
Relational Algorithms for Multi-Bulk-Synchronous Processors

Gregory Frederick Diamos
NVIDIA Research

gdiamos@nvidia.com

Haicheng Wu
Georgia Institute of Technology

hwu36@gatech.edu

Ashwin Lele
Georgia Institute of Technology

alele@gatech.edu

Jin Wang
Georgia Institute of Technology

jin.wang@gatech.edu

Sudhakar Yalamanchili
Georgia Institute of Technology

sudha@ece.gatech.edu

June 5, 2012

NVIDIA Technical Report NVR-2012-001, May. 2012.
c© 2012 NVIDIA Corporation. All rights reserved.

1

Abstract

Relational databases remain an important application domain for organizing and analyzing the mas-
sive volume of data generated as sensor technology, retail and inventory transactions, social media,
computer vision, and new fields continue to evolve. At the same time, processor architectures are be-
ginning to shift towards hierarchical and parallel architectures employing throughput-optimized memory
systems, lightweight multi-threading, and Single-Instruction Multiple-Data (SIMD) core organizations.
Examples include general purpose graphics processing units (GPUs) such as NVIDIA’s Fermi, Intels
Sandy Bridge, and AMD’s Fusion processors.

This paper explores the mapping of primitive relational algebra operations onto GPUs. In particular,
we focus on algorithms and data structure design identifying a fundamental conflict between the structure
of algorithms with good computational complexity and that of algorithms with memory access patterns
and instruction schedules that achieve peak machine utilization. To reconcile this conflict, our design
space exploration converges on a hybrid multi-stage algorithm that devotes a small amount of the total
runtime to prune input data sets using an irregular algorithm with good computational complexity. The
partial results are then fed into a regular algorithm that achieves near peak machine utilization. The
design process leading to the most efficient algorithm for each stage is described, detailing alternative
implementations, their performance characteristics, and an explanation of why they were ultimately
abandoned.

The least efficient algorithm (JOIN) achieves 57%− 72% of peak machine performance depending on
the density of the input. The most efficient algorithms (PRODUCT, PROJECT, and SELECT) achieve
86%− 92% of peak machine performance across all input data sets. To the best of our knowledge, these
represent the best known published results to date for any implementations.

This work lays the foundation for the development of a relational database system that achieves
good scalability on a Multi-Bulk-Synchronous-Parallel (M-BSP) processor architecture. Additionally,
the algorithm design may offer insights into the design of parallel and distributed relational database
systems. It leaves the problems of query planning, operator→query synthesis, corner case optimization,
and system/OS interaction as future work that would be necessary for commercial deployment.

2

1 Introduction

Modern relational database systems and languages are built on efficient implementations of relational
algebra operators combined with specialized data structures, such as B-Trees, that are used to store
relations. These systems have been deployed with success on single-core processors and clusters. How-
ever, as power-constrained processor architectures such as NVIDIA Kepler [1], AMD GCN [2], and
Intel Haswell [3] move towards multiple cores with fine grained SIMD parallelism and non-uniform or
user-managed memory hierarchies, new algorithms are needed that can harness the massive parallelism
provided by these processors.

Relational operations capture the high level semantics of an application in terms of a series of bulk
operations, such as JOIN or PROJECT, on relations. The data intensive nature of relations might suggest
that a high degree of data parallelism could be discovered in relational algebra operations. Unfortunately,
this parallelism is generally more unstructured and irregular than other domain specific operations, such
as those common to dense linear algebra, complicating the design of efficient parallel implementations.
However, recent work has demonstrated that multi-stage algorithms, such as those common to sorting [4],
pattern matching [5], algebraic multi-grid solvers [6], or compression [7], can be efficiently mapped onto
massively parallel processors such as programmable GPUs from NVIDIA and AMD.

The core contribution of this paper is the development of hierarchical, multi-stage bulk-synchronous-
parallel (Multi-BSP) algorithms that implement relational algebra operators. These algorithms are de-
signed to exploit the hierarchical and data-parallel architectures of modern and future general purpose
processors to achieve good scaling and near-peak performance. Our focus in this paper is on develop-
ing and demonstrating Multi-BSP algorithms for a single GPU processor that can execute hundreds of
threads per cycle, i.e., an NVIDIA Fermi GPU with 16, 32-wide cores. These algorithms can be used
directly to implement a relational database system in a single node using a single GPU blade, or as
building blocks in higher level distributed algorithms that scale to multiple processors within a node or
across or multiple nodes [8, 9]).

In particular the goal of this paper is to explore the algorithm and data structure design space of
relation algebra operations for a speciific instance of a parallel processor architecture (NVIDIA Fermi
C2050) and develop strategies that can be adapted to other processors as well. We seek to i) develop
insights into the how to best utilize the large memory bandwidths afforded by these architectures, ii)
understand potential bottlenecks such architectures, and thereby iii) develop highly tuned and flexible
algorithmic solutions and companion implementations. We introduce and analyze multiple implementa-
tions that lead to the most efficient implementation. It is not the intent of this paper to compare GPU
and CPU macro or micro architecture, which would require an equally rigorous treatment of algorithm
design space exploration for another processor architecture. To the best of our knowledge, the perfor-
mance of the implementations described here represent the highest reported throughputs for relational
algebra operators to date.

The following section introduces the basic relational algebra operators for which implementations are
provided in this paper. Section 4 describes the Multi-BSP algorithmic framework and the implementa-
tions of the operators. Section 5 provides a description of a detailed performance evaluation. The paper
concludes with some thoughts on how this framework can be extended to multi-GPU and multi-node
systems.

3

RA Operator Description Example

PROJECT A unary operator that consumes one input relation to produce a x = {(3,True,a),(4,True,a),(2,False,b)}
new output relation. The output relation is formed from tuples of PROJECT [field.0,field.2] x → {(3,a),(4,a),(2,b)}
the input relation after removing a specific set of attributes.

PRODUCT A binary operator that combines the attribute spaces of two x = {(3,a),(4,a)}, y = {(True,2)}
relations to produce a new relation with tuples forming the PRODUCT x y → {(3,a,True,2),(4,a,True,2)}
set of all possible ordered sequences of attribute values from
the input relations

SELECT A unary operator that consumes one input relation to produce a x = {(3,True,a),(4,True,a),(2,False,b),(3,False,a)}
new output relation that consists of the set of tuples that SELECT[field.1,field.0==2] x → (2,False,b)
satisfy a predicate equation. This equation is specified as a
series of comparison operations on tuple attributes.

SET A binary operator that consumes two relations to produce a new x = {(3,a),(4,a),(2,b)}, y = {(0,a),(2,b),(3,c)}
INTERSECTION relation consisting of tuples with keys that are present in both INTERSECT x y → {(2,b)}

of the input relations.

SET A binary operator that consumed two relations to produce a new x = {(3,a),(4,a),(2,b)}, y = {(0,a),(2,b),(3,c)}
UNION relation consisting of tuples with keys that are present in at UNION x y → {(3,a),(4,a),(2,b),(0,a),(3,c)}

least one of the input relations.

SET A binary operator that consumes two relations to produce a new x = {(3,a),(4,a),(2,b)}, y = {(4,a),(3,a)}
DIFFERENCE relation of tuples with keys that exist in one input relation DIFFERENCE[field.0] x y → {(2,b)}

and do not exist in the other input relation.

JOIN A binary operator that intersects on the key attribute and cross x = {(3,a),(4,a),(2,b)}, y = {(0,a),(2,f),(3,c)}
product of value attributes. It consumes two relations to JOIN x y → {(3,a,c),(2,b,f)}
produce a new relation consisting of tuples with keys that are
present in both of the input relations. It is different than SET
INTERSECTION in that it evaluates a subset of the fields in each
input relation, and thus must tolerate duplicates. Outer join is
a variant that returns all tuples from either the left, right,
or both input relations along with the matching tuples.

Table 1: The set of relational algebra operations. In the example, the 1st attribute is the ”key”

0 3 1 2 2 4 3 6
0 2 6 8 10 1416 18 22 24 26 30 32

2-bit

key

4-bit

value

2-bit

padding zero

Figure 1: An example of a tuple with four fields, each compressed into 8-bits and packed into a single 32-bit
word.

2 Background

This section introduces the relational algebra operators and the single instruction stream multiple thread
(SIMT) machine model for data parallel architectures (for example this is the BSP implementation
employed by NVIDIA processors). Particular emphasis is paid to those aspects of the SIMT model that
are key to the algorithm design. The section concludes with a brief description of prior and related work,
setting this work in context.

2.1 Relational Algebra

Relational Algebra (RA) consists of a set of fundamental transformations that are applied to sets of
primitive elements. Primitive elements consist of n-ary tuples that map attributes (or dimensions) to
values. Each attribute consists of a finite set of possible values and an n-ary tuple is a list of n values,
one for each attribute. Another way to think about tuples is as coordinates in an n-dimensional space.
An unordered set of tuples of each type specifies a region in this n-dimensional space and is termed a
’relation’. Each transformation included in RA performs an operation on a relation, producing a new
relation. Many operators divide the tuple attributes into key attributes and value attributes. In these
operations, the key attributes are considered by the operator and the value attributes are treated as
payload data that is not considered by the operation. Figure 1 is an example of a relation containing
4 tuples and each tuple has 1 key attribute and 1 value attribute. A relational algebra application is
specified as a dataflow graph of operators, making for a natural mapping to a variety of parallel execution
models, for example, by mapping operators to Multi-BSP kernels and relations to data structures. Table 1
lists the complete set of RA operators and their examples.

4

 Shared Memory

 L2 Cache

 Interconnect Network

 Memory Controller

……

…

……

… … …

……

……

……

Grid of Cooperative

Thread Arrays (CTA)

barrier

barrier

Cooperative Thread Arrays (CTA)

Thread

Warp 1
Warp N

DRAM

 Row Buffer

Coalesced Access

0 4 8 C 10 14 18 1C

branch

End of

branch

Address

R R R R R R R R …… R R R R R R R R

Figure 2: NVIDIA C2050 architecture and execution model.

Extension: Segmented Reduction Most query languages such as SQL, Datalog, or Map-Reduce [10]
include an additional unary operator for performing a reduction over ranges of tuples that match a given
predicate. For example, to compute the sum over all sales of items with the same SKU. This is exactly
equivalent to a segmented reduction. The input relation is first partitioned into segments, and a reduc-
tion is applied to all tuples in each segment. This operation is not traditionally included in RA, but it
is still explored in this paper.

2.2 Parallel Processors

The performance of computing platforms has increased over time, driven by advances in manufacturing
technology, system/processor architecture, and software stacks. However, the harwdare/software inter-
face has also evolved along-side these changes, requiring algorithm or data structure modifications to
fully exploit the performance improvements provided by new technology. This section examines how
these changes impact RA algorithm design.

2.3 Memory Subsystem

Relational algebra operators are highly memory intensive, mainly consisting of simple manipulations of
tuple data after routing it through the memory system. Therefore, effective utilization of the memory
subsystem is critical to achieving good performance.

5

DRAM Main memory is composed of DRAM memory blocks organized together into an array that
compose a single IC. Data is moved from the memory banks into an on-chip row buffer in a single
transaction. Multiple row buffer operations can be pipelined to hide the latency of individual transfers.
Once in the row buffer, data is transferred synchronously over the processor-memory interface. Transfers
occur out of the row buffer at maximum bandwidth when a series of transactions read a sequential burst
of data. Otherwise, additional commands are needed to modify the offset being accessed in from the row
buffer. Several Integrated Circuits (IC)s are packaged together into a single module with data striped
across the ICs to form a 64-bit data interface that connects directly to a processor’s memory controller.
A processor will typically include multiple memory controllers, each connected to series of ICs. The
NVIDIA C2050 includes six independent controllers.

These DRAM organizations favor deep queues of coarse-grained bulk operations on large contiguous
chunks of data, so that all data that is transferred to the row buffer is returned to the processor, and
that it is accessed sequentially as a long burst. Memory controllers can typically support several streams
of sequential accesses by buffering requests and switching between streams on a row buffer granularity.
However, a large number of requests directed to addresses that map to different row buffers will force
the memory controller to switch pages and trigger premature row buffer transfers, reducing effective
bandwidth. These characteristics favor algorithms with a limited number of streams that are accessed
sequentially, or block-strided accesses on a granularity larger than the DRAM page size, typically 2-4KB.
Purely random accesses result in frequent row buffer transfers and address traffic, which significantly
reduce effective DRAM bandwidth.

2.4 Network and On-Memory

The on-chip network sits between the L2 cache banks and SMs. The memory controllers interface with
the L2 cache banks, servicing misses from a single group of banks. The network interleaves traffic
from multiple SMs, and the L2 cache serves as a buffer that accumulates requests to the same memory
controller. For RA algorithms, the fact that the L2 cache is generally smaller than the aggregate size of
the SMs shared memory banks or register files makes it useful primarily as a staging area for data that
is being ferried to and from the memory controllers.

2.5 Core Microarchitecture

GPU cores are referred to as streaming multi-processors (SMs). SMs include SRAM banks used to
implement register files, L1 data and instruction caches, and scratch-pad memory referred to as shared
memory. The datapath follows a SIMD organization with 32 lanes, and a 24 cycle pipeline. Logical
threads in the programming model are mapped onto SIMD lanes in the processor in 32-wide groups
known as warps. Warps are time-multiplexed onto the SM to cover the pipeline and memory latencies. A
scoreboard is used to track instruction dependences and allow the same warp to issue multiple indepdent
instructions. Shared memory is organized into 32 banks, each one supporting an independent access
per cycle. Like all processors, datapath hazards and resource constraints limit the peak instruction
throughput of the SM. Although most RA operators are memory intensive, they are dependent on the
SMs for access to fast on-chip memory and for orchestrating the movement of data throughout the system.
SM inefficiencies can quickly become performance bottlenecks.

Threads in a warp that take different control flow paths through the program require serialization,
reducing the utilization of the SIMD datapath. At least two warps are required to issue instructions
concurrently. Instructions are scheduled speuclatively, assuming fixed best-case latency for cache and
shared memory accesses. A cache miss or shared memory bank conflict violates the schedule of any
instructions from the same warp following the incorrectly-scheduled operation, causing these instructions
to be squashed and the offending instruction to be replayed. Branch prediction is not employed; hardware
multithreading is required to hide branch latency.

For relational algebra, and most other applications, the algorithm design needs a large number of
warps to hide memory and pipeline latency. Control flow within a warp should be regular to keep SIMD
utilization hight. Branches and instructions with back-to-back data depdences should be avoided in place
of long streams of instructions with at least a moderate degree of instruction-level-parallelism (ILP).

2.6 Related Work

Several research groups have investigated the use of GPUs to accelerate database applications. Even
before the introduction of general purposes programmable GPUs, Govindaraju et al. [11, 12] leveraged

6

the use of OpenGL/DirectX to speedup the performance of RA operators including aggregation, SELECT
and JOIN.

After the introduction of CUDA and OpenCL, Trancoso et al. [13] introduced methods for mapping
the JOIN operator onto GPUs. Lieberman et al. [14] provided techniques to accelerate similarity join
for a spatial database. Sengupta et al. [15] implemented GPU scan primitives which are frequently used
in database applications. Lauer et al. [16] used GPUs to optimize aggregation for an online analytic
processing (OLAP) system. Furthermore, the CUDA Thrust library provides GPU implementations of
many operations that are commonly used in database systems such as aggregation, scan, and all of the
set operations.

The most recent work closest to what is reported here is a GPU-based database system, GDB,
developed by He et al. [17]. Their GPU implementation is based on some common primitives such as
map, reduce, filter and so on. They compared the performance of each RA operator comprised of these
primitives with finely tuned parallel CPU counterparts. As to computation-intensive operators such as
JOIN, the speedup of GPU version is 2-7x faster and the other simple operators such as SELECT can
achieve 2-4x speedup. Section 5 will compare the algorithm designed in this work with GDB.

7

3 Sequential Algorithms

There is a long history of related work on efficient algorithms for relational algebra operators, mostly
in the context of query processing for data warehousing and OLAP systems. For these systems, the
greatest effort has been applied to the most demanding problems, leading to several effective sequential
algorithms for JOIN, SORT, and the SET family of operators. In this paper, we focus on the JOIN and
SET operators due to a large existing body of work on SORT, and we refer interested readers to [18]
for more details. Three classes of algorithms are described that can be used to implement SET or JOIN
operators. They are linear merge, hash merge, and recursive partitioning.

Linear Merge can be used to perform SET or JOIN operations by co-iterating over each of the input
relations. It is the default algorithm used for GCC’s implementation of the SET family of operators. It
works by maintaining two pointers, one for each of the input relations. At each step of the algorithm,
tuples at each pointer are compared. Matching elements are written as outputs. If there is no match,
the pointer to the tuple with the lesser key is incremented.

Although this algorithm has linear complexity and a sequential access pattern, naive implementations
require several branches at each iteration to determine which pointer to increment. This is further
complicated by the fact that the branch is typically data-dependent, leading to poor branch prediction
rates and frequent pipeline flushes. Several optimizations can be applied to alleviate these issues, for
example, branching overheads can be minimized by unrolling the inner loop and using conditional select
instructions to determine which pointer to increment after each iteration. However, this still results in
a chain of data-dependent memory operations, where the address of the next load is dependent on the
value of the previous load. These cannot be used to hide pipeline or memory latency in a deeply-pipelined
out-of-order processor.

Hash Join is a very popular algorithm for implementing the JOIN algorithm. The input relations are
first partitioned into buckets using a hash function such that tuples with matching keys will be moved
into corresponding buckets. In the next stage of the algorithm, each pair of buckets is joined by creating a
hash table for the smaller buckets and scanning over the larger bucket, performing lookups into the hash
table. Hash join is very amenable to parallel implementations; partitions can be created and processed
independently. The main disadvantage of hash based algorithms is their random memory access pattern
in the first phase of the algorithm where tuples are scattered into buckets, when the hash tables for the
smaller buckets are created, and during the lookups into the hash tables.

Recursive Partitioning was introduced by Baeza-Yates et al. [19] as an efficient algorithm for
performing set intersections. It begins by selecting a pivot tuple from one sorted relation and looking
up the corresponding tuple in the other relation, creating two partitions. The algorithm is then applied
recursively to each partition until matching tuples are found, or entire partitions are found to be out of
range.

Although it has good computational complexity, it is poorly matched for most DRAM and cache
organizations, because the early stages of the algorithm access a single element from an entire cache
line or DRAM page and then move on to another element very far away. The cost of this operation
can be amortized over multiple accesses to the relation by pre-computing the pivot elements and storing
them consecutively as meta-data in the same cache line or DRAM page, effectively creating a B-Tree
structure. However, this approach is not effective when relations are generated as intermediate values
and discarded immediately. Furthermore, implementing an operation completely with recursive partition
potentially requires a binary search for each partition, which has a worst case memory access complexity
of 2(n + 1)log((n + 1)/(n + 1)) + 2n + O(log(n)). This compares favorably to other algorithms at the
cost of a worse memory access pattern.

8

5

T

3

F

8

T

2

F

4

F

6

T

1

F

7

F

9

T

CTA0 CTA1 CTA2

In

5

T

3

F

8

T

2

F

4

F

6

T

1

F

7

F

9

T
In_reg

t0 t1 t2 t0 t1 t2 t0 t1 t2

Global

Mem
Reg

t0 t1 t2 t0 t1 t2 t0 t1 t2

5 3 8 2 4 6 1 7 9Out_reg

t0 t1 t2 t0 t1 t2 t0 t1 t2

5 3 8 2 4 6 1 7 9Result

Figure 3: Example of PROJECT skeleton

1 2 3 T F T

1

T

1

F

1

T

2

T

2

F

2

T

3

T

3

F

3

T

L

1

T

1

F

1

T

2

T

2

F

2

T

3

T

3

F

3

T

L_buf

t0 t1 t2

t0 t1 t2 t0 t1 t2

Global

Mem
Reg

t0 t1 t2 t0 t1 t2 t0 t1 t2

Out_reg

1 2 3

Result

R T F T

t0 t1 t2

R_buf

t0 t1 t2

Shared

Mem

Figure 4: Example of PRODUCT skeleton

4 Algorithm Design

The core algorithmic structure is a sequence of stages where each stage has a Multi-BSP structure. The
functionality of some stages is common across the RA operators, e.g., partitioning input sets of tuples.
Thus, we are able to abstract the implementations of the RA operators into a few algorithm skeletons
whereby different operators can be realized by changing one or more stages of the skeletons. An algorithm
skeleton is implemented on a GPU processor. We point out that algorithm skeletons can be composed
hierarchically to coordinate execution of multiple operators in a query across multiple GPU processors.
However, this paper focuses on the implementation of the algorithm skeletons and the individual stages
of each skeleton.

4.1 Algorithm Skeletons

PROJECT is relatively simple compared to the remaining skeletons. As shown in Figure 3, it only
requires a transform pass over tuples in the array to decompress the tuple attributes, remove some
attributes, and then compress the tuple with the reduced set of attributes. This is a completely data-
parallel operation that can be trivially partitioned among a large number of threads and CTAs.

PRODUCT is also a simple operation (Figure 4). The number of tuples in the output relation is
the product of the number of tuples in the input relations, and computing this size does not require
a separate pass. Therefore, the algorithm is implemented using a single pass that iterates over each
combination of elements in each of the input relations and invokes a user defined function to combine
them. The input tuples is first buffered in the shared memory because they are used multiple times.
The combined tuple is written out to the output relation. No buffering stage is required during output
because the results are generated as contiguous, densely packed chunks.

SELECT uses a user-defined predicate function to examine the key of each tuple. If the comparison
succeeds, the tuple needs to be copied into the output relation, otherwise it is discarded. The algorithm
is implemented as two passes over the relation. Each pass requires a global synchronization operation. In
CUDA, this currently forces the results to be written out to global memory and the implementation to
be partitioned into three independent kernels. So, the final CUDA implementation will actually consist
of a series of kernels that operate on a shared set of variables representing the relations. As shown
in Figure 5(a), the first pass follows the stream compaction approach [20], but it uses shared memory
and registers carefully. First, the sorted input relation is partitioned and each CTA is in charge of one
partition. Every thread reads in one tuple into a register and evaluates the tuple using the predicate
function. A register called match count records the comparison result. Each CTA performs an out-of-

9

5 3 8 2 4 6 1 7 9

CTA0 CTA1 CTA2

In

5 3 8 2 4 6 1 7 9

Match_count

(<5?)
0 1 0 1 1 0 1 0 0

0 1 0 1 2 0 1 1out_idx

In_reg

t0 t1 t2 t0 t1 t2 t0 t1 t2

t0 t1 t2 t0 t1 t2 t0 t1 t2

Prefix

Sum
Prefix

Sum

Prefix

Sum

3 2 4 1out_cache

1

t1 t1 t2 t0

 for each thread

 if (match_count > 0)

 out_cache[out_idx]=In_reg

3 2 4 1Out

t0 t0 t1 t0

1 2 1result size

(a)

1 2 1result size

Prefix Sum

0 1 3

(b)

histogram

① ③ histogram

3 2 4 1Out

3 2 4 1Result

t0 t0 t1

⓪

⓪① ③

(c)

CTA0 CTA1 CTA2

t0

Global

Mem

Shared

Mem
Reg

Figure 5: Example of SELECT skeleton

place prefix sum on the match count registers to compute the output indices of the matched tuples. Thus,
these matched tuples are buffed into the shared memory at the positions determined by the previous prefix
sum step and written back to the memory using bulk transfers to improve memory efficiency. Another
array, result size, recorded how many tuples are selected by each CTA and second prefix sum operation
on this array can determine the position in the output array to be written by each CTA (Figure 5(b)).
If the tuple number each CTA needs to process is larger than the number of threads, every thread must
loop over several tuples and this loop can be unrolled to further reduce the computation time. The
second pass is used to eliminate the gap between the result obtained by each CTA by using a coalesced
memory to memory copy, a common CUDA programming pattern [21] (Figure 5(c)). The final gather
stage is also used by SET family operators and JOIN in a similar way.

SET Family operators include SET INTERSECTION, SET UNION and SET DIFFERENCE. It is
comprised of three major stages, 1) the input relations are partitioned into independent sections that can
be processed in parallel (Figure 6(a)), 2) the sections are merged together using a specialized function
for each RA operator generating independent sets of results (Figure 6(c)), and 3) the individual sections
are gathered together back into a dense sorted array of tuples (Figure 6(e)). Each of the three stages is
expected to be memory bound on the target processors. The last stage is similar as the gather stage of
SELECT and the first two stages are describe in the following.

1. Stage 1: Partition

The initial partitioning stage is performed in-place and the partitions are sized as follows such that
the partitioning does not consume a significant portion of the total execution time. The sorted
property of the input relations is exploited to perform a recursive double-sided binary search that
progressively places more restrictive bounds on the input relations, creating sections that may
contain tuples with overlapping keys. The double-sided binary search is a parallel implementation
of the algorithm presented by Baeza-Yates et al. [22]. It works by partitioning one of the input
relations into N sections bounded by pivot elements, then using a binary search to lookup the tuples
in the other input corresponding to the pivots creating a series of partitions with overlapping index
ranges of tuples in the two relations. This process can be repeated recursively by swapping the

10

a b c d e f g h j

CTA0 CTA1 CTA2

Left

4 3 3result size

Prefix Sum

⓪ ④ ⑦

(d)

histogram

a c d e f g k l m

3+4=7 3+3=6 3+2=5out_bound
CTA0 CTA1 CTA2

Binary Search

Prefix Sum

⓪ ⑦ ⑬out_bound

CTA0 CTA1 CTA2

Right
Left

Right

7 6 5out_bound

(a)

CTA0 CTA1 CTA2

(b)

⓪

Merge

(c)

4 3 5
result

size

Out

Result

a c d

a b c d

a b c d

e f g

e f g

e f g

k l m

h j

h j k l m

Merge Merge

⑬⑦

Out a b c d e f g h j k l m
⑬⓪ ⑦

t0 t1 t2 t0

t0 t1 t2 t0 t1 t2 t0 t1

a b c d e f g h j k l m

⓪ ⑦④

CTA0 CTA1 CTA2

(e)

Global

Mem

Shared

Mem
Reg

Figure 6: Example of SET Family skeleton (SET UNION)

inputs, and subdividing the individual partitions using the same method. In this implementation,
the process is repeated until the partitions have been reduced to a predetermined size. The initial
stage partitions the arrays into one partition for each CTA, and the recursive stages are handled
within each CTA, allowing for maximum concurrency. This stage is critical for sparse data sets
because it quickly discards large segments of the input relations that do not overlap.

2. Stage 2: Merge

The merge operation is the most complex of the three stages. Once the inputs have been partitioned,
each pair of partitions is assigned to a separate CTA to be processed independently. This stage of
the algorithm implements a merge operation that is commonly used in CUDA implementations of
sorting [4,23,24]. It requires at least one load operation for each of the tuples in the input partitions
and one store for each generated result. The merge operation is implemented by scanning one of
the input partitions one chunk of tuples at a time where a chunk is a number of tuples that can be
processed by a fixed number of threads in a CTA. This chunk is loaded into on-chip shared memory
or registers for fast access. A corresponding chunk from the second input partition is also loaded
into shared memory and compared against tuples in the first chunk. The exact comparison function
that is used depends on the RA operator being performed, for example, SET INTERSECTION
would check for matching tuples in each chunk whereas SET DIFFERENCE would check for the
presence of a tuple in one chunk but not the other. Chunks from the second input partition are
scanned until they go out of range of the first chunk, at which time a new chunk is loaded from
the first partition and the process is repeated. When matches are found, they are gathered into
shared memory until a threshold is reached and eventually written out to a preallocated temporary
array. The chunk copy operations into and out of shared memory are carefully designed such that

11

CTA0 CTA1 CTA2

Left

t0 t1 t2 t0 t1 t2 t0 t1

8 6 6result size

Prefix Sum

⓪ ⑧ ⑭

(d)

histogram

(e)
Global

Mem

Shared

Mem
Reg

1

T

1

F

2

T

2

F

2

F

3

T

3

F

4

F

4

T

1

a

1

b

1

c

2

d

2

e

3

f

3

g

4

h

4

i

3x5=15 3x4=12 3x4=12out_bound
CTA0 CTA1 CTA2

Binary Search

Prefix Sum

⓪ ⑮ ㉗out_bound

CTA0 CTA1 CTA2

1

T

1

F

2

T

2

F

2

F

3

T

3

F

4

F

4

T

1

a

1

b

1

c

2

d

2

e

3

f

3

g

4

h

4

i
2

d

2

e

3

f

3

g
Right

Left

Right

1

T

1

F

2

T

1

a

1

b

1

c

2

d

2

e

t0 t1 t2

t0 t1
2

F

2

F

3

T

2

d

2

e

3

f

3

g

t1 t2

t0

t0

3

F

4

F

4

T

3

f

3

g

4

h

4

i

t1 t2

t0

t0

L_cache

R_cache

1

T

a

1

T

b

1

T

c

1

F

a

1

F

b

1

F

c

2

T

d

2

T

e

15 12 12out_bound

(a)

CTA0 CTA1 CTA2

(b)

…

⓪

2

F

d

2

F

e

2

F

d

2

F

e

3

T

f

3

T

g
…

3

F

f

3

F

g

4

F

h

4

F

i

4

T

h

4

T

i

⑮ ㉗

CTA

Join

CTA

Join
CTA

Join

CTA

Join

CTA

Join

CTA

Join

(c)

8 6 6result size

…

⓪

…

⑮ ㉗
t0 t1 t2 t0 t1 t2 t0 t1 t2 t0

⓪ ⑧ ⑭

t1 t2

Out

Out

Result

CTA0 CTA1 CTA2

1

T

a

1

T

b

1

T

c

1

F

a

1

F

b

1

F

c

2

T

d

2

T

e

1

T

a

1

T

b

1

T

c

1

F

a

1

F

b

1

F

c

2

T

d

2

T

e

2

F

d

2

F

e

2

F

d

2

F

e

3

T

f

3

T

g

2

F

d

2

F

e

2

F

d

2

F

e

3

T

f

3

T

g

3

F

f

3

F

g

4

F

h

4

F

i

4

T

h

4

T

i

3

F

f

3

F

g

4

F

h

4

F

i

4

T

h

4

T

i

Figure 7: Example of the JOIN skeleton.

they maximize DRAM bandwidth. They rely on the round-robin scheduling of warps in a CTA and
therefore stripe words from the input chunk across threads in the CTA. Thus, when all memory
operations in a warp are concurrently issued by the SIMD unit, these are coalesced into a single
transaction. Multiple memory requests can be be coalesced into successive transactions to the same
memory controller, ideally hitting the same row buffer as long as they are not interleaved with
orthogonal transactions from neighboring CTAs. Additionally, the comparison operations among
chunk elements are cooperatively performed by multiple threads and scheduled by unrolling loops
and inserting barriers at the CUDA level to eliminate sequential instruction dependences. Merge is
compute bound and the most computationally intensive stage of the SET operators.

The goal of these optimizations is to increase core utilizations (achievable throughput) until the
computation becomes memory bound, and then achieve near peak utilization of the memory inter-
face. However, this is relatively difficult to achieve. The peak data transfer rate on a C2050 is 144
GB/s for the entire GPU and 10.28 GB/s for each of the 14 SMs on the GPU used in our imple-
mentation. This leaves only 34.5 cycles to process each tuple in order to achieve peak throughput.
In the experimental evalutation, we find that most implementations of merge are compute bound
and that merge is the most computationally intensive stage of the JOIN and SET operators.

3. Stage 3: Gather

The final gather stage is similar as the last stage of SELECT. It requires first computing the position
of each section of the result in the final array. This is performed by updating a histogram during
the merge stage, followed by an out-of-place scan operation over the histogram buckets. Again,
the number of partitions is sized such that this operation is relatively inexpensive compared to the
merge phase. Once the position of each section in the output relation is determined, elements need
to be copied from a temporary buffer for each section into the final array using at least one load
and one store operation for each element.

JOIN is easily the most complicated algorithm, sharing many characteristics with the skeleton used
for the SET operations (Figure 7). However, it is further complicated by the merge stage of the algorithm,
which involves identifying subsets of the partitioned relations with overlapping attributes and performing
the cross product for each subset. This presents a significant problem to parallel implementations of the
algorithm that eventually write to a statically allocated, dense array. Namely, that the number of tuples
in each section of the output relation is not known until very late in the computation. At one extreme,
there could be a single section with matching attribute values containing all the tuples in each array,
in which case the JOIN would become a PRODUCT. At the other extreme, sections could contain at
most one tuple each, in which case the JOIN would become a SET INTERSECTION. This problem is
partially addressed by the initial partitioning stage. Sections from the input relations must always fall
into the same section, so a pair of input relations, that have been partitioned into M sections (each of
size N) may only produce as many as M ∗N2 tuples in the output relation in the worst case, rather than
(M ∗ N)2 in the general case. However, temporary storage still needs to be allocated for N2 possible
tuples rather than N tuples in the SET INTERSECTION case, limiting the number of partitions that
can be processed independently. Section 4.2 describes several alternative implementations for the join
operation within a CTA - recall in the merge stage joins are performed by each CTA. We will refer to

12

B
in

a
ry

 S
e

a
rc

h

count

index

⓪

Out_cache Out

2 d

2 e

3 f

2 F

2 F

3 T

R_cache

L_cache

⓪
②
④

2
2
1

t0

t1

t2

t0

t1

t2

t0

t0

t1

t1

t2

2 Fd

2 Fe

3 Tf

2 Fd

2 Fe

t0

t0

t1

t1

t2
②

④

2 Fd

2 Fe

3 Tf

2 Fd

2 Fe

2 F

2 F

3 T

L_cache

2 d

2 e

3 f

R_cache

t0

t0

t0 ≠

=

count

2

2

1

t0

≠

=

=

=

≠

≠

t1

t1

t1

t2

t2

t2

t1

t2

=

2 F

2 F

3 T

L_cache

2 d

8 e

6 f
R_hash_table

4 b

h
id 1

t0

h
id 1

t1

h
id 2

t2

id

0

1

2

3

=

=

≠

2 F

2 F

3 T

L_cache

2 d

2 e

3 f

R_cacheB
in

a
ry

 S
e

a
rc

h

t0

t1

2 F

2 F

2 d

2 e

3 T 3 f

B
ru

te
 F

o
rc

e

t0

t1

count

2
1

b0

b1

B0

B1

B
o

u
n

d
 C

h
e

c
k

b0 JOIN B0

b1 JOIN B1

b00

b01

B00

B01

……

b00 JOIN B01

b01 JOIN B01

……
2 d

2 e

2 F

2 F

b00...x B01...x

join result

return
……

join result

return

join result

return

(a)

(c) (d)

(b)

(e)

Global

Mem

Shared

Mem
Reg

Figure 8: CTA Join Algorithms: (a) Binary-Search; (b) Register Blocked Binary-Search; (c) Brute-Force;
(d) Hash-Table; (e)Join-Network.

these as CTA-Join algorithms.

4.2 CTA-Join Algorithms

Binary-Search (Figure 8(a)) is based on a parallel binary search, similar to the first stage of the complete
join algorithm (Partition). Each thread accesses a tuple from one of the input relations and computes
the upper bound and lower bound of that tuple’s key in the other relation. The elements between the
lower bound and the upper bound match the tuple’s key and are joined together. Results generated are
aggregated using the stream compaction algorithm and buffered until a threshold number of tuples is
reached. At this time, the buffer is written out completely to global memory. All CTA join algorithms
use this approach of stream compaction followed by buffering and coalesced writes to global memory.
The major difference is in computing the matching elements from each input relation. So, the rest figures
in Figure 8 only include the element matching part.

Even though this implementation has good algorithmic complexity, it suffers in terms of work-
efficiency and processor utilization. It includes a chain of data-dependent loads to shared memory
and control-dependent branches. Furthermore, the binary search result of different threads may overlap
presenting an opportunity for shared memory bank conflicts and instruction replays when combining two
tuples. For example, t0 and t1 in Figure 8(a) will both access the first two tuples of R cache, but t2
needs to access the third tuple. The combination of these behaviors give the binary search algorithm
poor performance on the Fermi pipeline.

Register Blocked Binary-Search (Figure 8(b)) relies on the observation that when performing
a binary search, neighboring threads will likely access the same tuples in the beginning of the search.
Additionally, the last few levels of the search are the most prone to bank conflicts. This implementation
extends the Binary-Search CTA-Join algorithm by combining the work of multiple threads in the original
algorithm into a single thread. Instead of processing a tuple from the first relation, a thread will access
a sequential range of tuples and store them directly in registers. It will then compute the lower bound
of the first tuple and the upper bound of the last tuple, this defines the range in shared memory that
may contain matching tuples. It then performs a brute force linear search for each tuple from the first
relation against this range.

Brute-Force (Figure 8(c)) is the simplest implementation of CTA-join which uses a full brute-force
comparison of all tuples in one relation to all tuples in the other relation. Although this algorithm has
poor computational complexity, the regular nature of the computation allows for an implementation with
high ILP, no pipeline hazards, and nearly optimal use of shared memory. Each thread processes several
tuples from the first relation at a time, which are stored directly in registers (one tuple in Figure 8(c)
for simplicity). Then, the threads sweep through all of the tuples in the second relation, utilizing the
broadcast capability of shared memory.

Hash Join (Figure 8(d)) is usually accomplished with atomic operations on global memory, for

13

example, with atomic exchange operations to implement cuckoo hashing [25]. These approaches are too
slow to be competitive with the complete join algorithm presented here. To use with CTA-join, it is
necessary to implement a hash table in on-chip shared memory. Unfortunately, NVIDIA’s Fermi GPUs
do not support shared memory atomic operations in hardware. With built-in atomic operations off the
table, it is necessary to consider alternatives that exploit the consistency properties of shared memory.
One solution is to implement a fast hash table in shared memory by allowing collisions during insertions,
and then detecting them a-posteriori. Each thread gathers a set of tuples from one of the input relations,
evaluates a hash function using the tuple’s key, and attempts to write the tuple into a shared memory
table at the position indicated by the hash function, along with a unique id for the thread. Once all
participating threads have inserted their tuple(s), they read back the value to determine whether or not
there has been a collision. If there has been, they set a flag indicating that they need to execute again
at a later time, otherwise they proceed normally. Next, all threads cooperatively read tuples from the
other relation and look up their keys in the hash table. Matches are stored as outputs. Finally, if there
were any collisions, the process is repeated with the threads that successfully inserted into the hash table
masked off during the insertion process. It is interesting to note the similarities between this algorithm
and the approach for handling bank conflicts in shared memory.

Join-Network (Figure 8(e)) attempts to implement the operator as a comparator network. For
joins on relations without any tuples with duplicate keys, this is relatively straightforward. However,
the duplicate keys make the maximum number of elements that could be generated by the join the cross
product of the sizes of the input relations. Even if the common case does not produce such a large
number of results, the statically defined comparisons and connections in a comparator network would
result in a network with N ∗ (logN)2 comparators for a N JOIN N case, rather than the N ∗ logN
comparators of a similarly sized sorting network. In order to address this problem, the join-network
algorithm introduces side-exits in the static network. At each stage of the network, both of the two
input relations are partitioned into two groups ((b0, b1) and (B0, B1)). Pivot elements are chosen and
compared, for example, the last tuple in b0 with the first tuple in B1. Depending on the results of
the comparison, each input group is routed into one of two output groups. For example, after routing,
the groups may contain (b0,B0) and (b1,B1). After this stage, each group is joined independently. In
this example (b0 joins B0) and (b1 joins B1) are performed. In the case that the results of the pivot
comparisons determine b0 need to join B1, a side-exit from the join-network will be triggered and a
binary search join will be invoked at that point. The algorithm only includes one branch per stage to
check if any side exit was taken, limiting the number of branches to logN . To reduce the probability of
groups of tuples requiring extra checks, B0 and B1 are partially overlapped to enlarge their individual
range.

4.3 A Suitable Data Structure

In addition to these algorithms, a data structure is needed to store relations. Many relational database
systems rely on variants of B-Trees to maintain the sorted property of relations while providing efficient
insert/erase operations and effectively matching the page structure of the memory and disk hierarchy.
Unfortunately, using this data structure in conjunction with M-BSP algorithms is complicated by the
need to support a large number of parallel updates during a bulk operation. Specifically, updates that
potentially propagate up the tree during an insertion or deletion create dependences and serial bottlenecks
when millions of updates are occurring in parallel.

Fortunately, supporting fine-grained update operations are not necessary for parallel implementations
of RA operators, which perform bulk-operations on entire relations at a time. This paper considers two
data structures, i) dense sorted arrays and ii) sorted linked lists of large pages.

A Dense Sorted Array . The first data structure considered in this paper is simply a dense array
of tuples, sorted by the tuples fields. It has the advantages that data can be easily streamed in sorted
order, offering the potential for a traversal over the entire relation that achieves peak memory bandwidth.
As long as updates are made during the construction of the array as bulk operations, overheads can be
kept to a minimum. Additionally, efficient searches over the data structure may be accomplished with a
binary search.

The main disadvantage of the dense sorted array is the inability to modify it once it has been created,
to update in parallel without knowing the complete size of each update, or to even create it before its
final size is known. The next data structure attempts to address these issues by allowing several pools
of data pages to be updated and resized independently, while still maintaining the efficiency of dense
streaming accesses by allocating data on a large page granularity.

14

A Dynamically Sized List of Pages . In this data structure, each pool begins with a single or a
few pages of data that is managed by a single CTA. As data is generated, it is written to the currently
allocated page without any potential of collision with other CTAs. When the current page is exhausted,
a new page can be allocated from a memory pool with an atomic pointer increment, and linked to the
end of the current page. After an algorithm completes, the pages generated by each CTA can be linked
together to form a globally sorted list of pages, avoiding the cost of the global gather operation needed
by a dense sorted array. The pages should be sized appropriately such that the cost of allocating a new
page and linking pages together is significantly less than the cost of writing data to the page.

This data structure can also be easily converted to and from a dense sorted array with a bulk-copy
operation that can proceed at near full bandwidth. This may be necessary for interoperability with
highly tuned implementations of SORT or other algorithms, although it would also be straightforward
to implement a modified version of these algorithms with an initial step that accessed data in this paged
format.

For future machines with additional levels of hierarchy, the same approach can be applied recursively
to create a deeper hierarchy of pages. It is interesting to note that this approach is has many similarities
to the concept of INODE pages used in the UNIX file system.

15

CPU AMD Phenom 9550 Quad-Core 2.2Ghz
GPU NVIDIA Tesla C2050
Memory 8GB DDR-1333 DRAM
CPU Compiler GCC-4.6.0
GPU Compiler NVCC-4.0

Table 2: The benchmark test system configuration. All of the benchmarks are run only on the GPU.

104 105 106 107 108

Relation size (bytes)

0

20

40

60

80

100

120

140

Ba
nd

w
id

th
 a

ch
ie

ve
d

(G
B/

s)

Theoretical
Stream-Copy
PROJECT
SELECT
PRODUCT
SET
JOIN

Figure 9: A comparison of the performance scaling of all relational operators.

5 Experimental Evaluation

This section covers a low level performance evaluation of this system by benchmarking and analyzing
the performance of each of the skeleton algorithms. The tuple attributes are compressed into 32-bit
integers. It is the role of a high level compiler to to change the word size used to store each tuple in
cases where more attributes are required. However, tuples from many common applications can fit into
32-bit or 64-bit words, and this common case is studied here. The tuples attribute values were generated
randomly, and the size of each relation is swept from 8192 to 16 million tuples. The system configuration
is given in Table 2. These algorithms are expected to be memory bound on the GPU used in the test
system, and the results are presented in achieved bandwidth with each byte of memory transferred from
the input relations and to the output relation counted once. Meta-data structures such as histograms
are not counted in the bandwidth calculation. The theoretical peak memory bandwidth of the C2050 is
144GB/s, and the achieved bandwidth using an optimized stream-copy benchmark is 107 GB/s.

Figure 9 shows the throughput of each of the RA skeleton algorithms. PRODUCT achieves the best
performance at 99.3% of the simple copy benchmark. As the algorithms become more complicated, the
performance reduces, generally because of less regular memory accesses or multi-stage algorithms that
require accessing each tuple multiple times. SELECT achieves the next best performance, as it simply
requires a series of linear scans over the input relations that can be performed at close to peak bandwidth.
The scatter after the stream compaction also occurs linearly within a CTA, leading to highly efficient
operations. PROJECT performs similarly when the operation does not change the order of tuple fields,
in which case a sort operation that dominates the algorithm runtime is necessary. The SET operators
closely follow the performance of the JOIN operator, which is described in the next section.

16

104 105 106 107 108

Relation size (bytes)

100

101

102

103

104

105

106

Pa
rt

iti
on

 s
iz

e
(b

yt
es

)
Pareto(shape=10)
Pareto(shape=1.5)
Pareto(shape=1)

Figure 10: Recursive partitioning of Pareto distributed data into 14336 partitions.

5.1 Join Stages

The performance of the complete join operator is highly sensitive to the data distribution, ranging from
between 57 GB/s and 72 GB/s depending on whether the data in each relation is randomly generated
or perfectly aligned respectively. This is roughly distributed with 7% of the time spent in the recursive
partitioning stage, 3% in a scan to determine the expected size of each partition, 65% in the main join
kernel, 3% in the a scan to determine the output offsets to place each partition in the output, and 23%
in the gather kernel. If the alternate data structure format described in Section 6.1 is used instead, the
final scan and gather can be avoided, resulting in 9% of time spent in the partitioning stage, 4% of time
being spend in the scan, and the remaining 87% of time being spent being spent in the main join kernel.
This decreases the amount of data transferred by a factor of twice the generated results size.

Measured separately, the main join kernel follows the bandwidth curve shown in Figure ??. Unlike the
previous operators, join’s performance is significantly less than the peak DRAM bandwidth, indicating
that it is either compute bound or not using the bandwidth effectively. Each of the C2050’s 14 SMs must
issue 7.64 GB/s of bandwidth in order to saturate the DRAM interface. Assuming an average IPC of
1 and a clock rate of 1.1 GHz, the SM can tolerate 55 cycles for each pair of inputs and 32-bit tuple it
outputs. This includes cycles for loading input tuples, staging data in shared memory, performing the
join, and writing out the results. Using the C2050’s timestamp clock register, it was determined that the
data staging through shared memory requires 24 cycles, the two-finger join requires 21 cycles, and the
CTA-wide join requires 57 cycles using the default binary search algorithm.

17

105 106 107

Relation size (bytes)

100

101

102

103

104

Pa
rt

iti
on

 s
iz

e
(b

yt
es

)
Normal(0,relation_size)
Normal(0,relation_size/10)
Normal(0,relation_size*10)

Figure 11: Recursive partitioning of Normally distributed data into 14336 partitions.

Stage 1. Recursive Partition is the first stage in the join algorithm. Its purpose is to carve the
input relations into independent blocks that can be joined in parallel. The quality of the algorithm is
measured in terms of how many tuples it can discard, how evenly-sized the resulting blocks are, and
the total runtime of the algorithm. Along with the complete join results, a microbenchmark is used to
evaluate this algorithm in terms of these metrics for data sets produced by sampling uniform, normal,
and pareto distributions. For the normal and uniform distributions, the size of the resulting partitions
exhibits very low variance with only a 16% difference between the size of the smallest and largest partition.
There is much greater variance when partitioning the Pareto distributed data when the shape parameter
is low. This occurs because there are very few unqiue tuples in this distribution, and the algorithm
is forced to group tuples with the same tuple together into the same partition. Figure 14 shows that
execution time of the algorithm increases roughly logarithmically with the size of the input relations,
in-line with the complexity of the algorithm. Partitioning is faster as the dataset becomes sparser, with
the Pareto distribution converging more than twice as fast as the other distributions for 16M element
relations. This highlights the ability of the algorithm to quickly eliminate discard levels in the search
tree.

Stage 2. Block Streaming is the second stage of join. The intent of this stage is to move blocks
of tuples from DRAM into shared memory as efficiently as possible. As a side benefit, it is also able to
discard entire blocks of data at a time with a simple range check between two blocks of tuples stored in
shared memory. Figure 15 shows that this is the most effective when the size of each partition is larger
than the size of the block so several blocks can be loaded into shared memory and compared before an
entire partition is processed. It is interesting to note that even for 1KB blocks, relatively large relations

18

105 106 107

Relation size (bytes)

100

101

102

103

104

Pa
rt

iti
on

 s
iz

e
(b

yt
es

)
Uniform(0,relation_size)
Uniform(0,10*relation_size)
Uniform(0,100*relation_size)

Figure 12: Recursive partitioning of Uniformly distributed data into 14336 partitions.

are required because 56 256-thread CTAs are needed to fully saturate the GPU. Regardless of the data
distribution, the achieved bandwidth exceeds 90% of peak after relations exceed about 1MB in size.

Stage 3. CTA Join is the next stage in the algorithm. It performs a join on two overlapping ranges
of tuples that have been buffered in shared memory. Since this portion of the algorithm consumes the
majority of SM cycles, several alternate implementations are evaluated here.

It is interesting to note that all of these algorithms are compute bound. None of them can sustain
the maximum DRAM memory bandwidth of the C2050. Instead, they are mainly bound by pipeline
hazards due to dependencies on on-chip memory accesses, control or dataflow dependencies. A quick
experiment that measures the number of clock cycles needed to join chunks of various sizes together in
shared memory, shown in Table 3, reveals that the number is over two times greater than the cycles left
over after streaming data from DRAM into shared memory at full bandwidth. The next section compares
several algorithms for performing this shared-memory CTA join operation to determine whether or not
the compute density can be reduced enough to tap the full potential of the C2050’s 384-bit 144GB/s
DRAM interface.

5.2 Tuning CT-Join

Binary Search Table 3 shows the average cycles needed to process each tuple. This result, and all
following figures present the algorithm tuning parameters that give the best performance after a design
sweep. Examples of tuning parameters include threads-per-cta, shared memory buffer size, loop unrolling
factors, and register blocking factors. The normal binary search computes and upper and lower bound,

19

104 105 106 107

Relation size (bytes)

103

104

105

106

107

108

109

Tu
pl

es
 e

lim
in

at
ed

Uniform(0 - 100*size)
Normal(stddev=size)
Normal(stddev=size/10)
Pareto(shape=1.5)
Pareto(shape=1)
Normal(stddev=size*10)
Pareto(shape=10)
Uniform(0 - size)
Uniform(0 - 10*size)

Figure 13: Number of tuples discarded by recursive partitioning into 14336 partitions.

and a prefix sum to determine the position in the output buffer to store the results. The cycles are
distributed more to the prefix sum than the join, at 36 and 21 respectively. This result justifies the
register blocked implementation of binary search join, which trades slightly worse binary search time
with less complexity in the prefix sum.

Brute Force Join The brute force version of join performs an all-to-all comparison among all pairs
of tuples from each of the two input relations. Although this implementation has high ILP, abundant
TLP, and few pipeline hazards, the results in Table 3 show that the number of operations it performs
makes it prohibitively expensive. The prefix sum requires 32 cycles while the join itself require 196 cycles
for each tuple that is generated. It is likely that this implementation would only be effective in the
case where nearly all tuples from each relation had matching keys and the join degenerated into a cross
product.

Hash Join It is interesting to note that hash join is one of the best performing implementations of
CTA-join at 28 cycles for the prefix sum and only 12 cycles for the actual join, as shown in the fourth
row of Table 3. The process of inserting into the table, detecting conflicts, and performing the lookup
(which has a fair probability of causing bank conflicts) may be longer than a single round of the binary
search. However, the hash implementation requires fewer iterations, with a median of two, compared to
the nine required by the binary search over 512 elements. The best size for the hash table was twice the
size of the input relation. This provided a good balance between minimizing conflicts and maximizing
the occupancy of the SM.

It is quite surprising that this implementation is so fast, given the lack of shared memory atomic

20

104 105 106 107

Relation size (bytes)

0.0002

0.0004

0.0006

0.0008

0.0010

Ex
ec

ut
io

n
tim

e
+1

Uniform(0 - 100*size)
Normal(stddev=size)
Normal(stddev=size/10)
Pareto(shape=1.5)
Pareto(shape=1)
Normal(stddev=size*10)
Pareto(shape=10)
Uniform(0 - size)
Uniform(0 - 10*size)

Figure 14: Recursive partitioning execution time for different data distributions. Partitioning is performed
until 14336 partitions are created.

operations. While this is not a true hash table in the sense that tuples that collide are not inserted
back into the table before the first round of comparisons, it still may be a useful technique for other
applications such as pattern matching that only need to check for the existence of an element. It is also
interesting to note that the hash table is quite amenable to register blocking, where each thread attempts
to insert multiple tuples before checking for a collision. In this case, the best performance is achieved
with a blocking factor of 4.

Register Blocked Binary Search The second row in Table 3 shows the average cycles needed
to process each input tuple for the register-blocked binary search implementation of CTA-join. Register
blocking gives a small but noticeable performance improvement over the baseline binary search join. The
time for the join increases because the lower levels of the search tree are performed with a brute-force
comparison, increasing the number of comparisons. However, the total time is reduced because each
thread computes several results, and require fewer iterations in the prefix sum. These results solidify the
methodology proposed by Davidson et. al. [26] that the ILP improvements offered by register packing
improve the performance of algorithms that can be mapped onto reduction trees, such as binary-search.

21

105 106 107

Relation size (bytes)

100

101

102

103

104

105

106

107

108

109

1010

1011

1012
Tu

pl
es

 e
lim

in
at

ed
Uniform(0 - 100*size)
Pareto(scale=1 shape=1)
Pareto(scale=1 shape=10)
Uniform(0 - size)
Normal(mean=size stddev=size)
Normal(mean=size stddev=size/10)
Pareto(scale=1 shape=1.5)
Uniform(0 - 10*size)
Normal(mean=size stddev=size*10)

Figure 15: Number of tuples discarded while streaming through 1KB blocks.

Algorithm Threads Blocking Inputs Outputs Cycles Cycles-Per-Output

Binary Search 512 1 512 217 12369 57

Blocked Binary Search 512 4 2048 856 43656 51

Brute Force 512 2 1024 441 97461 228

Hash Join 512 4 2048 856 34240 40

Join Network 512 4 2048 856 31672 37

Table 3: Microbenchmark results for each of the CTA-Join algorithms.

Join Network The main advantage of the join network implementation is that all comparisons and
move operations are determined statically for a network of a given size. The allows all loops to be
fully unrolled, shared memory accesses to be scheduled to avoid bank conflicts, and the final few stages
to be coalesced into operations out of registers performed by independent threads. Additionally, there
are fewer comparisons performed than the binary search, because the upper levels of the binary search
are performed by a few threads and then broadcast to the other threads, which further subdivide the
operation. The last row in Table 3 shows that the average number of cycles is the lowest out of all the
CTA-join implementations, with 28 for the prefix sum and only 9 for the actual join. It is worth noting
that the implementation of hash-join is significantly simpler than that of the join-network and it may be
a better choice given the similar performance.

22

105 106 107

Relation size (bytes)

60

80

100

120

140

160

Ba
nd

w
id

th
 (G

B/
s)

Uniform(0 - 100*size)
Pareto(scale=1 shape=1)
Pareto(scale=1 shape=10)
Uniform(0 - size)
Normal(mean=size stddev=size)
Normal(mean=size stddev=size/10)
Pareto(scale=1 shape=1.5)
Uniform(0 - 10*size)
Normal(mean=size stddev=size*10)

Figure 16: Bandwidth achieved by the block-streaming algorithm for various random data distributions.

23

6 Discussion

In order to utilize these operators in a complete relational database system, several additional design
considerations that were not explored in this paper would need to be addressed. This section attempts to
identify some of these issues and analyze possible solutions in the context of the results presented in the
previous section. It begins with a discussion of suitable data structure format to store relations, moves
on to cover suitable algorithms for different degrees of data skew and proportion, and concludes with a
list of corner cases that may hamper performance or require a different algorithm for some operators.

6.1 Variably Sized Output

Many of the RA skeletons include a global histogram, then scan, and finally gather step that is used
to convert pack the streams of results being generated by multiple CTAs back into a contiguous array.
This step requires all of the results to be copied a second time, potentially doubling the time required
for algorithms that generate a large number of results. Depending on whether or not this is a common
case, it may be beneficial to change the data structure being operated on from a globally sorted array
of tuples into another form that can be updated in parallel. Updates from independent streams should
proceed without synchronization in the common case while tolerating a variably-sized output.

A possible solution is based around the idea of a series of pools of relatively large-sized pages. The
page size is chosen such that the time required for a single SM to completely fill a page is substantially
larger than the time required to allocate a new page via an atomic increment to a shared pool of unused
pages. The order of pages within a pool can be maintained with explicit links between pages. The
complete data structure should consist of at least as many pools as CTAs in the algorithm operating
on it so that each CTA can write results into its own pool. After an algorithm finishes updating this
data structure, links can be added to the first and last page of each pool to provide a global order. As
long as algorithms maintain the sorted property of partial results, the final data structure will be totally
ordered.

6.2 Hash Join

In this paper, the data structures used to store relations have been sorted. This is done mainly to
support efficient algorithms for the family of join and set operations. However, in certain circumstances,
the difficulty associated with maintained the sorted property of relations may be great enough to consider
algorithms that work with unsorted data. This paper has assumed that relations begin sorted and only
require sorting again when the fields of their tuples are re-ordered, for example, during a projection that
reverses two fields. Even in these cases, a query planner can often exchange the order of operations to
require the of the smaller of two relations to be sorted again. However, when the relations being joined
are of similar size and they follow an operation that destroys the sorted property, the time required to
sort the relations again may overshadow the time needed for a join or set operation.

In these cases, it may be beneficial to consider hash table operator implementations that do not
require the input relations to be sorted. However, the structure of the hash table will probably have
to change to accomodate M-BSP memory systems with high penalties for random access. Specifically,
multi-stage algorithms that progressively subdivide inputs into buckets will probably be necessary to
ensure that enough inputs can be aggregated and collected to create a large enough memory transaction
to saturate the memory system. The use of hash-based algorithms is questionable in these cases, because
these modifications blur the distinction between bucket-based sorting techniques like radix-sort and hash
tables. It is an open problem to determine whether or not hash based techniques can out perform sort-
merge algorithms under these constraints, especially since the lack of the totally sorted property cannot
be leveraged to use a block-based linear merge stage in the JOIN or SET operation.

6.3 Sparse Sorted Relations

The results from the JOIN microbenchmarks in Section 5.1 show that range-based algorithms such as
recursive binary search are not effective at pruning out large sections of sparse relations. This can be
explained as follows. Even if relations are sparse, with a low probability of any tuple from one relation
finding a match in another, the sorted property of the data structures used in this paper densely packs
tuples together. This has the effect of expanding the range of keys covered by a series of tuples in the
sorted data structure. For example, the difference between the first and last key in a range of ten tuples
in a dense relation may be close to ten. However, the same difference in a sparse relation may be orders

24

of magnitude greater. This property makes algorithms that rely on range checks less useful in sparse
relations than in dense relations or relations with dense clusters of tuples because the sparsity of the
data sets amplifies the range considered for a given check. Comparsons involving such large ranges are
likely to match: even if the contained tuples have different key values, their ranges are probably similar.

This observation has interesting implications for the recursive binary search stage used in this paper.
We initially thought that were would be cases where large sections of sparse relations would be eliminated
during the initial stages of the algorithm. However, this was not true for any of the considered data
distributions. In hindsight this makes sense because truly random data does not form clusters.

As a result, the majority of the tuples eliminated in sparse data sets are done so during the final
stages of the binary search, where the fine granularity of the range checks determines whether or not
individual tuples (not clusters) can be discarded. This was the case even for the non-uniform distributions
such as the normal or pareto distribution becase the more likely keys gradually transition into less likely
keys. Future work may consider key encoding schemes that attempt to distribute the most frequently
occuring keys to create distinct clusters of similar tuples in the sorted form of the relation, and increase
the effectiveness of the initial partitioning stage of the algorithm.

6.4 Corner Cases

Although most relational database operations can be readily mapped onto the data structures and
algorithms described in this paper. Some query languages include features that do not. These corner
cases may include queries on regular expressions, or relations with a very large number of fields, and
must be handled separately.

Regular Expressions complicate the design of operators that perform an operation on tuples that
satisfy a specified condition. If the condition is a regular expression, the compressed form of a tuple is
not always sufficient to perform the comparison. In this case, either a form of compression that allows
regular expression matching or the original data must be consulted. In the worst case, actually looking
up the original data (which may be a string), typically disrupts the streaming data access pattern used
by most algorithms. As a result, a specialized algorithm may be required for these operations. Typically
this occurs for the SELECT operator.

Long Tuples that cannot fit into a single machine word are another case that requires special atten-
tion. Even though variably-sized data types such as strings are typically compressed using dictionaries
and assigned a unique index in the dictionary, there are some situations where operations may be per-
formed over tuples fields that correspond to comments or product descriptions. In these cases, it may be
convenient to treat variable length strings as tuple keys. This change in data format may significantly
change the most efficient implementation of operators that route tuples through the memory hierarchy
such as the SET and JOIN operators, favoring different algorithms that access tuples fields less frequently,
possibly using an initial stage of hash-based filtering. Additionally, long length of tuples may change the
way that tuples are loaded into on-chip memory, possibly requiring a single warp to load tuples one (or
a few) at a time rather than in bulk.

6.5 Transactional Operations

This paper has only considered bulk-synchronous implementations of relational algebra operators. These
implementations presuppose that most operations will involve heavy-weight operations on large data
structures. This is a common case for data warehousing and analytics applications. However, other
sub-domains of database applications such as on-line transaction processing may instead involve a large
number of lightweight updates to data structures. Using the algorithms described in this paper for these
operations is clearly inappropriate for the same reason that it is inefficient to rebuild a large data structure
to insert a single element. Mapping these operations onto M-BSP processors likely will require a different
approach. It may be possible to buffer transactions before applying them periodically to relations as bulk
operations. It may also be possible to keep multiple data structures for relations, one that supports large
bulk operations and another that contains a small number of recently updated relations. However, it
is not obvious that either of these approaches is suitable for the majority of applications; transactional
systems with latency requirements are particularly troublesome. There is a clear need for additional
work on this topic.

25

6.6 Large Memory Systems

Another limitation of this paper is that it only presents in-memory algorithms designed for a single
processor. While these algorithms have the advantage that they can be easily scaled to future processors
that implement a M-BSP execution model, current systems are limited to a fixed number of SMs per
processor, and, even more troubling, a fixed amount of DRAM in the 1-12GB range. Some database
systems operate on relations several orders of magnitude larger than this; relations with 30TB or more
of data are possible.

For existing database systems, this problem is typically mitigated in one of three ways: i) using
out-of-core algorithms out of disk, ii) using in-memory algorithms with multiple nodes, and iii) using a
single node with a large amount of memory (systems with 256GB or more are common). Out-of-core
algorithms can be handled by connecting a parallel processor to a disk subsystem. Commodity interfaces
like PCIe offer greater bandwidth than disk interfaces, although the performance of the system may be
limited by disk access time rather than by the in-memory portion of an RA operator. M-BSP processors
can be replicated to form a distributed system, although these algorithms would need to be coupled to
a higher level distributed algoritm. It should be noted that the high level structure of the algorithms
described in this paper may scale to multiple nodes, since they are already highly parallel by design.
The main barrier to building GPUs with very large DRAM subsystems is additional cost that is not
needed by the majority of GPU applications. In the future, it may be interesting to explore custom GPU
systems with very large DRAM capacities.

26

7 Conclusion

This paper has described the structure of multi-level bulk-synchronous (Multi-BSP) algorithms that
implement relational algebra operators. For dense input data sets, the least efficient algorithm (inner-
join) achieves 72% of peak machine performance. It achieves 57% of peak machine performance for
sparse and irregular data sets. The most efficient algorithms (cross product, project, and select) achieve
86% − 92% of peak machine performance on across all input data sets. This work lays the foundation
for the development of a relational database system that achieves good scalability on a Multi-Bulk-
Synchronous-Parallel (M-BSP) processor architecture. Additionally, the algorithm design may offer
insights into the design of parallel and distributed relational database systems. It leaves the problems
of query planning, operator→query synthesis, corner case optimization, and system/OS interaction as
future work that would be necessary for commercial deployment.

27

8 Acknowledgements

This research was supported in part by NSF under grants IIP-1032032, CCF-0905459, by LogicBlox
Corporation, and equipment grants from NVIDIA Corporation.

28

References

[1] NVIDIA, 2011, http://en.wikipedia.org/wiki/GeForce 600 Series.

[2] AMD, 2011, http://en.wikipedia.org/wiki/Graphics Core Next.

[3] Intel, 2011, http://en.wikipedia.org/wiki/Haswell (microarchitecture).

[4] D. Merrill and A. Grimshaw, “Revisiting sorting for gpgpu stream architectures,” University of
Virginia, Department of Computer Science, Charlottesville, VA, USA, Tech. Rep. CS2010-03, 2010.

[5] P. D. Vouzis and N. V. Sahinidis, “Gpu-blast: using graphics processors to accelerate protein
sequence alignment,” Bioinformatics, vol. 27, no. 2, pp. 182–8, 2010. [Online]. Available:
http://www.ncbi.nlm.nih.gov/pubmed/21088027

[6] N. Bell, S. Dalton, and L. Olson, “Exposing fine-grained parallelism in algebraic multigrid methods,”
NVIDIA Corporation, NVIDIA Technical Report NVR-2011-002, Jun. 2011.

[7] I. Grebnov, “libbsc: A high performance data compression library,” http://libbsc.com/default.aspx,
November 2011.

[8] NICS, 2010, https://keeneland.gatech.edu/.

[9] E. Walker, “Benchmarking amazon ec2 for high-performance scientific computing,” Usenix Login,
vol. 33, no. 5, pp. 18–23, 2008.

[10] B. He, W. Fang, Q. Luo, N. K. Govindaraju, and T. Wang, “Mars: a mapreduce framework on
graphics processors,” in PACT ’08: Proceedings of the 17th international conference on Parallel
architectures and compilation techniques. New York, NY, USA: ACM, 2008, pp. 260–269.

[11] N. Govindaraju, J. Gray, R. Kumar, and D. Manocha, “Gputerasort: high performance graphics
co-processor sorting for large database management,” in Proceedings of the 2006 ACM SIGMOD
international conference on Management of data. ACM, 2006, pp. 325–336.

[12] N. Govindaraju, B. Lloyd, W. Wang, M. Lin, and D. Manocha, “Fast computation of database
operations using graphics processors,” in Proceedings of the 2004 ACM SIGMOD international
conference on Management of data. ACM, 2004, pp. 215–226.

[13] P. Trancoso, D. Othonos, and A. Artemiou, “Data parallel acceleration of decision support queries
using cell/be and gpus,” in Proceedings of the 6th ACM conference on Computing frontiers. ACM,
2009, pp. 117–126.

[14] M. Lieberman, J. Sankaranarayanan, and H. Samet, “A fast similarity join algorithm using graphics
processing units,” in Data Engineering, 2008. ICDE 2008. IEEE 24th International Conference on.
IEEE, 2008, pp. 1111–1120.

[15] S. Sengupta, M. Harris, Y. Zhang, and J. Owens, “Scan primitives for gpu computing,” in Proceedings
of the 22nd ACM SIGGRAPH/EUROGRAPHICS symposium on Graphics hardware. Eurographics
Association, 2007, pp. 97–106.

[16] T. Lauer, A. Datta, Z. Khadikov, and C. Anselm, “Exploring graphics processing units as parallel
coprocessors for online aggregation,” in Proceedings of the ACM 13th international workshop on
Data warehousing and OLAP. ACM, 2010, pp. 77–84.

[17] B. He, M. Lu, K. Yang, R. Fang, N. Govindaraju, Q. Luo, and P. Sander, “Relational query
coprocessing on graphics processors,” ACM Transactions on Database Systems (TODS), vol. 34,
no. 4, p. 21, 2009.

[18] D. Merrill and A. Grimshaw, “Revisiting sorting for gpgpu stream architectures,” University of
Virginia, Department of Computer Science, Charlottesville, VA, USA, Tech. Rep. CS2010-03, 2010.

[19] R. Baeza-Yates, “A fast set intersection algorithm for sorted sequences,” Lecture Notes in Computer
Science, vol. 3109, pp. 400–408, 2004. [Online]. Available: http://www.springerlink.com/content/
yth9h90y94n10l7e

[20] M. Billeter, O. Olsson, and U. Assarsson, “Efficient stream compaction on wide simd
many-core architectures,” in Proceedings of the Conference on High Performance Graphics
2009, ser. HPG ’09. New York, NY, USA: ACM, 2009, pp. 159–166. [Online]. Available:
http://doi.acm.org/10.1145/1572769.1572795

[21] W. mei W. Hwu and D. Kirk, “Proven algorithmic techniques for many-core processors,” http:
//impact.crhc.illinois.edu/gpucourses/courses/sslecture/lecture2-gather-scatter-2010.pdf, 2011.

29

[22] R. Baeza-Yates, “A fast set intersection algorithm for sorted sequences,” Lecture Notes in Computer
Science, vol. 3109, pp. 400–408, 2004. [Online]. Available: http://www.springerlink.com/content/
yth9h90y94n10l7e

[23] D. Cederman and P. Tsigas, “Gpu-quicksort: A practical quicksort algorithm for graphics
processors,” J. Exp. Algorithmics, vol. 14, pp. 4:1.4–4:1.24, January 2010. [Online]. Available:
http://doi.acm.org/10.1145/1498698.1564500

[24] N. Satish, C. Kim, J. Chhugani, A. D. Nguyen, V. W. Lee, D. Kim, and P. Dubey, “Fast sort on
cpus, gpus and intel mic architectures,” Intel Labs, Technical Report, 2010. [Online]. Available:
http://techresearch.intel.com/userfiles/en-us/FASTsort CPUsGPUs IntelMICarchitectures.pdf

[25] D. Alcantara, V. Volkov, S. Sengupta, M. Mitzenmacher, J. Owens, and N. Amenta, “Building an
efficient hash table on the gpu,” Gpu Computing Gems Jade Edition, p. 39, 2011.

[26] A. Davidson and J. D. Owens, “Register packing for cyclic reduction: a case study,” in
Proceedings of the Fourth Workshop on General Purpose Processing on Graphics Processing
Units, ser. GPGPU-4. New York, NY, USA: ACM, 2011, pp. 4:1–4:6. [Online]. Available:
http://doi.acm.org/10.1145/1964179.1964185

30

