
High Performance Graphics (2012)
C. Dachsbacher, J. Munkberg, and J. Pantaleoni (Editors)

Scalable Ambient Obscurance

Morgan McGuire1,2, Michael Mara1,2, and David Luebke1

2NVIDIA; 1Williams College

Alchemy AO [MOBH11]: r = 0.10m, 1280×720 in 2.3ms New SAO Result: r = 1.5m @ 1920×1080 in 2.3ms

Figure 1: Given a fixed time budget, our new algorithm substantially increases ambient obscurance resolution and quality
over the 2011 AlchemyAO algorithm, which uses the same mathematical estimator. The resulting increased shading fidelity in
this example allows the viewer to better discern shape in regions such as the archways and curtains.

Abstract

This paper presents a set of architecture-aware performance and integration improvements for a recent screen-
space ambient obscurance algorithm. These improvements collectively produce a 7× performance increase at
2560× 1600, generalize the algorithm to both forward and deferred renderers, and eliminate the radius- and
scene-dependence of the previous algorithm to provide a hard real-time guarantee of fixed execution time. The
optimizations build on three strategies: pre-filter the depth buffer to maximize memory hierarchy efficiency; reduce
total bandwidth by carefully reconstructing positions and normals at high precision from a depth buffer; and
exploit low-level intra- and inter-thread techniques for parallel, floating-point architectures.

1. Introduction

The Alchemy Ambient Obscurance algorithm by game stu-
dio Vicarious Visions [MOBH11] produces high quality
screen-space ambient obscurance (AO). They described its
design goals as: first, scaling down from then-current GPUs
to the low-end Xbox 360, and second, integration with a de-
ferred renderer at 1280×720 resolution. The AlchemyAO al-
gorithm, like prior screen-space AO techniques, has received
significant interest within the games industry.

This paper introduces a new variant of AlchemyAO for
modern and future graphics architectures. We maintain the
core mathematics of AlchemyAO but evaluate them with a
new Scalable Ambient Obscurance (SAO) algorithm that im-
proves on AlchemyAO in two ways. First, the new SAO al-

gorithm requires as input only a standard depth buffer (i.e., it
eliminates AlchemyAO’s position and normal buffers), so it
integrates with both deferred and forward renderers. Second,
where AlchemyAO was designed to scale down to limited
hardware at fixed resolution, our algorithm assumes mod-
ern hardware and scales up to high resolutions and world-
space sampling radii. This addresses a known limitation of
many previous screen-space AO methods, in which cache ef-
ficiency and thus net performance falls when gathering sam-
ples far from a pixel (shown in figure 5).

Figure 1 demonstrates the practical impact of our changes
for real-time applications. Both images show the factor by
which environment lighting will be attenuated due to occlu-
sion at various scales. The left image shows the obscurance

c© The Eurographics Association 2012.

M. McGuire, M. Mara, & D. Luebke / AO

result by the original algorithm. It exhibits the desirable fea-
tures of AlchemyAO: grounded contact shadows, fine detail,
and robustness to viewing direction. However, at the rela-
tively modest 720p resolution, AlchemyAO can only sam-
ple a 0.1m radius in 2.3 ms, limiting it to extremely lo-
cal obscurance effects. The right image shows that even at
higher 1080p resolution, the new SAO algorithm can sample
a large 1.5m radius in the same execution time, capturing
more global occlusion.

As screen resolution increases, variance across pixels
becomes less perceptible and bandwidth requirements in-
creasingly limit performance. Holding the obscurance radius
fixed and reducing filter quality provides a comparable vi-
sual result at the same execution time.

We also discuss approaches for maximizing precision of
the depth buffer. This careful treatment of z precision enables
us to discard the position and normal G-buffer of Alche-
myAO and use a standard depth buffer instead, and then
leads to our strategy of using fewer filter taps across a z-
hierarchy to reduce bandwidth without sacrificing quality.

1.1. Related Work
Concurrent academic and industry work by Shanmugam
and Arikan [SA07] and Mittring [Mit07] introduced
physically-motivated screen-space ambient occlusion/ob-
scurance for real-time rendering. Subsequent papers and
presentations [Kaj09,Kap10,FM08,BS09,LS10,SKUT∗10,
MOBH11] improved performance and quality.

Mathematically, our technique combines the Alche-
myAO [MOBH11] estimator, a rotating sample pat-
tern [Kaj09], and a bilateral filter for reconstructing smooth
AO from samples distributed over screen-space and the vis-
ible hemisphere [Kaj09, Kap10]. We also inherit the Alche-
myAO estimator’s treatment of the depth buffer as a thin
shell (instead of an infinitely thick volume) for view robust-
ness, which was first developed by Loos and Sloan [LS10].

AlchemyAO [MOBH11] makes three passes: noisy AO es-
timated from s samples at each pixel, and horizontal and
bilateral blur respecting depth edges. Its AO estimator for
camera-space point C = (xC,yC,zC) with normal n̂C is:

A(C) = max

(
0,1− 2σ

s
·

s

∑
i=1

max(0,~vi · n̂C + zCβ)

~vi ·~vi + ε

)k

(1)

where constants σ, β, and k are chosen for aesthetics and ε is
a small offset to avoid division by zero. The estimator relies
on points {Q1, ...,Qs} distributed on a ball about C, each of
which yields a displacement ~vi = Qi−C. We use their esti-
mator unmodified within a new algorithmic structure that is
both more generally applicable and exhibits better absolute
and asymptotic performance.

Multiresolution AO (MAO) [HL12] computes AO at differ-
ent output scales and then upsamples with joint-bilateral fil-
tering before compositing. We also leverage this approach to

improve cache coherence, but apply it to the z input instead
of the AO output. To appreciate the difference, consider the
obscurance cast onto a distant a receiver object. MAO gath-
ers onto large receivers. Thin features and high frequency ge-
ometry can create flickering because they are undersampled.
Our SAO gathers distant occlusion from large casters. This
means that the shadows cast by thin objects fade out quickly
(which one expects under area illumination), but that they
receive shadowing at all scales. Because we always sample
every object at every pixel, there is no undersampling and
our approach is temporally robust.

2. Algorithm

Our algorithm takes as input a standard depth buffer and
makes a series of passes over the full screen that result in an
an ambient visibility value 0≤ A≤ 1 at each pixel. The ap-
plication’s forward or deferred lighting pass then modulates
environment an area illumination by A. The supplemental
materials for this paper include GLSL implementation of all
shaders. The input depth buffer is larger than the screen so
that objects in a guard band slightly outside the frame can
create obscurance. The following sections describe the pur-
pose and optimizations of each pass.

2.1. High-Precision z Prepass

The input depth buffer typically arises from a depth-only
prepass, for which modern GPUs are highly optimized. Most
renderers perform such a pass to avoid later shading frag-
ments that are ultimately occluded.

Precision for the depth buffer is key because we will de-
rive all other values in our algorithm from it. Research and
industry have carefully studied depth buffer formats to maxi-
mize the depth discrimination precision (e.g., [LJ99,AS06]),
but given less attention to maximizing the reconstruction ac-
curacy of camera-space points and normals from depth val-
ues. The latter problem involves the entire pipeline: creation
of the modelview projection matrix on the host, the vertex
transformation, hardware attribute interpolation, and storage
in a depth buffer. Every arithmetic operation in that pipeline
introduces error, so one must minimize operations and max-
imize the precision at which they are performed.

We observe that the following increase the accuracy of z
values computed from a depth buffer on modern GPUs:

1. Compute the modelview-projection matrix at double pre-
cision on the host before casting to GPU single precision.
This comprises three matrix products (projection, cam-
era, and object), divisions, and trigonometric operations.

2. Choose zf = −∞ in the projection matrix [Smi83]. This
reduces the number of floating point ALU operations re-
quired for the matrix product [UD12].

3. When using column-major matrices (the default in
OpenGL), multiply vectors on the left (~v′ =~vTP) in the
vertex shader. This saves about half a bit of precision.

c© The Eurographics Association 2012.

M. McGuire, M. Mara, & D. Luebke / AO

Note that camera-space positions and normals stored in a
G-buffer, such as those by AlchemyAO, also contain error.
The rasterizer interpolates those across a triangle as C/z, n̂/z,
and then divides by z at each pixel, where z itself was inter-
polated as 1/z with limited fixed-point precision.

2.2. Hierarchical z Pass

This pass converts the hardware depth buffer value 0≤ d≤ 1
to a camera-space value z < 0 at each pixel by

z(d) =
c0

d · c1 + c2
, (2)

where zn and zf are the locations of the near and far planes,
and constant array c = [zn,−1,+1] when zf = −∞, and
c = [znzf,zn− zf,zf] otherwise. The pass then builds a MIP
hierarchy for the z texture.

Each z value will later be read many times. MIP level 0
amortizes the division operation from equation 2 over those
samples. The remaining MIP levels ensure that spatially-
distributed samples taken in the following pass are read with
high cache efficiency. Because a small region in each level
will remain in cache, few reads will actually go to DRAM,
resulting in high bandwidth and low latency. This addresses
a scalability limitation of the original AlchemyAO that has
also been observed in other screen-space AO methods.

2.3. Distributed AO Sample Pass

This pass distributes s samples on a half-ball about camera-
space point C and normal nC found at integer pixel location
(x′,y′). We recover C and n̂C points from zC = z(x′,y′) by

(xC,yC)= zC ·

(
1−P0,2

P0,0
−

2(x′+ 1
2)

w ·P0,0
,

1+P1,2

P1,1
−
−2(y′+ 1

2)

h ·P1,1

)
(3)

n̂C = normalize
(

∂C
∂y′
× ∂C

∂x′

)
(4)

for a w×h screen and projection matrix P. Eqn. 3 inverts the
projection matrix at a pixel to find its camera-space position
C. Eqn. 4 then infers the camera-space face normal of the
surface containing C from its screen-space gradient.

The world-space radius r of the ball corresponds to
screen-space radius r′

r′ =−rS′/zC, (5)

where S′ pixel-size of a 1m object at z =−1m [MOBH11].

We place s direct samples in a spiral pattern, spatially
varying the orientation about each pixel (figure 2). Sample
i is taken at pixel (x′,y′)+hiûi, where

Let αi = 1
s (i+0.5)

h′i = r′αi; θi = 2παiτ+φ (6)

ûi = (cosθi,sinθi). (7)

Constant τ is the number of turns around the circle made by
the spiral, chosen to ensure equal angular distribution (we

use τ = 7 for s = 9). Angular offset φ is the random rotation
angle at a pixel. We use AlchemyAO’s XOR hash,

φ = 30x′∧ y′+10x′y′. (8)

Because MIP level mi for sample i depends on h′i and not
a screen-space derivative, we explicitly compute:

mi = blog2(h
′
i/q′)c (9)

zi = zmi
(
(x′,y′)+hiûi)/2mi

)
(10)

Constant q′ is the screen-space radius increment at which
we switch MIP levels; the optimal value depends on the res-
olution, number of GPU cores, and cache size. In our experi-
ments, all 23≤ q′≤ 25 gave equivalent results. Lower values
caused multiple taps at adjacent pixels to map to the same
texel at a low MIP level, which amplified sample variance
and manifested as temporal flicker. Higher values decreased
performance because the working area no longer fit in cache.
The implementation is efficient:

int m = clamp(findMSB(int(h)) − log_q, 0, MAX_MIP);
float z = texelFetch(zBuffer, ivec2(h∗u+xy) >> m, m).r;

We apply eqn. 3 to reconstruct each Qi from zi and then
estimate its contribution to obscurance by eqn. 1.

AlchemyAO New SAO

D
ir

ec
tS

am
pl

es
A

ll
C

on
tr

ib
ut

in
g

Sa
m

pl
es

Figure 2: The new algorithm achieves similar quality with
fewer direct samples by improving the quality of the recon-
struction and better distributing the samples. It further in-
creases performance by taking samples at different hierar-
chical z levels. In this figure, the sample radius is much
larger than the blur filter kernel. Top row: Points {Qi} di-
rectly sampled at one pixel. Bottom row: All points affecting
one pixel after bilateral reconstruction. Left column: AAO
with 12 · (13×13) = 2028 taps. Right column: The new al-
gorithm with 9 · (2×2) · (7×7) = 1764 taps color-coded by
hierarchy level.

c© The Eurographics Association 2012.

M. McGuire, M. Mara, & D. Luebke / AO

This pass concludes by applying a small 2×2 bilateral
reconstruction filter, averaging A values to reduce variance
where there is no significant depth discontinuity. It exploits
the fact that GPUs process pixels within a 2×2 quad in par-
allel, by using screen-space derivative instructions to avoid
the synchronization cost of inter-thread communication. See
the supplemental material for implementation details.

The sampling pass as described has the advantage of a
low, fixed runtime. The performance can be increased fur-
ther, at the cost of variable runtime, by masking distant pix-
els such as the skybox. This is easily accomplished by in-
voking the AO pass as a shader on a full-screen quad placed
at the appropriate depth.

To halve the number of texture fetch instructions and re-
duce input bandwidth per pixel in the next pass, at the end of
the AO pass we pack A and z into an RGB8 texture as:

(R,G,B) =
(

A, 1
256 fix

(
256·z
zmin

)
, fract

(
256·z
zmin

))
,

where zmin defines the farthest plane at which sharp features
in AO are desired (-200m for our result figures).

2.4. Bilateral Reconstruction Passes

We reconstruct a piecewise-smooth AO solution from the
raw sample buffer with two wide bilateral 1D filter passes,
one horizontal and one vertical. Each uses seven taps with
Gaussian weights modulated by linear depth difference
scaled by an empirically chosen constant (we use 211 for
all examples here; increasing this constant increases sharp-
ness while decreasing it reduces noise). We are able to space
the taps with a stride of three pixels because the previous
pass already filtered over 2×2 boxes. Our combined filters
produce results comparable to previous work with slightly
fewer taps in a slightly more uniform distribution (figure 2).
As before, we invoke these passes with a full-screen rectan-
gle at the far plane with a reverse depth test; this ensures that
pixels at infinity do not contribute.

3. Results

3.1. Early z Precision

Figure 3 shows the accuracy of camera-space z values recov-
ered from a depth buffer for combinations of formats and far
plane positions. There is little accuracy difference between
fixed and floating point formats because the process of com-
puting the depth buffer values destroys more precision than
the storage format. The worst-case error is on the order of
2mm.

Figure 4 shows that face normal recovery is accurate
within 0.2◦–better than RGB8 G-buffer normals in the worst
case. At depth edges, normal recovery fails. One could esti-
mate those normals from neighbors for features wider than
one pixel. However, for AO there is no need to do so because
the final bilateral blur eliminates single-pixel errors.

zf =−100m zf =−∞m

24
-b

it
Fi

xe
d

32
-b

it
Fi

xe
d

32
-b

it
Fl

oa
t

Figure 3: An infinite far plane impacts recovered z accuracy
more than depth buffer format at 24-bit or higher precision.

Figure 4: Absolute face normal reconstruction difference,
times 50. The peak error observed within a face was 0.2◦.
Results are undefined at depth discontinutities.

3.2. Performance

SAO is a bandwidth-limited algorithm, so performance is
proportional to bandwidth, which is in turn strongly driven
by cache efficiency. Prefiltering the scene by computing a z
hierarchy can be seen as a screen-space 2.5D analog of voxel
LOD for cone tracing. It improves cache efficiency from an
O(
√

r) miss-rate to a low-constant miss rate, as shown in
figure 5. Results for that figure were measured on GeForce
GTX 580 for the view in figure 6.

The top line is the [MOBH11] algorithm at s = 12, which
exhibits the poor scaling noted in the literature. The center
line is our algorithm without MIP-maps at s = 9 (which pro-
duces comparable image quality). Our bandwidth-reduction
changes reduce the slope of the curve, for a 2.5× perfor-
mance gain near the asymptote. The bottom line shows that
our z hierarchy provides perfect scaling and another 3× for

c© The Eurographics Association 2012.

M. McGuire, M. Mara, & D. Luebke / AO

AlchemyAO New SAO
Memory traffic 293 B/pix 135 B/pix 2.2×
Time per pass:

z0 MIP - 0.09 ms
z1...zn MIPs - 0.18 ms
Distributed AO 13.53 ms 1.33 ms
Bilateral 2.57 ms 0.66 ms

Total Time 16.10 ms 2.26 ms 7.1×

Table 2: Memory traffic and timing breakdown at r = 1.0m,
1920× 1080 on GeForce GTX 580 with a 190 pixel guard
band, for the scene in figure 6.

Time without blur

0	

5	

10	

15	

20	

25	

30	

0.0	 0.2	 0.4	 0.6	 0.8	
World-space Radius (r)

A
O

 S
am

pl
e

 P
as

s T
im

e

New Full AAA

AlchemyAO [MOBH11]

1.0m	

ms	

New AAA, no MIP

Figure 5: Net performance for the Distributed AO Sample
pass due to cache efficiency as a function of world-space
sampling radius at 2560×1600.

a net 7× improvement. The overhead of the z reconstruc-
tion pass means that for very small radii (where the hierar-
chy is unused) the original algorithm may still outperform
ours. Table 3 gives detailed performance per pass for SAO
on GeForce GTX 680.

We motivated MIP-filtering by performance. What filter
method gives the best image quality? Table 1 summarizes
results on five filters. For each it gives the theoretical mo-
tivation, equation, and a representative result. We conclude
that rotated grid subsampling is the best choice. It always
produces values that were in the original scene is compara-
ble to the quality baseline, and has the same performance as
hardware MIP-map generation.
4. Discussion

SAO significantly improves the performance and quality
of previous screen-space AO, particularly at high resolu-
tions. This is important for forward-looking graphics appli-
cations: while the screen resolutions we evaluate (such as
2560×1600) were once considered exotic, such resolutions
are rapidly becoming mainstream even on mobile platforms.
The strong performance guarantee of SAO also represents an
important pragmatic advance over AlchemyAO, for which
cost increases with AO radius and proximity to the camera.
Predictable performance is as essential as throughput for ap-
plications like games with strong real-time constraints.

Figure 6: Crytek Sponza with AO by our algorithm (r = 0.5).

Figure 7: Closeup of AO and final lit and textured image.

Figure 8: SAO results on thin features, using the geometry
from figure 12 from [MOBH11].

Figure 9: Left: environment lighting only. Right: SAO brings
out shape details critical to the perception of human facial
features.

c© The Eurographics Association 2012.

M. McGuire, M. Mara, & D. Luebke / AO

Filters Equation for zm+1(x′,y′) AO Diff ×4

Quality Baseline
N.A.

i.e., no MIP

Rotated Grid Subsample
zm(2x′+(y′&1∧1),2y′+(x′&1∧1))

true scene values, no bias

Arithmetic Mean 1
4 ∑

i, j
zm(2x′+ i,2y′+ j)

preserve screen-space area

Harmonic Mean
[
∑
i, j

4/zm(2x′+ i,2y′+ j)

]−1

preserve world-space area

Min min
i, j

zm(2x′+ i,2y′+ j)
conservative visibility

Max max
i, j

zm(2x′+ i,2y′+ j)
conservative occlusion

Table 1: AO quality resulting from different filters for creating level m+1 MIP map of the camera-space z buffer. & and ∧ are
the C bitwise AND and XOR operators.

Resolution Guard Band Total Pixels Depth to Z Z MIP Sparse AO Blur Net AO Time per
Radius (including guard) Visible Pixel

1280×720 128 1,499,136 0.07 0.16 0.38 0.20 0.81 ms 0.879 ns
1920×1080 192 3,373,056 0.14 0.24 0.78 0.41 1.59 ms 0.767 ns
1920×1200 192 3,649,536 0.16 0.25 0.87 0.46 1.74 ms 0.755 ns
2560×1600 256 6,488,064 0.28 0.37 1.54 0.81 3.01 ms 0.735 ns

Table 3: Time per pass (in milliseconds) measured with GL_TIMER_QUERY on GeForce GTX 680 at varying resolutions.

Figure 10: Scenes with architectural detail at many scales
and both curved and linear features. All global illumination
and shadowing in these images is due to SAO.

One can vary the number of sample and blur taps to adjust
run time vs. spatial and temporal noise. Our results are tuned
for the constants that we expect applications to use on cur-
rent GPUs, accepting some high-frequency temporal noise
in AO that would typically be mitigated by texture details
and special effects. On future hardware, or for scenes with
low texture detail, we recommend increasing the number of
sample and blur taps.

A limitation that SAO shares with other screen-space AO
techniques is the need for a guard band on the viewport
so that offscreen geometry contributes obscurance. This in-
creases the memory footprint: a 5% guard band increases
pixel count by 28% at 1920×1200. The impact on rendering
time is minor, since only the very efficient z and hierarchi-
cal z passes affect guard band pixels. Color and intermedi-
ate buffer pixels in the guard band represent wasted mem-
ory. This suggests potential GPU architecture and API exten-
sions, such as allowing the programmer to specify subrect-
angles or virtual memory pages of a render target that will
actually be used and thus need to be physically allocated.

We also observe that some guard band pixels of the
depth and hierarchical z buffers could be reclaimed once
the buffers have been created, since fetches toward the outer
edge of the guard band will always be taken from coarser
levels. About half the memory devoted to guard band z data
could theoretically be reclaimed, for example by invalidating
the corresponding virtual memory pages.

c© The Eurographics Association 2012.

M. McGuire, M. Mara, & D. Luebke / AO

References
[AS06] AKELEY K., SU J.: Minimum triangle separation for cor-

rect z-buffer occlusion. In Graphics Hardware (New York, NY,
USA, 2006), GH ’06, ACM, pp. 27–30. 2

[BS09] BAVOIL L., SAINZ M.: Multi-layer dual-resolution
screen-space ambient occlusion. In SIGGRAPH 2009: Talks
(2009), ACM, pp. 1–1. 2

[FM08] FILION D., MCNAUGHTON R.: Effects&techniques. In
SIGGRAPH2008 courses (2008), ACM, pp.133–164. 2

[HL12] HOANG T.-D., LOW K.-L.: Efficient screen-space ap-
proach to high-quality multiscale ambient occlusion. Vis. Com-
put. 28, 3 (Mar. 2012), 289–304. 2

[Kaj09] KAJALIN V.: Screen space ambient occlusion. In
ShaderX7, Engel W., (Ed.). Charles River Media, Mar 2009. 2

[Kap10] KAPLANYAN A.: CryENGINE 3: Reaching the speed of
light. In SIGGRAPH 2010 courses (August 2010), ACM. 2

[LJ99] LAPIDOUS E., JIAO G.: Optimal depth buffer for low-cost
graphics hardware. In Graphics Hardware (New York, NY, USA,
1999), HWWS ’99, ACM, pp. 67–73. 2

[LS10] LOOS B. J., SLOAN P.-P.: Volumetric obscurance. In
Proceedings of I3D (2010), ACM, pp. 151–156. 2

[Mit07] MITTRING M.: Finding next gen: CryEngine 2. In SIG-
GRAPH 2007 courses (2007), ACM, pp. 97–121. 2

[MOBH11] MCGUIRE M., OSMAN B., BUKOWSKI M., HEN-
NESSY P.: The alchemy screen-space ambient obscurance algo-
rithm. In Proceedings of HPG (Aug 2011). 1, 2, 3, 4, 5

[SA07] SHANMUGAM P., ARIKAN O.: Hardware accelerated
ambient occlusion techniques on GPUs. In Proceedings of I3D
(2007), ACM, pp. 73–80. 2

[SKUT∗10] SZIRMAY-KALOS L., UMENHOFFER T., TÓTH B.,
SZÉCSI L., SBERT M.: Volumetric ambient occlusion for real-
time rendering and games. IEEE CG&A 30, 1 (2010), 70–79. 2

[Smi83] SMITH A. R.: The viewing transformation, 1983. 2

[UD12] UPCHURCH P., DESBRUN M.: Tightening the precision
of perspective rendering. JGT 16, 1 (2012), 40–56. 2

c© The Eurographics Association 2012.

