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Abstract

A novel algorithm for computing the incomplete-LU and Cholesky fac-
torization with 0 fill-in on a graphics processing unit (GPU) is proposed. It
implements the incomplete factorization of the given matrix in two phases.
First, the symbolic analysis phase builds a dependency graph based on
the matrix sparsity pattern and groups the independent rows into levels.
Second, the numerical factorization phase obtains the resulting lower and
upper sparse triangular factors by iterating sequentially across the con-
structed levels. The Gaussian elimination of the elements below the main
diagonal in the rows corresponding to each single level is performed in par-
allel. The numerical experiments are also presented and it is shown that
the numerical factorization phase can achieve on average more than 2.8x
speedup over MKL, while the incomplete-LU and Cholesky preconditioned
iterative methods can achieve an average of 2x speedup on GPU over their
CPU implementation.

1 Introduction

The solution of large sparse linear systems is an important problem in com-
putational mechanics, geophysics, biology, circuit simulation and many other
applications in the field of computational science and engineering. In general,
these linear systems can be solved using direct or preconditioned iterative meth-
ods. Although the direct methods are often more reliable, they usually have
large memory requirements and do not scale well on massively parallel com-
puter platforms.
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In this paper we focus on the preconditioned iterative methods that are more
amenable to parallelism and therefore can be used to solve larger problems. Cur-
rently, the most popular iterative schemes belong to the Krylov subspace family
of methods. They include Bi-Conjugate Gradient Stabilized (BiCGStab) and
Conjugate Gradient (CG) iterative methods for nonsymmetric and symmetric
positive definite (s.p.d.) linear systems, respectively. In practice, one often uses
a variety of preconditioning techniques to improve the convergence of these it-
erative methods. In this paper we focus on the incomplete-LU and Cholesky
factorization with 0 fill-in, which is one of the most popular of these precondi-
tioning techniques [3, 31].

The parallel implementation of these incomplete factorizations has been stud-
ied by many authors, that explore the lack of dependencies between rows in the
Gaussian elimination using different reordering techniques. There are three over-
arching reordering strategies used in these studies.

The first strategy is based on level-set orderings (also called level-scheduling)
and is similar to the approach used for the solution of sparse triangular linear
systems in [14, 25]. It often consists of an implicit reordering of independent
rows into levels and a subsequent sequential traversal of those levels such that
the Gaussian elimination within a single level is performed in parallel [13, 23].

The second strategy is based on multi-coloring orderings (also called graph
coloring) that results in a permutation that is usually explicitly applied to the
matrix at hand. In this approach if k colors are used to color the matrix ad-
jacency graph, then the permuted matrix has k blocks on its diagonal that
are themselves diagonal matrices. The Gaussian elimination corresponding to
each diagonal block in the permuted matrix can then be performed in parallel
[23, 27, 28].

The third strategy is based on the independent set orderings [21] that gives
rise to the multi-level incomplete factorization. It consists of an implicit or
explicit reordering of the rows resulting in a matrix with a diagonal upper-left
block, a step of Gaussian elimination for all the rows corresponding to this block,
and then a recursive application of the same algorithm [2, 5, 6, 28, 29, 30].
A similar non-recursive approach can be applied using the hierarchical graph
ordering [15].

Finally, we mention that related work on parallelizing the incomplete factor-
izations has also been done in [1, 16, 17, 19, 24], while the application of some
of these techniques to GPUs has been studied in [18, 22].

In these strategies, it is important to keep in mind that implicit reordering
techniques have no effect on the convergence of the incomplete-LU and Cholesky
preconditioned iterative methods, while the effect of explicit reorderings is non
trivial and has been studied in [4, 10] for nonsymmetric and in [9, 11] for s.p.d.
problems among many others.



In this paper we follow the first strategy, exploring the available parallelism
using an implicit reordering and splitting the factorization into two phases. First,
the symbolic analysis phase builds a dependency graph based on the matrix spar-
sity pattern and groups the independent rows into levels. Second, the numeri-
cal factorization phase obtains the resulting lower and upper sparse triangular
factors by iterating sequentially across the constructed levels. The Gaussian
elimination of the elements below the main diagonal in the rows corresponding
to each single level is performed in parallel.

It is important to notice that in the preconditioned iterative methods the
incomplete factorization is computed only once, while the linear systems with the
resulting sparse triangular factors are often solved multiple times. Therefore, in
order to reduce the overhead of the computationally expensive symbolic analysis
phase, we must reuse the information obtained in it across both the numerical
factorization phase of the incomplete factorization and the solve phase of the
solution of sparse triangular linear systems [25].

Although on the surface the parallel incomplete factorization and solution
of sparse triangular linear systems are not related, it turns out that exactly
the same algorithm can be used to analyse the parallelism available in both
problems. In other words, the symbolic analysis phase can be implemented
using the modified topological sort, breadth-first-search and other graph search
algorithms [7, 8, 12] in the same way as it was done in [25]. The algorithm that
constructs the directed acyclic graph that allows us to explore the parallelism
in both the numerical factorization and solve phases will be explained in more
details in the next section.

Finally, we mention that the incomplete-LU and Cholesky factorizations
with 0 fill-in are implemented using CUDA parallel programming paradigm
[20, 26, 32], which allows us to explore the computational resources of the GPU.
These new algorithms, the corresponding sparse triangular solve, as well as other
standard sparse linear algebra operations are exposed as a set of routines in the
CUSPARSE library [34].

Although the parallelism available in these algorithms depends highly on the
sparsity pattern of the matrix at hand, in the numerical experiments section
it will be shown that the numerical factorization phase can achieve on average
more than 2.8x speedup over MKL, while the incomplete-LU and Cholesky
preconditioned iterative methods can achieve an average of 2x speedup using
the CUSPARSE library on the GPU over their MKL implementation on the
CPU.

Since the incomplete-LU and Cholesky factorizations with 0 fill-in are very
similar, we focus only on the former in the next sections.



2 Symbolic Analysis and Numerical Factorization
We are interested in computing the incomplete-LU factorization with 0 fill-in
A=~ LU (1)

where A € R™" is a nonsingular matrix, L and U € R™" are the resulting
lower and upper triangular factors, respectively. In further discussion we denote
the elements of the matrix A = [a;5], L = [l;;] and U = [uj], with l;; = 0 for
i < j and u;; = 0 for ¢ > j, respectively. Also, we assume that no pivoting is
performed and consequently by the definition of incomplete factorization with 0
fill-in the sparsity pattern of A and L + U is the same.

We can represent the data dependencies in the incomplete-LU factorization
of the matrix A as a directed graph, where the nodes represent rows and the
arrows represent the data dependencies between them. This directed graph is
constructed so that there is an arrow from node j to node i if there is an element
a;; # 0 for i > j present in the matrix. In other words, the dependencies between
rows are defined by the sparsity pattern of the lower triangular part and are
independent of the upper triangular part of the original matrix A.

Notice that because only the lower triangular part of the matrix is involved
in the construction of the graph, there are no circular data dependencies in
it, consequently there are no cycles in the graph. Also, notice that because
we assume that we are able to successfully obtain the incomplete factorization

without pivoting, we implicitly assume that a; # 0 for i = 1,...,n, in other
words, each row contains at least one non-zero element on the matrix main
diagonal.

Let us consider the following matrix as an example

aj] * * * * * * * *

ao  * * * * * * *

ass * * * * *

aq1 a4 * * * * *
as1 ass * * * * (2)

ag2 age * * *

ar3 (0 rar *

ag4 ags agsg *

agq  ag9s agg

where * denotes an element that is either present or not in the matrix.
The directed acyclic graph (DAG) illustrating the data dependencies in the
incomplete-LU factorization of the matrix in (2) is shown in Fig. 1. Notice that



it is identical to the DAG that describes the dependencies in the solution of the
lower triangular linear system with the coefficient matrix L used in [25]. Also,
notice that even though the sparsity pattern in (2) might look sequential at first
glance, there is plenty of parallelism to be explored in it.

Level 1 {rows 1,2 &3)

Level 2 (rows 4,5, 6 &7)

Level 3 {rows8 & 9)

Figure 1: The data dependency DAG of the original matrix A

In practice we do not need to construct the data dependency DAG because
it is implicit in the matrix. It can be traversed using for example a modified
breadth-first-search (BFS) shown in Alg. 1. Notice that in this algorithm the
node’s children are visited only if they have no data dependencies on the other
nodes. The independent nodes are grouped into levels, which are shown with
dashed lines in Fig. 1. This information is passed to the numerical factorization
phase, which can process the nodes belonging to the same level in parallel.

Algorithm 1 Symbolic Analysis Phase

1: Let n and e be the matrix size and level number, respectively.
2 e+ 1

3: repeat > Traverse the Matrix and Find the Levels
4: for i + 1,n do > Find Root Nodes
5: if ¢ has no data dependencies then

6: Add node i to the list of root nodes.

7: end if

8: end for

9: for i € the list of root nodes do > Process Root Nodes
10: Add node i to the list of nodes on level e.

11: Remove the data dependency on ¢ from all other nodes.

12: end for

13: e+—e+1

14: until all nodes have been processed.




In the numerical factorization phase we can explore the parallelism available
in each level using multiple threads, but because the levels must be processed
sequentially one-by-one, we must synchronize all threads across the level bound-
aries as shown in Alg. 2.

Algorithm 2 Numerical Factorization Phase

1: Let k be the number of levels.
2: for e + 1,k do

3: list < the sorted list of rows in level e.

4: for row € list in parallel do > Process a Single Level
5: Update elements in the row.

6: end for

7 Synchronize threads. > Synchronize between Levels
8: end for

Since the sparsity pattern of the original matrix A and L 4+ U is the same
and we do not need to store the unitary diagonal of L, the resulting incomplete
factorization is stored as a general matrix with its lower and upper triangular
parts containing the lower L and upper U triangular factors, respectively. In
fact, notice that on line 5 in Alg. 2 we are implicitly assuming that the elements
of the original matrix A are being overwritten with the elements of L and U.

Since the symbolic analysis phase of the incomplete-LU factorization with 0
fill-in and the analysis phase of the sparse lower triangular solve was shown to
be the same, and the later has already been described in great detail in [25],
in the next section we focus only on the CUDA parallel implementation of the
numerical factorization phase.

3 Implementation on the GPU

We assume that the matrix and all the intermediate data structures are stored in
the device (GPU) memory, with the exception of a small control data structure
stored in the host (CPU) memory. Also, we assume that the matrices are stored
in the compressed sparse row (CSR) storage format [31].

For example, letting all the elements in (2) marked by * be zero, the matrix
would be stored as

rowPtr = (1 2 3 4 6 8 10 12 15 18)
collnd = (1 23 1 4152637458 459)
Val

(i log Isg Lo laa sy lss lez les lzs ... log ) (3)



The output of the analysis phase are the arrays chainPtrHost, level Ptr and
levellnd that have the beginning and end of the chains, levels and the list of
sorted rows belonging to every level, respectively. The array chainPtrHost deter-
mines the properties and the number of kernels to be launched in the numerical
factorization phase and therefore must be present in the host (CPU) memory.
It is usually a relatively short array when compared to the matrix size and is
the only data structure present in the host memory.

For example, for (3) these arrays are

chainPtrHost = ( 1 4 )
level Ptr = (1 4 8 10)
levellnd = (1 2 3 45 6 7 8 9)

Notice that in this particular example there are only a few rows belonging to
every level, so that all of the levels are linked into a single chain, and consequently
can be processed with a single kernel in the numerical factorization phase.

The numerical factorization phase accepts as an input a set of levels, the
sorted list of rows belonging to every level and the chain data structure. It
determines the optimal number of thread blocks b needed to process each chain
and launches a single b = 1 or multiple b > 1 thread block kernels in a loop until
all chains have been processed. Notice that multiple thread blocks kernel always
processes a single level, while a single thread block kernel can process one or
more levels.

It is worth mentioning that in general rows might be grouped into levels
without preserving their original ordering, in other words, an earlier row can
be assigned to a latter level (consider for example the coefficient matrix in (2)
augmented with an extra row with a single diagonal element in it). Although
we do not have control over assignment of rows across levels, the sorting of
rows within a level that is done in the analysis phase improves the coalescing of
memory reads without affecting parallelism.

The resulting numerical factorization pseudo-code is shown in Alg. 3-4.

Algorithm 3 Numerical Factorization Phase

1: Let b and k£ be the number of thread blocks and chains, respectively.

2: Let levelInd[| contain the list of rows in each level.

3: Let level Ptr[| contain the starting index (into the array levelInd) of each
level (and an extra element to indicate the end of the last level).

4: Let chainPtrHost[] contain the starting index (into the array level Ptr) of
each chain (and an extra element to indicate the end of the last chain).




Algorithm 4 Numerical Factorization Phase (Part 2)

: for i < 0,k do > Process the Chains
start < chainPtr Host]i]
end < chainPtrHost[i + 1]
if single block is enough then
PROCESS_LEVEL_SINGLEBLOCK<K 1, ... >>(start, end)
10: else

11: PROCESS_LEVEL_MULTIBLOCK<K b, . .. 3>(start)

12: end if

13: end for

14: procedure PROCESS_LEVEL_SINGLEBLOCK(start, end) > CUDA Kernel
15: for e + start,end do

16: e

17: __syncthreads()

18: end for

19: end procedure

20: procedure PROCESS_LEVEL_MULTIBLOCK e) > CUDA Kernel
21: e
22: end procedure

Now let us focus our attention on the update of the elements within a single
row. Here we are concerned only with the rows that have at least one element to
the left of the main diagonal, otherwise nothing needs to be done for this row.

We will call the row where the elements are being updated the current row
and the row which is being scaled and added to it, in order to create zeros to
the left of the main diagonal, the reference row. Since there is always a diagonal
element in the reference row, there is always at least one element that needs
to be updated in the current row, while the other elements are updated only
if there is an intersection between the sparsity pattern of the remainder of the
current and reference rows.

Notice that based on the number of elements to the left of the main diagonal,
we might need to update the same elements multiple times in the current row.
If multiple updates to the current row are needed, the sparsity pattern of the
upper triangular part of the original matrix A dictates whether these updates
can be performed in parallel.

Letting (aij, air;) with j < k < i be a pair of two elements in the i-th row
in the lower triangular part of the matrix, there are three cases that can be
considered for the corresponding row updates



e The updates to the elements of the i-th row must be performed sequentially
if element a;;, is present in the upper triangular part of the matrix.

e Otherwise, the updates may be performed in parallel

i. using atomic floating point operations to update the overlapping ele-
ments if the remaining sparsity pattern of rows 4, j and k does overlap.

ii. completely independently with respect to each other, if the remaining
sparsity pattern of rows 4, j and k does not overlap.

However, we must perform additional analysis of the original matrix in order to
take advantage of the parallelism at this stage of the algorithm, which may not
be worthwhile. In this paper for simplicity we will always assume that multiple
updates to the current row are performed sequentially.

Finally, the pseudo-code for updating the elements corresponding to a single
row with at least one element to the left of the diagonal is given in Alg. 5.
Notice that the loop corresponding to multiple updates to the current row on
line 7 in Alg. 5 is indeed performed sequentially.

Algorithm 5 Update Elements in the Row

Let row be the current row.

Let Val[] contain the list of values in each row.

Let colInd[] contain the list of sorted column indices in each row.

Let rowPtr[] contain the starting index (into the array colind) of each row
(and an extra element to indicate the end of the last row).

5: start < rowPtr[row]

6: end < rowPtr[row + 1]

7. for j < start,end do > Left to Right, until Diagonal Is Reached
8

9

col < colInd|[j]
if col < row then

10: ref < col > Save the Reference Row
11: Arow,col < Val[j]

12: Urow,ref <= Qrow,col/Gref.ref > Compute and Store the Multiplier
13: for k <+ 7+ 1,end in parallel do > Update the Leftover
14: col < collInd[k]

15: if ayefcot # 0 then > Exists the Element in the Reference Row
16: Arow,col < Val[k] > Update the Element in the Current Row
17: QArow,col ¥ QArow,col — Arow,ref X Qref,col

18: end if

19: end for

20: end if

21: end for




4 Numerical Experiments

In this section we study the performance of the incomplete-LU and Cholesky
factorization with 0 fill-in as a standalone algorithm and as a part of a precondi-
tioned iterative method. We use twelve matrices selected from The University of
Florida Sparse Matrix Collection [36] in our numerical experiments. The seven
symmetric positive definite (s.p.d.) and five nonsymmetric matrices with the
respective number of rows (m), columns (n=m) and non-zero elements (nnz) are
grouped and shown according to their increasing order in Tab. 1.

# | Matrix m,n nnz s.p.d. | Application

1. | offshore 259,789 4,242,673 | yes Geophysics

2. | af_shell3 504,855 17,562,051 | yes Mechanics

3. | parabolic_fem 525,825 3,674,625 | yes General

4. | apache2 715,176 4,817,870 | yes Mechanics

5. | ecology?2 999,999 4,995,991 | yes Biology

6. | thermal2 1,228,045 | 8,580,313 | yes Thermal Simulation
7. | G3_circuit 1,585,478 | 7,660,826 | yes Circuit Simulation
8. | FEM_3D_thermal2 | 147,900 3,489,300 | no Mechanics

9. | thermomech_dK 204,316 2,846,228 | no Mechanics

10. | ASIC_320ks 321,671 1,316,085 | no Circuit Simulation
11. | cagel3 445,315 7,479,343 | no Biology

12. | atmosmodd 1,270,432 | 8,814,880 | no Atmospheric Model.

Table 1: Symmetric positive definite (s.p.d.) and nonsymmetric test matrices

In the following experiments we use the hardware system with NVIDIA
C2050 (ECC on) GPU and Intel Core i7 CPU 950 @ 3.07GHz, using the 64-
bit Linux operating system Ubuntu 10.04 LTS, CUSPARSE library 5.0 and MKL
10.2.3. The environment variables MKL_NUM_THREADS and KMP_AFFINITY
are set to 4 and “granularity=fine,proclist=[0,1,2,3],explicit”, allowing MKL to
use 4 threads pinned to the corresponding 4 CPU cores.

4.1 Incomplete-LU and Cholesky Factorization (Standalone)

Let us first analyse the performance of the standalone incomplete-LU and Cholesky
factorization with 0 fill-in on the GPU, which will be denoted i1u0 and icO, re-
spectively. We will compare it to the performance attained by the MKL csrilu0
routine, which will also be used for s.p.d. matrices on the CPU (because of a
lack of a corresponding csricO routine in MKL).
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The absolute time in seconds (s) taken to perform the incomplete-LU and
Cholesky factorization on the CPU using the MKL csrilu0 routine and on the
GPU using the CUSPARSE library csrsv_analysis and i1u0/icO routines is
given in Tab. 2. The total time taken by the CUSPARSE library incomplete
factorization is the sum of the time taken by the symbolic analysis and the
numerical factorization phases performed by csrsv_analysis and ilu0/icO
routines, respectively. The fact that on the CPU we use the MKL csrilu0
routine for the s.p.d. matrices as well as the nonsymmetric matrices is denoted
by 1. Contrary to the usual expectations this setup is less advantageous for the
CUSPARSE library, because on the GPU the incomplete-Cholesky factorization
is roughly 30% slower than the incomplete-LU factorization for the same matrix.

CUSPARSE MKL

# | csrsv_analysis | 11u0/icO | total csrilu0

time (s) time (s) | time (s) | time (s)
1. | 0.0594 0.3030 0.3695 | 0.3448T
2. | 0.1006 0.6048 0.6148 | 1.60497
3. | 0.0362 0.0187 0.0549 | 0.1123f
4. | 0.0480 0.0470 0.0950 | 0.0842f
5. | 0.0669 0.0496 0.1165 | 0.06917
6. | 0.0837 0.1023 0.1860 | 0.3521f
7. 1 0.1037 0.0865 0.1902 | 0.15371
8. | 0.0599 0.3225 0.3824 | 0.2831
9. | 0.0342 0.0622 0.0964 | 0.1770
10. | 0.0270 0.1730 0.2000 | 0.0982
11. | 0.0656 0.0847 0.1503 | 0.6826
12. | 0.1051 0.0430 0.1481 | 0.1781

Table 2: Time taken by MKL csrilu0 and CUSPARSE csrsv_analysis and ilu0/icO

The total time taken by the CUSPARSE library and MKL to compute the
incomplete factorization is summarized in Fig. 2. Notice that there is a slight
variation in the time taken by the csrsv_analysis routine with respect to the
previous results in [25]. It is due to the new version of the CUSPARSE library
where the sparse triangular solve now operates on the lower and upper triangular
parts of the full matrix (instead of the individually stored lower and upper
triangular factors).

Although MKL often outperforms the CUSPARSE library if we consider
the total time taken by the incomplete factorization, recall that the symbolic
analysis phase is shared between the numerical factorization phase and the

11
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Figure 3: Speedup of CUSPARSE i1u0/ic0 versus MKL csrilu0

solve phase of the solution of sparse triangular linear systems. It has already
been shown that when the solution of sparse triangular linear system needs to
be performed multiple times, the cost of the slower symbolic analysis phase can
be amortized across multiple faster applications of the solve phase, resulting
in an average 2x speedup [25]. In this setting we must already perform the
symbolic analysis for the sparse triangular solve, therefore from the incomplete
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factorization standpoint it is free and we can focus only on the time taken by the
numerical factorization phase. For this reason, we highlight in red the fastest
time between CUSPARSE 11u0/ic0 and MKL csrilu0 in Tab. 2 and show the
corresponding speedup in Fig. 3.

4.2 Incomplete-LU and Cholesky Factorization (Iterative Method)

Let us now analyse the performance of the incomplete factorization, in the con-
text of solving the linear system

Ax =f (4)
using preconditioned Bi-Conjugate Gradient Stabilized (BiCGStab) and Con-
jugate Gradient (CG) iterative methods for nonsymmetric and s.p.d. systems,
respectively. We precondition these methods using the incomplete-LU A ~ LU
in (1) and Cholesky A ~ RT R factorizations with 0 fill-in.

We compare the implementation of the BiCGStab and CG iterative methods
using the CUSPARSE and CUBLAS libraries on the GPU and MKL on the CPU.
In our experiments we let the initial guess be zero, the right-hand-side f = Ae
where e’ = (1,...,1)”, and the stopping criteria be the maximum number of

iterations 2000 or relative residual ||r;||2/||rol|2 < 1077, where r; = f — Ax; is

the residual at i-th iteration.

CPU GPU Speedup
# | ilu0 | solve ”gé“‘é # it. | ilu0/icO | solve ‘I(ﬁé"t # it.
time(s)time(s) time(s) fime(s)

1 [0.35| 0.68 8.83E-08 25 | 0.30 1.57 | 8.83E-08 | 25 0.55
2 | 1.59 | 38.1 9.88E-08 571 | 0.60 35.1 | 9.88E-08 | 570 1.11
3 | 0.11 | 31.1 [9.84E-08 1044 | 0.02 7.48 | 9.84E-08 | 1044 4.16
4 | 0.01 | 31.9 9.97E-08 713 | 0.05 13.4 | 9.97E-08 | 713 2.37
5 1 0.07 | 105. 9.98E-08 1746 | 0.05 57.0 | 9.98E-08 | 1746 1.84
6 | 0.36 | 142. [9.99E-08 1655 | 0.10 56.8 | 9.92E-08 | 1655 2.50
7 10.16 | 18.3 RB.86E-08 183 | 0.09 9.02 | 8.22E-08 | 183 2.03
8 | 0.28 | 0.16 [5.25E-08 4 0.32 0.53 | 5.25E-08 | 4 0.52
9 | 0.18 | 88.1 [1.57E-04] 2000 | 0.06 50.0 | 1.97E-04 | 2000 1.76
10 | 0.1 | 0.24 6.33E-08 6 0.17 0.15 | 6.33E-08 | 6 1.06
11 | 0.67 | 0.25 2.52E-08 2.5 | 0.08 0.23 | 2.52E-08 | 2.5 2.97
12 [ 0.19 | 11.8 9.58E-08 75.0 | 0.04 4.81 | 7.92E-08 | 73.5 2.47

Table 3: The icO preconditioned CG and ilu0 preconditioned BiCGStab methods
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The results of the numerical experiments are shown in Tab. 3, where we state
the speedup obtained by the iterative method on the GPU over CPU (speedup),
number of iterations required for convergence (# it.), achieved relative residual
(”::é'l"i) and time in seconds taken by the factorization (11u0/ic0) and iterative
solution of the linear system (solve). We include the time taken by factorization
on the GPU and CPU, but we exclude the extra time taken to transform the
incomplete-LU upper triangular factor U into the incomplete-Cholesky upper
triangular factor R for s.p.d. matrices on the CPU, in the computed speedup.

Finally, the speedup based on the total time taken by the preconditioned
iterative method is summarized in Fig. 4, where * indicates that the method
did not converge to the required tolerance.
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Figure 4: Speedup of BiCGStab and CG with incomplete-LU/Cholesky preconditioning

Notice that for most of the matrices the total speedup has not changed
significantly when compared to the earlier results [25], where the incomplete
factorization was performed on the CPU. This is not surprising given that in
our numerical experiments the incomplete factorization often consumes only a
small fraction of the total time taken by the iterative method. However, as
shown on Fig. 5 there are matrices for which this is not the case. In particular,
performing the incomplete-LU factorization on the GPU for cagel3 allowed us
to significantly reduce the overall time taken by the iterative method.
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Notice that for majority of matrices in our numerical experiments the imple-
mentation of the iterative method using the CUSPARSE and CUBLAS libraries
does indeed outperform the MKL. In fact the numerical factorization phase of
the incomplete factorization obtains on average more than 2.8x speedup over
MKL and the incomplete-LU and Cholesky preconditioned BiCGStab and CG
iterative methods obtain an average of 2x speedup on the GPU over their CPU
implementation.

5 Conclusion

A novel parallel algorithm for computing the incomplete-LU and Cholesky fac-
torization with 0 fill-in was developed. It splits the incomplete factorization in
two phases. The symbolic analysis phase, that is the same as the analysis phase
of the solution of sparse triangular linear systems, and the numerical factoriza-
tion phase. The performance of the incomplete factorization depends highly on
the sparsity pattern of the matrix at hand. In general, the sparsity of the lower
triangular part defines which rows can be processed independently, while the
sparsity of the upper triangular part defines which updates to a single row can
be made in parallel. Although, there are sparsity patterns for which the compu-
tation is inherently sequential, there are many other realistic sparsity patterns
where enough parallelism is available.



The new algorithm is ideally suited for the incomplete-LU and Cholesky pre-
conditioned iterative methods. In this setting the CUDA implementation of the
numerical factorization phase on the GPU can outperform the MKL implemen-
tation on the CPU, while the computational cost of the symbolic analysis phase
can be shared with analysis phase of the solution of sparse triangular linear
systems and amortized across multiple steps of an iterative method.

In our numerical experiments the numerical factorization achieved on average
more than 2.8x speedup over MKL, while the incomplete-LU and Cholesky pre-
conditioned iterative methods implemented on the GPU using the CUSPARSE
and CUBLAS libraries achieved an average of 2x speedup over their MKL im-
plementation. To conclude, it is worth mentioning that the use of multiple-right-
hand-sides would increase the available parallelism and can result in a significant
relative performance improvement on the GPU.
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