ple configuration, bidirectional path tracing and progressive pho-
ton mapping already show their inefficiency for capturing certain
light transport. Our method shows the advantage over other meth-
ods even in this simple scene. Since our method captures all the
features equally well, it is also possible to quickly identify overall
illumination in the scene only after a few samples.

We emphasize that photon density estimation is important in many
real-world scenarios, not just for very special cases. Figure 8 high-
lights such a case, where we have two light sources; a blue diffuse
area light source, and a yellow diffuse area light source enclosed by
a metal tube and a lens. The only difference between these two light
sources is whether they are modeled after a realistic lighting fixture
or a bare emitter. The blue light source directly illuminates the
scene, while the yellow light source illuminates the scene via caus-
tics just like many lighting fixtures in the real world. Our unified
path sampling algorithm puts higher weight for Monte Carlo path
integration techniques for illumination from the blue light source
and photon density estimation techniques for illumination from the
yellow light source. This is a provably good combination predicted
by our theory, and photon density estimation indeed captures a sig-
nificant portion of illumination due to the yellow light source.
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Figure 13: Sequences of rendered images using different approaches. Even this simple scene reveals issues of using previous approach alone.
Bidirectional path tracing (BPT) is inefficient for sampling caustics seen through the glass cube, while progressive photon mapping (PPM) is
inefficient for sampling highly glossy reflections. Although these two approaches theoretically guarantee convergence to the correct solution
in such cases, the sequences of images show slow convergence in practice. Our framework (UPS) unifies both approaches into a single unified
path sampling method and significantly improves convergence speed for such inefficient cases. RMS errors at 32 min are 0.09146 (BPT),
0.08874 (PPM), and 0.01536 (UPS) respectively.

Scene BPT PPM SPPM UPS Time [min]
Bathroom 1396 9494 5313 2085 240
Buddha 38 205 112 72 10

Conference 120 799 475 237 30
Cornell 264 1838 679 484 32
Torus 448 2438 1508 738 60

Treasures 367 1386 1184 618 120
Average 5.33 32.51 17.41 9.71 N/A

Table 2: Statistics of our experiments. The numbers in the column
of each method (BPT: Bidirectional Path Tracing, PPM: Progres-
sive Photon Mapping, SPPM: Stochastic Progressive Photon Map-
ping, and UPS: Unified Path Sampling) show the average numbers
of samples per pixel. The last row shows the average numbers of
samples per pixel per minute over our test cases.

6 Discussion

Although our implementation supports all the sampling techniques
that we have introduced in our theory and all of our experiments
uses the full combinations, we have found that excluding local path
sampling techniques with more than one light vertex can also per-
form well in practice. This is essentially the combination of path
tracing with next event estimations [Kajiya 1986] and photon den-
sity estimation. Figure 14 compares rendered images using such a
subset of the full combinations and the full combinations within our
framework.

Using full combinations is more efficient when we have strong in-
direct illumination as in our bathroom scene. However, since the
cost of taking each sample increases due to the increased number
of probability density functions in the weight computation, in the
same computation time, using a subset of the combinations can take
more samples and be more efficient in many cases.

A few studies also explored applications of multiple importance
sampling to regular (not progressive) photon mapping. Bekaert et
al. proposed a combination of the regular photon density estimation
using multiple importance sampling in the context of their modi-
fied photon density estimator [2003]. Due to their connection ker-
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Figure 11: RMS errors of the bathroom scene using the same aver-
age number of samples per pixel. We used equal number of samples
as a comparison in this graph, favoring bidirectional path tracing:
since each sample of bidirectional path tracing takes more compu-
tation time in our implementation, an equal time comparison would
make the gap between our method and bidirectional path tracing
even larger.

nel formulation, their framework cannot not handle caustics from
specular materials which our method can efficiently handle. Vorba
and Křivánek [2011] described how multiple importance sampling
can be used to combine only photon density estimation techniques.
Contrarily to their approach, our method does not limit the combi-
nations only to photon density estimation, but provides full combi-
nations of Monte Carlo path integration and photon density estima-
tion.

One concurrent work is vertex merging by Georgiev et al. [2011].
Vertex merging is essentially an application of multiple importance
sampling to stochastic progressive photon mapping. In that regard,
our work is highly related to their work. Since this is concurrent
work and the details of their work has not been fully disclosed, we
do not provide side-by-side comparisons in this paper. We however
emphasize that there are two critical differences between our work
and their work.
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Figure 12: Conference room with diffuse surfaces and a large dif-
fuse light sources. For this type of scenes, our method (unified path
sampling) performs almost as well as bidirectional path tracing
since the contribution of Monte Carlo path integration automati-
cally dominates the final image.

First, we believe that their formulation of the probability density
function for photon density estimation is not entirely correct. Their
probability density functions are scaled by the area of density es-
timation kernel, which itself does not give raise to a probability
density since the area term is measured by dA, instead of the cor-
rect measure dA−1. We have showed that the reciprocal of this
area term should be multiplied by the probability density functions
of unbiased Monte Carlo path sampling, in order to account for the
path space extension required to match the dimensionality of the
photon density estimation samples. While we provided an analytic
explanation of our formulation, their multiplication of the area term
seems not to follow a rigorous mathematical reasoning. Our formu-
lation further provides a clear connection between our framework,
photon density estimation, and other techniques including virtual
spherical light sources. This is an important difference which opens
up the possibility to explore other techniques as future work.

Second, their claim of the overall convergence rate of O(1/N) in-
dicates that their formulation does not take into account the conver-
gence rate of progressive density estimation in multiple importance
sampling. As we have described, this is an important factor to con-
sider if we would like to obtain a provably good combination of
estimators without considering bias. We have demonstrated also
that different alpha values results in different overall convergence
rates. The overall convergence rate of O(1/N) cannot simply be
achieved if we use progressive density estimation. It is also not
clear from their descriptions if their formulation takes into account
the difference in the number of samples for density estimation and
Monte Carlo path integration in the weight computation. This is
another essential factor for obtaining accurate balanced weights.

We would also like to emphasize that none of those previous studies
analyzed the effect of bias to a provably good combination in mul-
tiple importance sampling, which is one of our theoretical contribu-
tions. Our work is also one of the firsts to fully investigate the com-
bination of progressive photon mapping using multiple importance
sampling. Our unified path space however is not limited to progres-
sive photon density estimation, but covers general photon density
estimation techniques and even more as we have described. The
analysis of a provably good combination in the balanced heuristic
under the presence of bias (Section 3.2.4) is the only part that is
specific to progressive photon density estimation.

6.1 Limitations

We emphasize that the goal of our work is not improving effi-
ciency of each sampling technique, but finding a better combina-
tion by introducing a new set of sampling techniques. These two
goals are completely orthogonal as demonstrated in some previous
work [Kelemen et al. 2002]. For certain light transport that is fun-

At most one light vertex (906 spp) Full connections (651 spp)
RMS Error: 0.03515 RMS Error: 0.03388

At most one light vertex (615 spp) Full connections (224 spp)
RMS Error: 0.02385 RMS Error: 0.05008

Figure 14: Effect of using full bidirectional connections. The im-
ages are rendered in 30 min with/without considering full bidirec-
tional connections between light vertices and eye vertices. Our
framework can include all bidirectional connections with an arbi-
trary number of light vertices, with the presence of photon density
estimation. Considering full connections can slightly improve the
accuracy of solution in some cases (top two images). However,
in other cases, because of its higher computational cost, using full
connections can lead to noise due to insufficient sampling rate (bot-
tom two images).

damentally difficult to sample with any of the combined techniques,
our method can still be inefficient.

Figure 15 demonstrates one such example, where a torus with
highly glossy material is embedded in a glass cube. The illumi-
nation on the torus is due to highly glossy reflections of indirectly
visible caustics. In this setting, a light transport path that has a
significant contribution to the image can be sampled only by con-
sidering multiple highly glossy reflections at once. Neither Monte
Carlo path integration nor photon density estimation performs such
sampling, since we sample each subpath vertex by local path sam-
pling. Although our sampling framework still improves upon each
approach, we simply need many samples in order to render this
scene without noise. It is thus interesting as future work to incor-
porate advanced sampling methods such as Markov chain Monte
Carlo sampling [Veach and Guibas 1997; Hachisuka and Jensen
2011] in our framework.

There are a couple of other limitations in its current form. First,
while we opted to ignore bias in our method, our derivation shows
that bias surely affects a provably good weighting strategy in mul-
tiple importance sampling. Indeed, our bias-aware heuristic is a
provably good strategy under the presence of a biased estimator.
Our further analysis in combination with progressive photon map-
ping showed that ignoring bias does not significantly affect the op-
timality of combination when we set α = 2/3. We found our de-
cision to be reasonable in practice as we have demonstrated in the
paper, but further investigation might lead to a better alternative.

Second, even though our derivation provides a first step in theo-
retical analysis of the effect of bias in multiple importance sam-
pling, we have made two assumptions that might be restrictive in
some cases. The first assumption is that we only have one biased
method in a combined solution, and the second assumption is that
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Figure 15: Fundamentally difficult case. The scene is a modified
version of the torus scene where the surface material of the torus is
highly glossy. Most of the illumination on the torus is due to highly
glossy reflections of caustics which are indirectly visible through a
glass cube. Such paths of light are fundamentally difficult to sample
efficiently even with our unified framework. Our algorithm however
is still able to produces a more accurate result than the standard
approaches in the same rendering time.

the contribution to bias from each biased sample is constant. We
made these assumptions in order to make a theoretical analysis of
the weighting function tractable. It would however be desirable if
further research could relax some parts of these assumptions by us-
ing our derivation as a stepping-stone.

We also have to mention that implementation of the entire frame-
work can be challenging as it subsumes bidirectional path tracing
and photon density estimation. This means that engineering effort
of implementing our framework is at least equivalent to engineer-
ing effort of implementing those two approaches in total. An ef-
ficient parallel implementation of our framework will pose several
challenges as was the case in bidirectional path tracing [Pajot et al.
2011].

7 Conclusion

We have presented a new sampling framework for a light transport
algorithm that combines unbiased Monte Carlo path integration and
photon density estimation based on multiple importance sampling.
The key idea is to extend the space of Monte Carlo path integration
by introducing perturbation of path vertices. This extension pro-
vides a unified view of the sampling spaces, and serves as a solid
theoretical foundation for the application of multiple importance
sampling. We have also provided theoretical analysis on how bias
from photon density estimation affects a provably good combina-
tion of multiple sampling techniques. In order to avoid the imprac-
tical requirement of evaluating bias, we describe how progressive
photon density estimation can be used to keep a provably good
combination under plausible conditions. We have demonstrated
the improved robustness and efficiency of the resulting algorithm
in comparison to bidirectional path tracing and progressive photon
mapping. We believe that our unified path sampling framework will
find many practical applications for photorealistic image synthesis
and also lead to further development of robust light transport sim-
ulation methods which can efficiently handle all kinds of illumina-
tion. As such, our contribution could be summarized as providing a
new basis for more robust future physically-based rendering meth-
ods.
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A Bias-Aware Multiple Importance Sampling

A.1 Problem Settings
In order to take bias into account in multiple importance sampling,
we consider a biased estimator as an unbiased estimator of a biased
solution. This makes it possible to characterize bias as a result of
modifications to an original integrand. We denote such modifica-
tions by the ith sampling technique as bi(x). Following the same
notation as Veach’s, the jth sample from the ith technique has the
following contribution:

Fi,j =
wi(Xi,j)(f(Xi,j) + bi(Xi,j))

pi(Xi,j)
, (25)

where wi(Xi,j) is the weight function, f(Xi,j) is the integrand,
bi(Xi,j) is the modifications to the original integrand that intro-
duces bias, and pi(Xi,j) is the probability density function. The
expected (and potentially biased) value from the ith technique is
then given by

µi = E[Fi,j ] =

∫
Ω

wi(x)(f(x) + bi(x))dµ(x). (26)

Note that bi(Xi,j) is not bias itself, but rather the contribution to
the bias from the sample Xi,j . We can describe bias from the ith
technique as the difference between the biased solution (i.e. µi) and
the correct solution;

B[Fi,j ] = E[Fi,j ] −
∫

Ω

wi(x)f(x)dµ(x) =

∫
Ω

wi(x)bi(x)dµ(x). (27)

Our goal is to find a weighting strategy which has expected error
that is not arbitrarily far away from the truly optimal weighting
strategy. This is also what the original balance heuristic achieves.
Our contribution is a derivation that shows necessary modifications
for the original balance heuristic to keep this optimality in combi-
nation with a biased technique.

The goal of the derivation of the original balance heuristic is to
minimize variance of the solution. This is because the error of un-
biased Monte Carlo techniques is solely characterized by variance.
However, in our setting, we also need to take bias into account.
We therefore minimize the squared error based on bias-variance
decomposition:

E[(F − µ̂)2] = V [F ] +B[F ]2, (28)
where µ̂ is the correct solution, V [F ] is variance, and B[F ] is bias.
Minimizing squared error including bias in general, however, is a
very challenging task. This is because bias is a systematic error that
happens because of various reasons, and it is often difficult to define
general characteristics of bias in order to perform any theoretical
analysis on quantities including bias. We therefore make a couple
of assumptions that are often reasonable in rendering.

First, we only consider the case where we have one nth biased tech-
nique in addition to other n − 1 unbiased techniques. This can
be true in our method if we restrict ourselves to consider only one
photon density estimation technique. Second, we assume that the
contribution to bias from each sample is constant. This is also rea-
sonable in photon density estimation as we only consider neighbor-
ing photons which tend to cause similar error within each radiance
estimate. We can thus set bi(x) = 0 for i 6= n and bn(x) = bn
for i = n. Notice that we are overloading the notation of bn for
readability. We can then expand E[(F − µ̂)2] as follows:

E[(F − µ̂)
2
] = V

 n∑
i=1

1

ni

ni∑
j=1

Fi,j

+ B

 n∑
i=1

1

ni

ni∑
j=1

Fi,j

2

=

∫
Ω

(
n−1∑
i=1

w2
i (x)f

2(x)

nipi(x)
+
w2
n(x)(f(x) + bn)

2

nnpn(x)

)
dµ(x)

+

(∫
Ω

wn(x)bndµ(x)
)2

−
n∑
i=1

1

ni
µ

2
i , (29)

In the following derivations, we will show how to minimize the
sum of the first two terms. The last term

∑n
i=1

1
ni
µ2
i has the same

bound as the original derivation by Veach thus the last term is inde-
pendent from weighting functions.

A.2 Minimizing Squared Error
Even after we made some simplifying assumptions, Equation (29)
is still difficult to minimize with respect to wi, since bias intro-
duced the integral term

(∫
Ω
wn(x)bndµ(x)

)2. In order to yield the
optimal wi including this term, it seems that we need to solve an
integral equation which is often intractable. However, we can show
that minimizing a point-wise expression,

n−1∑
i=1

w2
i (x)

nipi(x)
+
w2
n(x)(1 + rn(x))2

nnpn(x)
+Ar2

n(x)w2
n(x) (30)

indeed suffices to minimize the full expression of D[F ] in Equa-
tion (29), where we defined rn(x) = bn

f(x)
and A =

∫
Ω

dµ(x) for
readability.

We first start by trying to find an alternative expression for(∫
Ω
wn(x)bndµ(x)

)2. In order to obtain such an expression, we
use the Cauchy-Schwarz inequality and consider the bound of this
term; (∫

Ω

wn(x)bndµ(x)

)2

≤ A
∫

Ω

w2
n(x)b2ndµ(x). (31)

Minimizing the bound in general does not minimize the original
term since the bound might not have the same extrema as the orig-
inal function. In our case, however, the bound and the function
happen to have extrema at exactly the same points since

∂

∂wn

(∫
Ω

wn(x)bndµ(x)

)2

= A
∂

∂wn

∫
Ω

w2
n(x)b2ndµ(x).

(32)
Note that this is possible because of our assumptions on bias. Since
the latter is the upper bound of the function, minimizing the bound
also minimizes the function given the fact that they have extrema at
the same points.

Furthermore, since the sums of two functions f(x) + g(x) and
f(x) + h(x) have the same extrema if dg

dx
= dh

dx
, minimizing

∫
Ω

(
n−1∑
i=1

w2
i (x)f

2(x)

nipi(x)
+
w2
n(x)(f(x) + bn)

2

nnpn(x)
+ Aw

2
n(x)b

2
n

)
dµ(x)

(33)

is equivalent to minimizing the corresponding sums in Equa-
tion (29). We can yield Equation 30 by dividing the integrand of
this equation by f2(x).

A.3 Bias-Aware Balance Heuristic
Using the method of Lagrange multipliers, the minimum value of
Equation 30 is attained when all n+ 1 partial derivatives (n deriva-
tives for wi and one for λ) of the expression

n−1∑
i=1

w2
i

nipi
+
w2
n(1 + rn)2

nnpn
+Ar2

nw
2
n + λ

(
n∑
i=1

wi − 1

)
(34)

are zero. Note that we dropped the notation (x) similar to the
Veach’s derivation since this is a point-wise minimization of the
function. The solution to this equation yields Equation 13.


