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Abstract

We propose a new massively parallel algorithm for constructing
high-quality bounding volume hierarchies (BVHs) for ray tracing.
The algorithm is based on modifying an existing BVH to improve
its quality, and executes in linear time at a rate of almost 40M tri-
angles/sec on NVIDIA GTX Titan. We also propose an improved
approach for parallel splitting of triangles prior to tree construc-
tion. Averaged over 20 test scenes, the resulting trees offer over
90% of the ray tracing performance of the best offline construction
method (SBVH), while previous fast GPU algorithms offer only
about 50%. Compared to state-of-the-art, our method offers a sig-
nificant improvement in the majority of practical workloads that
need to construct the BVH for each frame. On the average, it gives
the best overall performance when tracing between 7 million and
60 billion rays per frame. This covers most interactive applications,
product and architectural design, and even movie rendering.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Raytracing;

Keywords: ray tracing, bounding volume hierarchies

1 Introduction

Ray tracing is the main ingredient in most of the realistic rendering
algorithms, ranging from offline image synthesis to interactive vi-
sualization. While GPU computing has been successful in acceler-
ating the tracing of rays [Aila and Laine 2009; Aila et al. 2012], the
problem of constructing high-quality acceleration structures needed
to reach this level of performance remains elusive when precompu-
tation is not an option.

Bounding volume hierarchies (BVHs) are currently the most popu-
lar acceleration structures for GPU ray tracing because of their low
memory footprint and flexibility in adapting to temporal changes in
scene geometry. High-quality BVHs are typically constructed us-
ing a greedy top-down sweep [MacDonald and Booth 1990; Stich
et al. 2009], commonly considered to be the gold standard in ray
tracing performance. Recent methods [Kensler 2008; Bittner et al.
2013] can also provide comparable quality by restructuring an ex-
isting, lower quality BVH as a post-process. Still, the construction
of high-quality BVHs is computationally intensive and difficult to
parallelize, which makes these methods poorly suited for applica-
tions where the geometry changes between frames. This includes
most interactive applications, product and architectural visualiza-
tion, and movie production.

Recently, a large body of research has focused on tackling the
problem of animated scenes by trading BVH quality for increased
construction speed [Wald 2007; Pantaleoni and Luebke 2010;
Garanzha et al. 2011a; Garanzha et al. 2011b; Karras 2012; Kopta
et al. 2012]. Most of these methods are based on limiting the search
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Figure 1: Performance of constructing a BVH and then casting
a number of diffuse rays with NVIDIA GTX Titan in SODA (2.2M
triangles). SBVH [Stich et al. 2009] yields excellent ray tracing
performance, but suffers from long construction times. HLBVH
[Garanzha et al. 2011a] is very fast to construct, but reaches only
about 50% of the performance of SBVH. Our method is able to
reach 97% while still being fast enough to use in interactive ap-
plications. In this particular scene, it offers the best quality–speed
tradeoff for workloads ranging from 30M to 500G rays per frame.

space of the top-down sweep algorithm, and they can yield signif-
icant increases in construction speed by utilizing the massive par-
allelism offered by GPUs. However, the BVH quality achieved by
these methods falls short of the gold standard, which makes them
practical only when the expected number of rays per frame is small.

The practical problem facing many applications is that the gap be-
tween the two types of construction methods is too wide (Figure 1).
For moderately sized workloads, the high-quality methods are too
slow to be practical, whereas the fast ones do not achieve sufficient
ray tracing performance. In this paper, we bridge the gap by pre-
senting a novel GPU-based construction method that achieves per-
formance close to the best offline methods, while at the same time
executing fast enough to remain competitive with the fast GPU-
based ones. Furthermore, our method offers a way to adjust the
quality–speed tradeoff in a scene-independent manner to suit the
needs of a given application.

Our main contribution is a massively parallel GPU algorithm for re-
structuring an existing BVH in order to maximize its expected ray
tracing performance. The idea is to look at local neighborhoods of
nodes, i.e., treelets, and solve an NP-hard problem for each treelet
to find the optimal topology for its nodes. Even though the opti-
mization itself is exponential with respect to the size of the treelet,
the overall algorithm scales linearly with the size of the scene. We
show that even very small treelets are powerful enough to transform
a low-quality BVH that can be constructed in a matter of millisec-
onds into a high-quality one that is close to the gold standard in ray
tracing performance.

Our second contribution is a novel heuristic for splitting triangles
prior to the BVH construction that further improves ray tracing per-
formance to within 10% of the best split-based construction method
to date [Stich et al. 2009]. We extend the previous work [Ernst and
Greiner 2007; Dammertz and Keller 2008] by providing a more ac-
curate estimate for the expected benefit of splitting a given triangle,
and by taking steps to ensure that the chosen split planes agree with
each other to reduce node overlap more effectively.



2 Related Work

Surface Area Heuristic Ray tracing performance is most com-
monly estimated using the surface area cost model, first introduced
by Goldsmith and Salmon [1987] and later formalized by MacDon-
ald and Booth [1990]. The SAH cost of a given acceleration struc-
ture is defined as the expected cost of tracing a non-terminating
random ray through the scene:
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where I and L are the sets of internal nodes and leaf nodes, re-
spectively, and Ci and Cl are their associated traversal costs. Ct

is the cost of a ray-triangle intersection test, and N(l) denotes the
number of triangles referenced by leaf node l. The surface area
of the bounding volume in node n is indicated by A(n), and the
ratio A(n)/A(root) corresponds to the conditional probability that
a random ray intersecting the root is also going to intersect n. In
this paper, we use Ci = 1.2, Cl = 0, and Ct = 1, which we
have verified experimentally to give the highest correlation with the
measured performance.

The classic approach for constructing BVHs is based on greedy top-
down partitioning of triangles that aims to minimize the SAH cost
at every step [MacDonald and Booth 1990]. At each node, the tri-
angles are classified to either side of an axis-aligned split plane
according to the centroids of their axis-aligned bounding boxes
(AABBs). The split plane is chosen by evaluating the SAH cost
of the resulting child nodes for each potential plane, and selecting
the one that results in the lowest cost. Leaf nodes are created when
the SAH cost can no longer be improved through partitioning, i.e.,
the benefit of creating a new internal node is outweighed by its cost.

Another well-known approach is to start from the leaves and pro-
ceed in a bottom-up fashion by merging the nodes iteratively [Wal-
ter et al. 2008]. Even though this approach is often able to produce
trees with a very low SAH cost, it tends to lose to the top-down
algorithm in practical ray tracing performance.

Approximate Methods The most widely adopted simplification
of the full top-down partitioning is the binned SAH [Wald 2007;
Wald 2012], which limits the split planes considered at each node
to a fixed number. The planes are placed uniformly along each axis
to cover the spatial extent of the node, which makes it possible to
bin the triangles into intervals between the planes according to their
centroids. A further simplification is to first perform the binning
globally using a fixed-size grid, and then reuse the same results for
all nodes that overlap a given cell [Garanzha et al. 2011b].

Another approach is to use a linear BVH (LBVH) [Lauterbach et al.
2009], which can be constructed very quickly on the GPU. The idea
is to first sort the triangles along a space-filling curve, and then par-
tition them recursively so that each node ends up representing a lin-
ear range of triangles [Pantaleoni and Luebke 2010; Garanzha et al.
2011a]. Karras [2012] showed that every stage of the construction
can be parallelized completely over the entire tree, which makes the
rest of the stages practically free compared to the sorting.

Although linear BVHs are fast to construct, their ray tracing perfor-
mance tends to be unacceptably low — usually around 50% of the
gold standard. This necessitates using hybrid methods that con-
struct important parts of the tree using a high-quality algorithm
while using a fast algorithm for the expensive parts. HLBVH
[Garanzha et al. 2011a], for instance, uses binned SAH for the top-
most nodes while relying on linear BVH for the remaining ones.

BVH Optimization Closely related to our work, there has been
some amount of research on optimizing existing BVHs as a post-
process. Kensler [2008] proposed using local tree rotations to im-
prove high-quality BVHs beyond the gold standard on the CPU, and
Kopta et al. [2012] applied the same idea to refine BVHs during an-
imation to combat their inherent degradation in quality. A similar
approach was used in NVIDIA OptiX [2012] to improve the quality
of HLBVH on the GPU. The main weakness of tree rotations is that
they are prone to getting stuck in a local optimum in many scenes.
To overcome this effect, one has to resort to stochastic methods that
converge too slowly to be practical [Kensler 2008].

Recently, Bittner et al. [2013] presented an alternative algorithm
based on iteratively removing nodes from the tree and inserting
them back at optimal locations. Since there are a large number
of options for modifying the tree at each step, the algorithm is able
to improve the quality significantly before getting stuck. However,
since the method is fundamentally serial, it is unclear whether it can
be implemented efficiently on the GPU.

Triangle Splitting Several authors have noted that splitting
large triangles can improve the quality of BVHs signifi-
cantly in scenes that contain large variation in triangle sizes.
Ernst and Greiner [2007] propose to split triangles along their
longest axis if their surface area exceeds a pre-defined threshold,
and Dammertz and Keller [2008] propose similar scheme to split
triangle edges based on the volume of their axis-aligned bounding
boxes. However, neither of these methods has been proven to work
reliably in practice — they can actually end up decreasing the per-
formance in certain scenes.

A better approach, proposed independently by Stich et al. [2009]
(SBVH) and Popov et al. [2009], is to incorporate triangle splitting
directly into the top-down construction algorithm. SBVH, which
yields the highest ray tracing performance to date, works by con-
sidering spatial splits in addition to conventional partitioning of tri-
angles. Spatial splits correspond to duplicating triangles that inter-
sect a given split plane, so that each resulting triangle reference lies
strictly on either side of the plane. The choice between spatial splits
and triangle partitioning is made on a per-node basis according to
which alternative is the most effective in reducing the SAH cost.

3 Overview

Our goal is to construct high-quality BVHs from scratch as quickly
as possible. For maximum performance, we target NVIDIA Kepler
GPUs using CUDA. Our approach is motivated by the insight of-
fered by Bittner et al. [2013] that it is possible to take an existing
low-quality BVH and modify it to match the quality of the best top-
down methods. While Bittner et al. hypothesize that the individual
tree modifications have to be global in nature for this to be possi-
ble, our intuition is that the number of possible modifications plays
a more important role. For example, tree rotations [Kensler 2008]
offer only 6 ways of modifying the tree per node. Once all of these
modifications are exhausted, i.e., none of them is able to reduce the
SAH cost any further, the optimization gets stuck.

Instead of looking at individual nodes, we extend the concept of
tree rotations to larger neighborhoods of nodes. We define a treelet
as the collection of immediate descendants of a given treelet root,
consisting of n treelet leaves and n− 1 treelet internal nodes (Fig-
ure 2). We require the treelet to constitute a valid binary tree on its
own, but it does not necessarily have to extend all the way down to
the leaves of the BVH. In other words, the children of every internal
node of the treelet must be contained in the treelet as well, but its
leaves can act as representatives of arbitrarily large subtrees.
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Figure 2: Left: Treelet consisting of 7 leaves (A–G) and 6 internal
nodes, including the root (R). The leaves can either be actual leaf
nodes of the BVH (A, B, C, F), or they can represent arbitrary sub-
trees (D, E, G). Right: Reorganized treelet topology to minimize the
overall SAH cost. Descendants of the treelet leaves are kept intact,
but their location in the tree is allowed to change.

Our basic idea is to repeatedly form treelets and restructure their
nodes to minimize the overall SAH cost. We keep the treelet leaves
and their associated subtrees intact during the restructuring, which
means that the contents of the subtrees are not relevant as far as the
optimization is concerned — we only need to consider properties
of the treelet leaves themselves, such as their AABBs. Thus, the
processing of each treelet is a perfectly localized operation.

Restructuring a given treelet can be viewed as discarding its exist-
ing internal nodes and then constructing a new binary tree for the
same set of treelet leaves. As the number of leaves remains un-
changed, there will also be the same number of internal nodes in
the new treelet. The only thing that really changes, in addition to
the connectivity of the nodes, is the set of bounding volumes stored
by the internal nodes. In other words, restructuring offers a way to
reduce the surface area of the internal nodes, which in turn trans-
lates directly to reducing the overall SAH cost (Equation 1).

Finding the optimal node topology for a given treelet is believed to
be an NP-hard problem, and the best known algorithms are expo-
nential with respect to n. However, we observe that the treelets do
not need to be very large in practice. For example, n = 7 already
provides (2n − 3)!! = 10395 unique ways1 for restructuring each
treelet, and there are many ways for forming the treelets to begin
with. We will show in Section 6 that this provides enough freedom
to prevent the optimization from getting stuck prematurely.

3.1 Processing Stages

On a high level, our method works by constructing an initial BVH,
optimizing its topology, and then applying final post-processing
(Figure 3). For the initial BVH, we employ the method presented by
Karras [2012] using 60-bit Morton codes to ensure accurate spatial
partitioning even for large scenes. The initial BVH stores a single
triangle reference in each leaf node, and we maintain this property
throughout the optimization. However, since the size of the leaves
is known to have a significant impact on ray tracing performance,
we opt to collapse individual subtrees into leaf nodes during post-
processing. The goal of the optimization is thus to minimize the
SAH cost of the final tree that we will eventually get.

To account for the collapsing, we calculate the SAH cost of a given
subtree as the minimum over the two possible outcomes:

C(n) = min

{
CiA(n) + C(nl) + C(nr) (n ∈ I)

CtA(n)N(n) (n ∈ L)
(2)

1k!! denotes the double factorial, defined for odd k as k ·(k−2) · · · 3·1.
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Figure 3: Our method starts with an optional triangle splitting
stage, followed the construction of an initial BVH. It then per-
forms multiple rounds of treelet optimization and applies final post-
processing to obtain a high-quality BVH suitable for ray tracing.
The timings are for DRAGON (870K triangles) without triangle
splitting, and with 30% additional triangle references allowed.

where n is the root of the subtree, nl and nr are its left and right
child nodes, and N(n) indicates the total number of triangles con-
tained in the subtree. The first case corresponds to making n an
internal node, whereas the second one corresponds to collapsing
the entire subtree into a single leaf. We choose whichever alter-
native yields the lowest SAH cost, so C(root)/A(root) gives the
same result as Equation 1 for the final tree. In practice, we initial-
izeN(n) andC(n) during the AABB fitting step of the initial BVH
construction and keep them up to date throughout the optimization.

The main benefit of our cost model is that it unifies the processing
of leaves and internal nodes so that we can use the same algorithm
for optimizing both — moving nodes in the intermediate tree effec-
tively allows us to refine the leaves of the final BVH.

Optimization In the optimization stage, our idea is to restructure
the topology of multiple treelets in parallel, forming one treelet for
each node of the BVH. To enumerate the nodes, we leverage the
parallel bottom-up traversal algorithm presented by Karras [2012].
The algorithm works by traversing paths from the leaf nodes to the
root in parallel, using atomic counters to terminate the first thread to
enter any given node while allowing the second one to proceed. The
algorithm guarantees that the nodes are visited in a strict bottom-
up order: when we visit a particular node, we know that all of its
descendants have already been visited. This means that we are free
to restructure the descendants without the danger of other threads
trying to access them at the same time. The bottom-up traversal
also provides a natural way to propagate C(n) up the tree.

The traversal algorithm, however, tends to have very low SIMD uti-
lization because most of the threads terminate quickly while only a
few survive until the end. This is problematic since the optimiza-
tion is computationally expensive and we would ideally like to run
it at full utilization. Instead of performing the restructuring inde-
pendently by each thread, we choose to use a group of 32 threads
to collaboratively process one treelet at a time. This requires intri-
cate algorithm design (Section 4), but it offers a number of benefits.
Since every treelet occupies 32 threads instead of one, it is enough
to have only a modest number of treelets in flight to employ the
entire GPU. This, in turn, means that there is more on-chip mem-
ory available for processing each treelet, and it also improves the
scalability of the algorithm.

Post-processing In the end, we want to obtain a BVH that is
readily usable with the fast ray tracing kernels by Aila et al. [2012].
The final post-processing stage identifies the subtrees to be col-
lapsed into leaves, collects their triangles into linear lists, and out-
puts them in a format suitable for Woop’s intersection test [Woop



2004]. We identify the subtrees by looking at the value of C(n) for
each node. If we determine that the value corresponds to the second
case in Equation 2 but the same is not true for the ancestors of n,
we proceed to collapse the node. This, in turn, is accomplished by
traversing the subtree to identify the individual triangles, and then
using an atomic counter to place them in the output array.

Triangle Splitting To match the quality of the existing split-based
methods, we include an optional triangle splitting stage (Section 5)
before the initial BVH construction. We control the amount of split-
ting by allocating space for a fixed percentage of newly created tri-
angle references and then performing as many splits as we can with-
out exceeding this amount. We remove duplicate references falling
into the same leaf during the post-processing, but for the purposes
of Equation 2, we treat each reference as a separate triangle.

4 Treelet Restructuring

Our approach for restructuring a BVH to minimize its SAH cost
consists of three main ingredients. We perform bottom-up traversal
over the nodes to determine a processing order that avoids simulta-
neous access to overlapping subtrees. For each node encountered
during the traversal, we form a treelet by using the node itself as
a treelet root and designating a fixed number of its descendants as
treelet internal nodes and treelet leaves. We then optimize the treelet
by constructing a new binary tree for the same set of treelet leaves
that minimizes the overall SAH cost. We start by discussing treelet
formation and by presenting a naive optimization algorithm, which
we then refine to finally arrive at an efficient GPU implementation.
Throughout this section, we use a fixed treelet size of n = 7 leaves
to illustrate various algorithmic details in concrete terms.

4.1 Treelet Formation

Our intuition is that the surface area of a treelet’s internal nodes is a
good indicator of the potential for reducing its SAH cost. In order
to maximize this potential, we aim to form treelets that extend over
the nodes with the largest surface area. To form a treelet, we start
with the designated treelet root and its two children. We then grow
the treelet iteratively by choosing the treelet leaf with the largest
surface area and turning it into an internal node. This is accom-
plished by removing the chosen node from the set of leaves and
using its children as new leaves instead. Repeating this, we need 5
iterations in total to reach n = 7.

4.2 Naive Optimization

After forming a treelet, we wish to construct the optimal binary tree
for its leaves. A straightforward way to accomplish this is to con-
sider each possible binary tree in turn and choose the best one. This
can be expressed conveniently using a recursive function, illustrated
in Algorithm 1. The function takes a set of leaves S as a parameter
and returns the optimal tree Topt along with its SAH cost copt.

If S consists of a single leaf, the function looks up the associated
SAH cost and returns (lines 3–6). Otherwise, it tries each potential
way of partitioning the leaves into two subsets (line 9). A partition-
ing is represented by set P that indicates which leaves should go to
the left subtree of the root; the rest will go the right subtree. For P
to be valid, neither subtree can be empty (line 10).

For each partitioning, the algorithm proceeds to construct the sub-
trees in an optimal way by calling itself recursively (lines 12–13). It
then calculates the SAH cost of the full tree obtained by merging the
subtrees (lines 15–16). This corresponds to the first case of Equa-
tion 2, where the AABB of the root is calculated as the union of the

1: function CONSTRUCTOPTIMALTREE(S)
2: // Single leaf?
3: if |S| = 1 then
4: l← S0

5: return (l, C(l))
6: end if
7: // Try each way of partitioning the leaves
8: (Topt, copt)← (∅,∞)
9: for each P ⊆ S do

10: if P 6= ∅ and P 6= S then
11: // Optimize each resulting subtree recursively
12: (Tl, cl)← CONSTRUCTOPTIMALTREE(P )
13: (Tr, cr)← CONSTRUCTOPTIMALTREE(S \ P )
14: // Calculate SAH cost (first case of Equation 2)
15: a← AREA(UNIONOFAABBS(S))
16: c← Ci · a+ cl + cr
17: // Best so far?
18: if c < copt then
19: Topt ← CREATEINTERNALNODE(Tl, Tr)
20: copt ← c
21: end if
22: end if
23: end for
24: // Collapse subtree? (second case of Equation 2)
25: a← AREA(UNIONOFAABBS(S))
26: t← TOTALNUMTRIANGLES(S)
27: copt ← min

(
copt, (Ct · a · t)

)
28: return (Topt, copt)
29: end function

Algorithm 1: Naive algorithm for constructing the optimal binary
tree (Topt) that minimizes the SAH cost (copt) for a given set of
leaves (S). The idea is to try each way of partitioning the leaves so
that some of them (P ) are assigned to the left subtree of the root,
while the rest (S\P ) are assigned to the right subtree. The subtrees
are, in turn, constructed by repeating the same process recursively.

AABBs in S. The algorithm maintains the best solution found so
far in Topt and copt (line 8), and replaces it with the current one if it
results in an improved SAH cost (lines 18–21).

In the end, copt corresponds to the lowest SAH cost that can be ob-
tained by creating at least one internal node, but it does not account
for the possibility of collapsing the entire subtree into a single leaf.
As per our policy of maintaining one triangle per leaf throughout
the optimization, we do not actually perform such collapsing until
the final post-processing stage. However, we account for the pos-
sibility by evaluating the second case of Equation 2 at the end, and
returning whichever of the two costs is lower (lines 25-28).

4.3 Dynamic Programming

While the naive algorithm is straightforward, it is also woefully
inefficient. For instance, n = 7 results in a total of 1.15 million
recursive function calls and an even larger number of temporary
solutions that are immediately discarded afterwards. To transform
the algorithm into a more efficient form that produces an identical
result, we make three important modifications to it:

• Remove the recursion and perform the computation in a pre-
determined order instead.

• Represent S and P as bitmasks, where each bit indicates
whether the corresponding leaf is included in the set.

• Memoize the optimal solution for each subset, using the bit-
masks as array indices.



1: // Calculate surface area for each subset
2: for s̄ = 1 to 2n − 1 do
3: a[s̄]← AREA(UNIONOFAABBS(L, s̄))
4: end for
5: // Initialize costs of individual leaves
6: for i = 0 to n− 1 do
7: copt

[
2i
]
← C(Li)

8: end for
9: // Optimize every subset of leaves

10: for k = 2 to n do
11: for each s̄ ∈ [1, 2n − 1] with k set bits do
12: // Try each way of partitioning the leaves
13: (cs̄, p̄s̄)← (∞, 0)
14: for each p̄ ∈ {partitionings of s̄} do
15: c← copt[p̄] + copt[s̄ XOR p̄] // S \ P
16: if c < cs̄ then (cs̄, p̄s̄)← (c, p̄)
17: end for
18: // Calculate final SAH cost (Equation 2)
19: t← TOTALNUMTRIANGLES(L, s̄)
20: copt[s̄]← min

(
(Ci · a[s̄] + cs̄), (Ct · a[s̄] · t)

)
21: p̄opt[s̄]← p̄s̄
22: end for
23: end for

Algorithm 2: Finding the optimal tree using dynamic program-
ming. L is an ordered sequence of the n treelet leaves, and s̄
and p̄ are bitmasks representing subsets of these leaves. The al-
gorithm processes the subsets according to their size, starting from
the smallest one. The optimal SAH cost for each subset is stored in
copt, and the corresponding partitioning is stored in p̄opt. In the end,
the SAH cost of the full tree is indicated by copt[2

n − 1].

These modifications lead to a bottom-up dynamic programming ap-
proach: Since we know that we need solutions to all subproblems
in order to solve the full problem, we proceed to solve small sub-
problems first and build on their results to solve the larger ones.
Given that the solution for subset S depends on the solutions for all
P ⊂ S, a natural way to organize the computation is to loop over
k = 2 . . . n and consider subsets of size k in each iteration. This
way, every iteration depends on the results of the previous ones, but
there are no dependencies within the iterations themselves.

In Algorithm 2, we represent the full set of leaves as an ordered se-
quence L, and use bitmasks s̄ and p̄ to indicate which elements of
L would be included in the corresponding sets S and P in the naive
variant. The algorithm starts by calculating the surface area of each
potential internal node and storing the results in array a (lines 2–4).
Calculating the AABBs has different computational characteristics
compared to the other parts of the algorithm, so doing it in a sepa-
rate loop is a good idea considering the parallel implementation.

The algorithm handles subsets corresponding to individual leaves as
a special case (lines 6–8). It then proceeds to optimize the remain-
ing subsets in increasing order of size (lines 10–11). The optimal
SAH cost of each subset is stored in array copt, and the correspond-
ing partitioning is stored in p̄opt. Keeping track of the partitionings
avoids the need to construct temporary trees — once all subsets
have been processed, reconstructing the optimal tree is a matter of
backtracking the choices recursively starting from p̄opt[2

n − 1].

Processing a given subset is very similar to the naive algorithm. We
first try each possible way of partitioning the leaves (lines 14–17),
maintaining the best solution found so far in temporary variables cs̄
and p̄s̄ (line 13). We then calculate the final SAH cost and record
the results in copt and p̄opt (lines 19–21). As an optimization, we ob-
serve that the first term of the SAH cost, Ci · a[s̄], does not actually
depend on which partitioning we choose. We thus omit it from the

1: δ̄ ← (s̄− 1) AND s̄
2: p̄← (−δ̄) AND s̄
3: repeat
4: c← copt[p̄] + copt[s̄ XOR p̄]
5: if c < cs̄ then (cs̄, p̄s̄)← (c, p̄)
6: p̄← (p̄− δ̄) AND s̄
7: until p̄ = 0

Algorithm 3: Implementing the inner loop (lines 14–17) of Algo-
rithm 2 efficiently by utilizing the borrowing rules in two’s comple-
ment arithmetic. The loop executes 2k−1 − 1 iterations in total,
where k is the number of set bits in s̄.

computation in the inner loop (line 15), and include it in the final
cost instead (line 20).

Most of the computation happens in the inner loop (lines 14–17).
Each iteration of the loop is very simple: we look up two values
from copt and update the temporary variables cs̄ and p̄s̄. The com-
plement of p̄, corresponding to S \ P , is obtained conveniently
through logical XOR, since we know that p̄ can only contain bits
that are also set in s̄ (line 15). Looping over the partitionings comes
down to enumerating all integers that have this property (line 14).
However, in addition to excluding 0 and s̄, we would also like to
exclude partitionings whose complements we have already tried.
These partitionings result in mirror images of the same trees, and
are thus irrelevant for the purposes of minimizing the SAH cost.

A practical way of enumerating the partitionings efficiently is
shown in Algorithm 3. The idea is to clear the lowest bit of s̄
and then step through the bit combinations of the resulting value
δ̄. Clearing the lowest bit (line 1) means that we will always assign
the first leaf represented by s̄ to the right subtree of the root, which
is enough to avoid enumerating complements of the same partition-
ings. We determine the successor of a given value by utilizing the
borrowing rules of integer subtraction in two’s complement arith-
metic (line 6). The initial value of p̄ can be thought of as being the
successor of zero (line 2). For a subset of size k, the loop executes
2k−1 − 1 iterations in total, after which p̄ wraps back to zero.

4.4 Memory Space Considerations

With n = 7, Algorithm 2 executes (3n + 1)/2 − 2n = 966 inner
loop iterations and stores 2n − 1 = 127 scalars in each of the
arrays a, copt, and p̄opt. Compared to the naive variant, it represents
roughly a thousand-fold improvement in terms of execution speed.

To turn the algorithm into an efficient GPU implementation, we
must first consider the storage of temporary data. NVIDIA GPUs
are built around an array of streaming multiprocessors (SMs). In
the Kepler architecture, each SM can accommodate 64 warps, i.e.,
groups of 32 threads, and has a 256KB register file and 48KB of fast
shared memory. We aim for one treelet per warp at full occupancy,
which means that we can afford 32 scalar registers per thread and
768 bytes of shared memory per treelet.

Placing a, copt, and p̄opt in shared memory using 4 bytes per element
would exceed our budget by a factor of 2. To improve the situation,
we make two observations. First, a[s̄] is only needed for calculating
copt[s̄]. We can overlay the two into the same array whose elements
initially represent a until line 7 or 20 of the pseudocode turns them
into copt. Second, the elements of p̄opt are 7-bit integers, so we can
save memory by storing them as bytes. This way, we are able to
squeeze the arrays down to 636 bytes of shared memory.

In addition to the arrays, we also need to keep track of the bound-
ing volumes, SAH costs, triangle counts, children, and identities



Size (k) Subsets (s̄) Partitionings (p̄) Total work %
2 21 1 21 2
3 35 3 105 11
4 35 7 245 25
5 21 15 315 33
6 7 31 217 22
7 1 63 63 7

Table 1: Statistics for each subset size in Algorithm 2 with n = 7.
The first three columns correspond to the loops on lines 10, 11, and
14 of Algorithm 2, respectively. Total work indicates the number of
inner loop iterations executed for the given k in total, and the last
column shows the overall distribution of the workload.

Round Subset sizes processed by 32 threads Active
1 2 2 2 2 2 2 2 2 2 2 – – – – – – – – – – – – – – – – – – – – – – 10
2 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 – – – – – – – – – – – – 20
3 4 4 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 – – – 29
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 32
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 – – – – – – – – – – – 21

Table 2: Pre-generated schedule for subsets of up to 5 leaves with
n = 7. The processing consists of 5 rounds, and the schedule in-
dicates which subset each thread should process in each round. We
only show sizes of the subsets for clarity, not the actual values of s̄.

of the nodes. We store this data in the register file so that each
thread stores the values corresponding to one node. To access the
per-node data efficiently on NVIDIA Kepler GPUs, we utilize the
shuffle compiler intrinsic that allows reading the registers of other
threads in the same warp at a very low cost. The same functionality
can be achieved on older GPUs by allocating an additional staging
area in shared memory to temporarily hold one value per node. In
practice, we can think of the nodes as being stored in a single ar-
ray that we can read like any other array. Modifying a given node,
however, is possible only from its designated thread.

4.5 Parallel Implementation

The most computationally intensive part of processing a treelet is
finding the optimal partitioning for each subset of its leaves, corre-
sponding to lines 10–23 in Algorithm 2. Since there are no depen-
dencies between subsets of the same size, an easy way to parallelize
this would be to repeatedly pick one subset for each thread until all
subsets of the given size have been processed.

Table 1 shows the statistics for each subset size with n = 7. We see
that most of the work is concentrated on sizes 4–6, whereas size 2 is
practically free. We also see that the number of subsets tends to be
very uneven, which means that parallelizing the computation over
subsets of the same size alone will necessarily lead to low SIMD
utilization. In particular, sizes 6 and 7 have the highest amount of
work per subset, but offer only a few subsets to process in parallel.

Even though it is necessary for all subsets of size k− 1 to be ready
before we can process size k to completion, it is still possible to
process some subsets of size k before this. We can thus improve
the SIMD utilization by allowing the processing of multiple subset
sizes to overlap. Our approach is to process sizes 2 . . . n − 2 in a
unified fashion, and treat sizes n− 1 and n as special cases.

For sizes 2 . . . n − 2, we use a pre-generated schedule, shown in
Table 2 for n = 7. The schedule consists of a fixed number of pro-
cessing rounds, and tells which subset each thread should process
in each round, if any. The schedule can be generated for any treelet
size and SIMD width using a simple algorithm that considers the

rounds in reverse order and greedily includes as many subsets in
the current round as it can without violating the dependency rules.

Since there are only a few subsets of size n − 1 and n, we choose
to parallelize each subset over multiple threads. For n− 1, we use
4 threads per subset, and for n, we use all 32 threads to process
the single subset. This is a good idea because in these cases, the
number of partitionings is high enough for the inner loop to com-
pletely dominate the processing cost. Our approach is to consider
only a fraction of the partitionings by each thread, and then use par-
allel reduction to merge the results at the end. Since s̄ has a very
specific bit pattern with k ≥ n − 1, enumerating the partitionings
considered by each thread is trivial compared to the general case.

AABB Calculation To determine the AABB for each value of s̄
on lines 2–4 of Algorithm 2, we need to compute the minimum
or maximum for the 6 scalar components of up to n individual
AABBs. We parallelize the computation by assigning a group of
2n−5 consecutive subsets to each thread. These subsets share the
same 5 highest bits of s̄, so we first calculate an intermediate AABB
considering only the leaves that correspond to these bits. To obtain
the final AABBs, we then augment the result with each combination
of the remaining leaves.

Treelet Formation We form the treelet by expanding it one node
at a time in sequential fashion, maintaining a one-to-one mapping
between nodes and threads. Even though we employ only the first
2n− 1 threads, the overall process is still relatively cheap. At each
step, we select the node with the largest surface area using parallel
reduction, and then assign its children into two vacant threads. To
avoid fetching full AABBs from memory for this, we maintain the
values of A(n) in a separate array throughout the optimization.

Reconstruction Reconstruction of the optimal treelet from p̄opt
works essentially the same way as treelet formation, except that we
reuse the identities of the original internal nodes for the newly cre-
ated ones. After the reconstruction, we calculate new AABBs for
the internal nodes based on their children, repeating the process in
parallel until the results have propagated to the treelet root. Finally,
we store the nodes back to memory, bypassing the L1 cache in or-
der to ensure that the results are visible to all SMs. As a minor op-
timization, we skip the output part of the algorithm in case we were
not able to improve the SAH cost, i.e., copt[2

n − 1] ≥ C(root).

4.6 Quality vs. Speed

The main loop of our BVH optimization kernel is organized accord-
ing to the parallel bottom-up traversal algorithm by Karras [2012].
Each thread starts from a given leaf node and then walks up the tree,
terminating as soon as it encounters a node that has not been visited
by any other thread. Our idea is to form a treelet for each node en-
countered during the traversal, if its corresponding subtree is large
enough to support our particular choice of n. We switch from per-
thread processing (traversal) to per-warp processing (optimization)
at the end of each traversal step, using the ballot compiler intrinsic
to broadcast the set of valid treelet roots to the entire warp.

To determine whether a given subtree is large enough to support a
treelet with n leaves, we utilize the fact that our intermediate BVH
always stores one triangle per leaf. Since we already need to track
the number of triangles for the purposes of Equation 2, we can use
the same information to decide whether to accept a given node as
a treelet root. However, the choice does not necessarily have to be
made based on n — we are free to choose any γ ≥ n, and only
accept nodes whose respective subtrees contain at least γ triangles.



A full binary tree withm leaves can contain at most 2m/γ−1 sub-
trees with γ or more leaves, and we have found practical BVHs to
also exhibit similar behavior. Given that our optimization kernel is
virtually always dominated by treelet processing, we can describe
its execution time as O(m/γ) to a sufficient degree of accuracy.
This means that γ provides a very effective way to trade BVH qual-
ity for reduced construction time by concentrating less effort on the
bottom-most nodes whose contribution to the SAH cost is low.

In practice, we need to execute multiple rounds of bottom-up traver-
sal and treelet optimization in order for the SAH cost to converge.
However, we have observed that the bottom part of the BVH gener-
ally tends to converge faster that the top part. This is not surprising
considering that modifying the topmost nodes can potentially have
a large impact on the entire tree, whereas modifying the bottom-
most ones usually only affects small localized parts of the scene.

Based on this observation, it makes sense to vary the value of γ
between rounds. We have found doubling the value after each round
to be very effective in reducing the construction time while having
only a minimal impact on BVH quality. Using γ = n = 7 as the
initial value and executing 3 rounds in total has proven to be a good
practical choice in all of our test scenes.

5 Triangle Splitting

Splitting large triangles is important for achieving high ray trac-
ing performance in scenes where the distribution of triangle sizes
is non-uniform. We choose to follow the idea of Ernst and Greiner
[2007], where the AABB of each triangle is subdivided recursively
according to a given heuristic, and the resulting set of AABBs is
then used as the input for the actual BVH construction. Each AABB
is associated with a pointer to the triangle that it originated from,
which makes it possible to reference the same triangles from multi-
ple parts of the BVH. The triangles themselves are not modified in
the process.

Splitting triangles in a separate pass is compelling because it can be
used in conjunction with any BVH construction method. However,
it suffers from difficulty of being able to predict how a given split
decision will affect the BVH in the end. As a consequence, exist-
ing methods [Ernst and Greiner 2007; Dammertz and Keller 2008]
require considerable manual effort to select the right parameters for
each particular scene, and they can even be harmful if the number
of splits is too high. We aim to overcome these limitations by using
carefully crafted heuristics to only perform splits that are likely to
be beneficial for ray tracing performance.

5.1 Algorithm

Our approach is to first determine the number of times we wish to
split each triangle, and then perform the desired number of splits in
a recursive fashion. We control the overall amount of splitting with
parameter β, allowing at most smax = bβ · mc splits for a scene
consisting of m triangles. Limiting the number of splits this way
results in predictable memory consumption, and it also avoids the
need for dynamic memory allocation with animated scenes.

To determine how to distribute our fixed split budget among the
triangles, we first calculate a heuristic priority pt (Section 5.2) to
indicate the relative importance of splitting triangle t compared to
the other triangles. We then multiply pt with an appropriately cho-
sen scale factor D and round the result to determine the number of
splits, i.e., st = bD·ptc. To fully utilize our split budget, we choose
D to be as large as possible while still satisfying

∑
st ≤ smax.

We find the value of D by first determining conservative bounds
for it, and then using the bisection method to refine these bounds

iteratively. We calculate the initial lower bound Dmin based on the
sum of triangle priorities, and the upper bound Dmax by adjusting
Dmin based on how many splits it would generate:

Dmin = smax/
∑
pt (3)

Dmax = Dmin · smax/
∑
bDmin · ptc (4)

We then bisect the resulting interval by iteratively replacing either
Dmin or Dmax with their average, Davg, depending on whether the
average would exceed our split budget, i.e.,

∑
bDavg ·ptc > smax. In

practice, we have found 6 rounds of bisection to be enough to guar-
antee that the number of splits is within 1% of smax. Even though
this means that we execute a total of 8 parallel reductions over the
triangles, finding D constitutes ∼1% of our total execution time.

We perform the actual splits by maintaining a set of split tasks, each
specifying how many times we wish to split a particular AABB.
To process a task, we split its AABB according to a heuristically
chosen split plane. We then distribute the remaining splits among
the two resulting AABBs proportional to the lengths of their longest
axes. Denoting these lengths with wa and wb and the original split
count with s, we assign sa = b(s − 1)wa/(wa + wb) + 1

2
c splits

for the first AABB and sb = s − 1 − sa for the second one. In
case either of these counts is non-zero, we create a new task for the
corresponding AABB and process it in the same fashion.

In practice, we implement the recursion in a SIMD-friendly fash-
ion by maintaining a per-warp pool of outstanding split tasks in
shared memory. We repeatedly pick 32 tasks from the pool and
process them in parallel, inserting the newly created tasks back into
the pool. Whenever the size of the pool drops below 32, we fetch
more tasks from the global array of input triangles.

5.2 Heuristics

Intuitively, splitting triangles is beneficial for two reasons. First,
it provides a way to reduce the overlap between neighboring BVH
nodes by limiting their spatial extent. Second, it provides a way to
represent the shape of individual triangles more accurately, reduc-
ing the number of ray-triangle intersection tests during ray traversal.
In order to make good decisions about which triangles to split and
which split planes to use, both effects have to be taken into account.

Split Plane Selection The most effective way to reduce node
overlap is to split a large group of triangles using the same split
plane. By virtue of constructing our initial BVH using spatial me-
dian partitioning, we already have a good idea which planes are
going to be the most relevant. For example, we know that the root
node of the initial BVH partitions the scene into two equal halves
according to the spatial median of its x-axis. If a given triangle
crosses this boundary, it will necessarily cause the two children of
the root to overlap. Since the nodes near the root are likely to have
a significant impact on the ray tracing performance, it is important
to ensure that this does not happen.

Based on the above reasoning, our idea is to always split a given
AABB according to the most important spatial median plane that it
intersects. We define importance of a given plane in terms of how
early it is considered during the construction of initial BVH. For
a scene extending over the range [0, 1] along each axis, the planes
are given by x = j · 2i where i, j ∈ Z, and similarly for y and z.
The value of i is negative, and values closer to zero correspond to
more important planes. In practice, an efficient way to choose the
split plane is to form two Morton codes based on the minimum and
maximum coordinates of the AABB, and then find the highest bit
that differs between them [Karras 2012].



Ideal Area To estimate how much the representation of a partic-
ular triangle can be improved, we calculate the lowest total surface
area Aideal of the representative AABBs that we can hope to reach
through splitting. Assuming that we take the number of splits to the
limit, we are essentially representing the triangle as a collection of
infinitesimal boxes. For any axis-aligned projection (±x,±y,±z),
the surface area of the projected triangle equals the sum of surface
areas of the corresponding face of the boxes. We can thus express
the total surface area of the boxes as

Aideal = ||d1 × d2||1, (5)

where d1 and d2 are edge direction vectors of the triangle and ||·||1
indicates the L1 norm. Each component of the cross product is
equal to twice the area of a particular 2D projection. As a conse-
quence, the result essentially represents the sum of 6 such areas,
one for each face of the boxes.

Triangle Priority Splitting a given triangle is a good idea either
if it crosses an important spatial median plane or if there is a lot
of potential for reducing the surface area of its AABB. We thus
combine these two factors to obtain an estimate for priority pt. The
fact that pre-process splitting is fundamentally an underdetermined
problem makes it difficult to define the priority in a principled way.
However, we have experimentally found the following formula to
work robustly in all of our test scenes.

pt =
(
Xi · (Aaabb −Aideal)

)Y
, (6)

where i is the importance of the dominant spatial median plane in-
tersected by the triangle, Aaabb is the surface area of the original
AABB, and X and Y are free parameters. We have found X = 2
and Y = 1

3
to give the best results in practice. However, we note

that our method is not overly sensitive to the actual choice of the pa-
rameters — the important thing is to concentrate most of the splits
on triangles for which both i andAaabb−Aideal are high. It is gener-
ally a good idea to use a fairly low value for Y to avoid spending the
entire split budget on a few large triangles in pathological cases.

6 Results

Our test platform is a quad-core Intel Core i7 930 and NVIDIA
GTX Titan. The ray tracing performance measurements are carried
out using the publicly available kernels of Aila et al. [2009; 2012].
We concentrate on diffuse inter-reflection rays because they have
much lower viewpoint-dependence than primary, shadow, or spec-
ular reflection rays. The performance measurements are averages
over a scene-dependent number of viewpoints. For individual ob-
jects we use two or three viewpoints, for simple architecture four or
five, and for bigger scenes up to ten. The viewpoints try to capture
all interesting aspects of the scene.

We use 20 test scenes to properly capture scene-to-scene varia-
tion, but due to space constraints detailed data is shown only for
4 scenes. The full result matrix is provided as auxiliary mate-
rial. All statements about average, minimum, maximum refer to
the full set of scenes. We focus on commonly used ray tracing test
scenes, with additional city models from the Mitsuba renderer dis-
tribution. CONFERENCE, SIBENIK, CRYTEK-SPONZA, BAR, and
SODA are widely used architectural models. ARMADILLO, BUD-
DHA, DRAGON, BLADE, MOTOR, and VEYRON are finely tessel-
lated objects. FAIRY and BUBS have widely varying triangle sizes.
HAIRBALL and VEGETATION have difficult structure. The four
cities, CITY, BABYLONIAN, ARABIC, and ITALIAN show large
spatial extents. SANMIGUEL combines architecture with fine ge-
ometric detail and vegetation. Thumbnails of the scenes are shown
in top-right corner of Table 3.
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Figure 4: Effective ray tracing performance relative to the maxi-
mum achievable ray tracing performance of SweepSAH, averaged
over our 20 test scenes. We assume that the BVH is built at the
beginning of the frame and then a certain number of rays (horizon-
tal axis) are traced. Solid lines represent builders that do not use
splitting, and dashes indicate splitting. Of the non-splitting variety,
LBVH (GPU) offers the best tradeoff until about 7M rays per frame,
our method (GPU) is best between 7M and 25G rays, at which point
SweepSAH (CPU) takes over, and finally Bittner (CPU) dominates
after 150G rays. The other builders are not Pareto optimal. When
splitting is enabled, our method is best between 7M and 60G rays
per frame, after which SBVH (CPU) becomes the best choice.

Without Triangle Splitting We first analyze the performance
without triangle splitting by comparing against six comparison
methods: greedy top-down sweep SAH (SweepSAH) [MacDon-
ald and Booth 1990], LBVH [Lauterbach et al. 2009; Karras
2012], HLBVH [Garanzha et al. 2011a], GridSAH [Garanzha et al.
2011b], tree rotations with hill climbing (Kensler) [Kensler 2008],
and iterative reinsertion (Bittner) [Bittner et al. 2013], where the
last two are initialized using LBVH. We use the authors’ original
implementations for HLBVH and GridSAH, and our own imple-
mentations for the rest of the methods. We choose SweepSAH as
the baseline because it continues to be the de facto standard in BVH
construction. For LBVH, we optimize the leaf nodes by collapsing
subtrees into leaves to minimize SAH cost (instead of using single-
triangle leaves). This is a well-known method, takes a negligible
amount of time, and considerably improves the LBVH results. Of
the comparison methods LBVH, HLBVH and GridSAH execute on
the GPU, SweepSAH and Kensler are parallelized over four CPU
cores, and Bittner runs on a single CPU core. Our method uses a
fixed set of parameters for all test scenes: n = 7, γ = 7, we per-
form 3 rounds of optimization, and γ is doubled after every round.

Table 3 gives numbers for ray tracing performance, SAH cost, and
build time for four scenes in addition to the average numbers over
the 20 scenes. On average, our builder produces trees that offer 96%
of the maximum achievable ray tracing performance2 of Sweep-
SAH (min 86% max 113%), while being significantly faster to con-
struct. LBVH offers 3–4 times faster build than our method, but
provides only 69% of the maximum ray tracing performance on
the average, with significant scene-dependent variation: the perfor-
mance is only 40–50% for all city scenes but over 80% for highly
tessellated objects. Interestingly HLBVH and GridSAH result in
lower ray tracing performance than LBVH. The primary cause of
this oddity is that the original implementations of these algorithms
reduce build time by using 30-bit Morton codes (instead of 60 bits),
which is harmful in scenes that have larger extents, such as SAN-

2I.e., the ray tracing performance that can be achieved by excluding the
build time, or equivalently, by tracing an infinite number of rays per frame.



CONFERENCE SODA DRAGON SANMIGUEL AVERAGE OF 20 SCENES

282K tris 2.2M tris 870K tris 10.5M tris relative to SweepSAH
Builder Perf SAH Build Perf SAH Build Perf SAH Build Perf SAH Build Perf SAH Build

Mrays/s cost time Mrays/s cost time Mrays/s cost time Mrays/s cost time % % %
SweepSAH 258.4 46.50 848 ms 330.2 78.26 8 s 229.7 56.74 3 s 86.7 20.13 50 s 100.0 100.0 100.00
Our 275.6 38.48 9 ms 301.8 71.04 56 ms 213.1 60.41 24 ms 83.5 17.38 274 ms 96.0 94.4 1.03
LBVH 179.4 64.59 2 ms 203.0 106.06 16 ms 188.5 70.00 7 ms 55.3 26.71 74 ms 69.4 131.5 0.28
HLBVH 185.0 60.91 6 ms 193.5 105.13 12 ms 189.1 68.54 8 ms 39.9 29.08 32 ms 67.4 129.3 0.57
GridSAH 187.8 61.96 7 ms 200.1 104.58 15 ms 193.8 66.12 11 ms 39.8 29.26 35 ms 68.1 129.1 0.70
Kensler 250.5 42.69 4 s 258.8 76.08 44 s 211.3 62.04 10 s 79.1 18.50 197 s 91.5 99.6 552.26
Bittner 278.7 36.51 1 s 356.5 59.39 60 s 215.6 57.26 50 s 98.2 15.69 334 s 103.3 87.7 1083.24

Table 3: Measurements for seven different BVH builders in absence of triangle splitting. Performance is given in millions of diffuse rays per
second, and the build time includes everything from receiving a list of triangles to being ready to cast the rays. The last three columns give
average results for the full set of 20 test scenes relative to SweepSAH.

CONFERENCE SODA DRAGON SANMIGUEL AVERAGE OF 20 SCENES

(SBVH: 28% splits) (SBVH: 13% splits) (SBVH: 5% splits) (SBVH: 13% splits) relative to SBVH
Builder Perf SAH Build Perf SAH Build Perf SAH Build Perf SAH Build Perf SAH Build

Mrays/s cost time Mrays/s cost time Mrays/s cost time Mrays/s cost time % % %
SBVH 378.4 38.71 7 s 405.2 67.33 37 s 237.9 55.59 20 s 118.5 18.57 136 s 100.0 100.0 100.00
Our (no splits) 275.8 38.48 9 ms 301.9 71.04 56 ms 213.1 60.41 24 ms 83.5 17.38 274 ms 76.5 111.5 0.14
Our (10% splits) 321.6 38.91 10 ms 386.0 68.81 63 ms 219.8 59.34 26 ms 109.2 19.95 307 ms 87.2 108.8 0.15
Our (30% splits) 358.1 39.32 12 ms 394.4 69.53 75 ms 220.9 59.22 30 ms 112.8 19.99 361 ms 91.0 108.0 0.17
Our (50% splits) 379.7 39.58 13 ms 398.9 70.43 86 ms 221.3 59.39 34 ms 112.8 20.05 413 ms 92.5 108.3 0.20
Our (match SBVH) 354.5 39.35 12 ms 386.7 68.69 65 ms 213.2 60.38 24 ms 110.1 19.94 314 ms 90.7 107.4 0.16
ESC (match SBVH) 253.5 59.71 – 276.1 85.50 – 213.0 60.52 – 92.3 29.83 – 79.1 128.3 –
EVH (match SBVH) 244.2 45.33 – 245.0 73.47 – 210.9 60.93 – 70.5 21.22 – 68.9 129.3 –

Table 4: Measurements with triangle splitting. We test our method by limiting the splits to 0%, 10%, 30%, 50%, and to the number of splits
that SBVH produced. On the last two rows we replaced our splitter with early split clipping (ESC) and edge volume heuristic (EVH).

MIGUEL. Also, our LBVH implements a proper, SAH-dictated
cutting to leaf nodes, whereas HLBVH and GridSAH use cruder
approximations (anything ≤ 4 is considered a leaf). Bittner’s
method produces trees whose maximum achievable ray tracing per-
formance is about 3% higher than for SweepSAH, but the build time
is somewhat longer mainly due to lack of parallelization. Compared
to Kensler’s tree rotations, our method offers 5% higher ray tracing
performance when averaged over all scenes. However, the differ-
ence is consistently greater for architectural models (e.g. 17% in
SODA), where it is more likely for tree rotations to get stuck in a
local optimum.

In order to draw principled conclusions about the relative order of
different builders, the rest of this section focuses on a situation
where one needs to build a BVH before tracing a certain number
of rays using it. The interesting number of rays per build (or frame)
depends heavily on the application: for example a game AI might
need only 10K queries per frame, interactive rendering from 10M
or 100M, and high-quality visualization 100G or more. At the ex-
treme, for static parts of the scene the BVH could be pre-computed
and at runtime an unbounded number of rays cast in it. Figure 4 vi-
sualizes the effective ray tracing performance of different builders,
taking into account the fact that a BVH needs to be built before
rays can be traced. We see that for very low ray counts LBVH is
the ideal option, and for very high ray counts SweepSAH and ul-
timately Bittner become the best options. Our method is best for
a significant part of the domain, when between 7 million and 25
billion rays need to be traced per frame.

It is worth mentioning that our method consistently produces a
lower SAH cost than SweepSAH, but still leads to slightly slower
ray tracing performance on the average. This suggests that the SAH
cost fails to capture some important property of the BVH.

With Triangle Splitting Triangle splitting further improves the
performance, as shown in Figure 4. Considering maximum achiev-
able ray tracing speed, SBVH [Stich et al. 2009] is ∼30% faster
than SweepSAH in our test scenes — although the average hides
large scene-dependent variation from no benefit in highly tessel-
lated objects to ∼ 2× in VEGETATION. But since SBVH is a slow
builder, the benefit starts to materialize only after 20G rays. We set
SBVH’s α to 10−5 in all scenes, except that 10−4 was needed in
HAIRBALL and VEGETATION to avoid running out of memory and
10−6 in SANMIGUEL to see any splitting at all. Since our splitter is
very fast, enabling it starts to pay off already around 7M rays. Inter-
estingly, only LBVH, our method with splitting, and SBVH are on
the Pareto optimal frontier in Figure 4. Our method with splitting
is the fastest between 7 million and 60 billion rays per frame.

Table 4 gives numerical results for splitting. In addition to SBVH,
we show our builder with different split budgets, and variants of our
builder using early split clipping (ESC) [Ernst and Greiner 2007]
and edge volume heuristic (EVH) [Dammertz and Keller 2008].
The maximum achievable ray tracing performance of our method
increases steadily when the number of allowable splits grows, but
starts to plateau around 30%, which is the budget we use for all
other measurements in this paper. With this budget we achieve on
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Figure 5: Effect of our parameters in SANMIGUEL. a) The number of rounds affects the maximum achievable ray tracing performance
in a significant way, until the second or third round. b) The minimum subtree size affects the tradeoff between build time and ray tracing
performance. c) Adaptive γ reduces build time without noticeably reducing the maximum achievable ray tracing performance.

the average 91% of the ray tracing performance of SBVH. The core
strength of SBVH’s splitting strategy is that it can place the splits
only where they are deemed beneficial in a global sense, thanks
to its top-down nature, but the downside is unpredictable memory
consumption. We on the other hand cannot easily know how many
splits should be done, and thus specify a limit for the memory con-
sumption instead. Somewhat surprisingly, both ESC and EVH of-
ten fail to provide performance boost when used together with our
builder. It is possible that scene-specific parameter tuning could
improve their results somewhat.

Parameters All of the results in this paper were computed using
n = 7 leaf nodes per treelet. On the average, the maximum achiev-
able ray tracing performance is very similar also for n = 6 and
n = 8. Although n = 6 is approximately 30–40% faster to build,
it fails to find some important modifications for example in SODA,
leading to lower quality trees. Going to n = 8 improves the trees
only marginally at the cost of almost tripling the build time.

Figure 5 illustrates the sensitivity of our method for other parame-
ters in SANMIGUEL. Increasing the number of optimization rounds
makes the build slower, but significantly improves the maximum
ray tracing performance for the first two or three iterations. Partic-
ularly in SODA we see a clear improvement still on the third round,
and thus we use three rounds for all results in this paper. Increasing
the initial value of minimum subtree size (γ) makes the build faster,
but it also penalizes the maximum ray tracing performance, and we
chose not to use the optimization in the measurements. Finally, it is
clearly beneficial to double γ after each round.

Our BVH consumes 64B per internal node and 48B per triangle.
As we have one internal node per triangle in the intermediate BVH,
we need 112B per triangle in total. We do not need any additional
memory besides this, because we can reuse the output triangle array
to store all the temporary data needed during the optimization.

7 Future Work

Our method makes it possible to use high-quality BVHs in a large
class of applications where offline construction is currently not fea-
sible, ranging from interactive visualization and editing to render-
ing of feature films. We have demonstrated the general idea of
treelet optimization to be a robust and effective alternative for the
previous top-down approaches, which opens up a number of in-
teresting avenues for future work. So far we have only looked at
finding the optimal topology for small treelets, but it would also
be possible to employ approximate methods to restructure signifi-
cantly larger treelets, enabling more extensive modifications to the

BVH. Since any proposed modification can be discarded if it does
not improve the SAH cost, one could even combine multiple such
methods to overcome the weaknesses of any single one.

The optimization could be accelerated by only restructuring treelets
that actually matter, assuming there was a quick way to estimate
how far a given treelet is from its optimum. We believe that our
method can also be combined with other BVH quality metrics be-
sides the SAH cost, offering a possibility to improve the ray tracing
performance even further.

We encourage researchers interested in comparing against our im-
plementation to contact us.
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