
WYSIWYG Computational Photography via Viewfinder Editing

Jongmin Baek1, Dawid Pająk2, Kihwan Kim2, Kari Pulli2, and Marc Levoy1

1Stanford University 2NVIDIA Research

(a) (b) (c) (d) (e)

Figure 1: Viewfinder editing and appearance-based metering. (a) In the proposed system, the user interacts with the camera viewfinder as
if it were a live canvas, by making sparse strokes to select regions and to specify edits. The edits propagate spatiotemporally as the camera
and the scene objects move, and the edits are applied in the subsequent frames of the viewfinder, which are tonemapped HDR images, to
provide WYSIWYG experience. (b) After making a local tonal edit, the user presses the shutter to trigger a high-resolution capture. Here
we show the resulting tonemapped HDR composite without any edits applied, for reference. The edit mask computed from the user strokes is
shown in the inset. (c) The result with edits applied is shown. This approximately corresponds to what the user sees on the screen just as he
presses the shutter. Our appearance-based metering acquired an exposure stack at (0.645 ms, 5.555 ms, 11.101 ms) by optimizing the quality
of the final result based on the user’s global and local edits. (d) The regions indicated in (c), magnified. (e) We captured another stack with
a histogram-based HDR metering at (0.579 ms, 9.958 ms, 23.879 ms) and applied the same post-processing pipeline. As the standard HDR
metering considers equally all the pixels in the scene, it uses too much effort to capture the dark areas that were not as important to the user,
leading to a longer capture times that makes ghosting more likely (top), and higher noise in mid-tones (bottom).

Abstract

Digital cameras with electronic viewfinders provide a relatively
faithful depiction of the final image, providing a WYSIWYG expe-
rience. If, however, the image is created from a burst of differently
captured images, or non-linear interactive edits significantly alter
the final outcome, then the photographer cannot directly see the re-
sults, but instead must imagine the post-processing effects. This
paper explores the notion of viewfinder editing, which makes the
viewfinder more accurately reflect the final image the user intends
to create. We allow the user to alter the local or global appear-
ance (tone, color, saturation, or focus) via stroke-based input, and
propagate the edits spatiotemporally. The system then delivers a
real-time visualization of these modifications to the user, and drives
the camera control routines to select better capture parameters.

Keywords: image editing, burst photography, HDR metering

Links: DL PDF

1 Introduction

Early photographers could not directly see their photographs as they
were taking them, but had to imagine the results as a function of

various imaging parameters such as exposure, focus, even choice
of film and paper. Digital cameras with real-time digital displays,
which show a good preview image, have made photography much
easier in this respect, providing a WYSIWYG (what you see is what
you get) interface for the camera. In particular, framing the image
and choosing the timing of capture is made easier and more fun as
the user sees right away what the outcome will be. However, when
applying many computational photography techniques, the user still
can’t see an approximation of the result, but needs to imagine the
end result. One example is combining an exposure burst into an
HDR image and tonemapping it back to LDR for display, In addi-
tion, many photographers edit their photographs after capture, using
tools such as Photoshop or Lightroom. However, users must com-
pose the shot in the field before knowing the effect such edits might
have on the result. The capture process thus remains separated from
the image editing process, potentially leading to inadequate data ac-
quisition (wrong composition or insufficient SNR) or excessive data
acquisition (longer capture time, exacerbated handshake or motion
blur, and increased storage cost).

At the same time, mobile devices with a digital camera, display,
adequate computational power, and touch interface are becoming
increasingly commonplace. More photographs are captured by mo-
bile devices now than ever, and many of them are edited directly on
device and shared from that device, without ever being uploaded to
PCs. This phenomenon is reflected in the recent focus on camera
control and image processing on mobile platforms [Adams et al.
2010b; Ragan-Kelley et al. 2012] and in the popularity of photog-
raphy apps on smartphones. The trend so far has been to harness
this increased processing power to enable desktop-like workflow on
mobile devices. We instead use these processing capabilities to in-
troduce the notion of viewfinder editing, which allows the users to
perform edits live on the viewfinder prior to capture. We bring the
WYSIWYG interface to computational photography applications,
allowing the users to directly see the effects of interactive edits or
stack photography on the viewfinder. Using this interface we also

http://doi.acm.org/10.1145/1111111.2222222
http://portal.acm.org/ft_gateway.cfm?id=2222222&type=pdf


gather information on which aspects of the image are important to
the user, which in turn affects capture parameters such as the num-
ber of images to capture, the values for exposure, focus, white bal-
ance, et cetera. This WYSIWYG interface serves particularly well
those casual shooters that desire further interactivity in their pho-
tography yet would like to avoid offline work.

To realize this philosophy, we propose a unified framework in
which the user provides sparse, stroke-based input to control the
local (or global) tone, color, saturation, and focus, and receives im-
mediate feedback on the viewfinder, as shown in Figure 1 and 3.
The selections the user provides are affinity-based [An and Pellacini
2008] and are stored as a sparsely sampled function over the image-
patch space [Adams et al. 2010a]. The selections are then propa-
gated to subsequent viewfinder frames by matching image patches,
and the edits are applied to both the viewfinder image and eventu-
ally the high-resolution image(s) the user captures.

Also, the edits are internally used to drive the camera control rou-
tines that determine the appropriate exposure and/or focus value(s).
In our framework, the user expresses a modification of the image,
enabling the camera control algorithms to deduce the noise thresh-
old, depth of field, and dynamic range necessary to support the
transform. For instance, if the user wishes to locally brighten a
dark region of the scene, it ought to lead to a different metering de-
cision; or, if the user is happy to let the sky saturate on the display, a
full exposure stack should not be necessary. The user can even pro-
vide inconsistent cues: e.g., the user wishes two objects at the same
depth to exhibit different levels of defocus. Such cases can be sat-
isfied by taking two images with different settings and combining
them. Therefore, stack-based computational photography merges
seamlessly with traditional photography, kicking in when and only
when necessary.

The technical contributions of this paper are a fast edit propagation
algorithm running on the viewfinder stream; a viewfinder interface
that visualizes the edits, tonemapping, and multi-exposure blend-
ing; and camera control routines to take advantage of the knowl-
edge of the visualization, which altogether form a camera system
that can run at interactive rates on a mobile device.

2 Prior Work

Image processing and editing of captured still photographs are well-
explored realms in computer graphics. Many forms of appearance
editing exist, such as tonemapping [Reinhard et al. 2002], and de-
tail enhancement or suppression [Farbman et al. 2008; Fattal 2009;
Gastal and Oliveira 2012].

As mobile platforms become ubiquitous and computationally pow-
erful, image editing on such platforms is on the rise. For instance,
Liang et al. [2010] developed a point-and-swipe interface for edge-
aware tone manipulation of still images on a smartphone. Com-
mercial software implementing similar techniques exists in mo-
bile space [Nik Software 2012]. Many computational photogra-
phy algorithms on the desktop already take sparse gestures as in-
puts [Agarwala et al. 2004; Levin et al. 2004], and could easily
accommodate touch-based interfaces.

Below we survey the prior work on two main challenges addressed
in our paper: spatiotemporally propagating edits in a stream of im-
ages, and determining capture parameters like exposure and focus.
We remark that no prior work in the community has addressed im-
age editing on a live viewfinder, much less feeding back the result
of image processing back to capture process.

2.1 Edit Propagation

Edit propagation allows the user to specify a sparse set of edits and
automatically propagates them onto the rest of the image or other
frames. Image processing on a sequence of frames has been imple-
mented previously for abstraction [Winnemöller et al. 2006], sparse
edit propagation [An and Pellacini 2008] and retargeting [Rubin-
stein et al. 2008]. One family of edit propagation methods is based
on spatially diffusing edits to neighboring pixels via edge-aware
smoothing. A cost function on the image gradient can be used to
build a linear system that diffuses edits [Levin et al. 2004; Lischin-
ski et al. 2006] or to drive graph cuts [Agarwala et al. 2004]. Fat-
tal [2009] performs a wavelet decomposition to propagate edits to
neighboring pixels of similar intensity. However, these methods
do not handle spatially discontiguous regions and are not robust
against occlusions or camera shakes.

Another family of methods is based on detecting regions that have
appearance similar to that of the user-selected area. Edits are mod-
eled as a function over the space of feature descriptors for the pix-
els, with the underlying assumption that pixels with similar feature
descriptors should have similar function values. The function is
typically recovered from an energy minimization framework [An
and Pellacini 2008; Chen et al. 2012; Farbman et al. 2010], or an
explicit clustering of known values provided by the user [Bie et al.
2011; Li et al. 2008; Li et al. 2010; Xu et al. 2009].

One caveat is that propagating edits on the viewfinder in real time
is distinct from the problem of propagating edits on an image se-
quence as an offline process. Most existing methods for the latter
rely on a preprocessing step that analyses the whole sequence and
builds expensive classifiers whose costs are amortized over the mul-
tiple frames to be processed or the multiple edits to be applied [An
and Pellacini 2008; Bie et al. 2011; Farbman et al. 2010; Li et al.
2008; Xu et al. 2009] for acceleration. Our proposed method is
designed to be a truly online method that handles streaming data.

2.2 Optimizing Capture Parameters

Many computational photography algorithms make use of stack
photography, requiring the determination of capture parameters
such as exposure, gain, and focus.

High-dynamic-range (HDR) photography captures multiple photos
with varying exposure levels, which are then blended to form the
HDR image. Hasinoff et al. [2010] and Gallo et al. [2012] solve for
the exposures that maximize the signal-to-noise ratio of the HDR
image. Such HDR image typically undergoes tonemapping for dis-
play, boosting some signal and suppressing the rest. This aspect
is not modeled and accounted for by metering algorithms because
HDR photography is currently not WYSIWYG—the transform is
generally not known a priori, and neither is the type and extent of
any local edits the user will make.

Focus bracketing can be used to digitally extend the depth of
field [Hasinoff and Kutulakos 2008] or reduce it [Jacobs et al.
2012]. These algorithms register and blend images taken at vari-
ous focus settings to mimic a photograph with a different aperture
setting. Vaquero et al. [2011] acquires the minimal focus stack nec-
essary for all-in-focus imaging by preliminarily sweeping the scene
and identifying focal settings that provide sharp pixels.

One capture parameter that is difficult to algorithmically optimize
is composition, as it is subjective. The difficulty is compounded by
the fact that images are often edited or tonemapped after capture,
altering its feel significantly. Photos could be cropped to obey stan-
dard composition rules [Liu et al. 2010] after capture, but cropping
discards data and is inherently hamstrung by the composition of the



Frame nFrame n-1Frame n-2Frame n-3

Tone mapping
operator

Texture
classi�cation

HDR image

Sparse edits mask Edits mask

Quantify
metering

requirements

Metering range imageView�nder display

Touch UI

Camera

Metering for
appearance

Spatio-temporal
�ltering

Registration
and blending

Figure 2: System overview for the exposure-stack photography application. The camera streams frames with alternating exposures, which
are registered and merged into an HDR composite, which is displayed for the user. The user can specify edits via touch interface by marking
textures, creating a sparse edit mask, which is spatio-temporally filtered to make consistent and to avoid flickering. The selected areas can be
modifed, for example by brightening or darkening them, and this user input is taken into account when metering for the best exposure values
for the next frames. The tonemapping edits are continually applied for every frame and displayed for the user.

original, so the decision on composition is best made at the time of
capture. A WYSIWYG viewfinder facilitates better composition as
a faithful estimate of the final image is shown in real time.

In summary, existing work on computational image capture aims to
acquire as much information about the scene, for maximum flexi-
bility later. We propose an alternate philosophy in which only the
information necessary or desired by the user is actually acquired,
provided that the user can communicate what is necessary and de-
sired via a real-time interface.

3 Overview

Figure 2 summarizes the major components in our framework for
the specific case of exposure stack photography. The algorithmic
details are explained in the subsequent sections.

Image acquisition. We stream the raw image data from the sen-
sor into a stack that caches theN most recent frames. We internally
acquire a full exposure or focus stack for viewfinding, because our
edit propagation mechanism works better on an HDR image than
an LDR image with saturated, blurry, or underexposed regions.

The capture parameters are updated on a per-frame basis as follows:
for exposure stacks, we examine the log-luminance histogram of the
scene and meter for the bins not covered by the last N − 1 frames.
For focal stacks, we iterate from the minimum to the maximum
focus distance in fixed increments.

Edit propagation on the viewfinder. The processing thread
fetches the N most recent frames (typically N = 3 for exposure
stacks and N = 4 for focal stacks), and merges them into an HDR
radiance map or an all-focus image. The resulting scene estimate is
stored in a LogLUV format [Reinhard et al. 2005], which accounts
for nonlinearity of human visual system.

Each pixel has a context based on an 8 × 8 patch around it, from
which we extract a descriptor. The selection and edits are modeled
as functions over the space of these image patch descriptors. For
every frame, we compute these functions over each image patch
in the scene and generate edit masks (Section 4.2), apply the edit
masks onto the LogLUV data, tonemap the result, and display it
on the screen. In case of focus edits, we recompose the images
from the focal stack appropriately. Because the masks are quickly
recomputed on each frame based on image patches, the user edits

are robust against scene and camera motion.

Lastly, we recompute the optimal set of exposure and/or focus val-
ues (Section 5) taking all the user edits and post-processing steps
(such as tonemapping for the display) into account. These param-
eters are used when the user presses the shutter. The frame(s) cap-
tured with these settings can be processed by the same pipeline, or
an offline method for higher quality (Section 4.3).

User interface. The user is presented with a seemingly normal
viewfinder, though internally the camera is constantly acquiring an
exposure or focal stack. The user begins by selecting a region via
stroke gestures. The user may cancel a selection by tapping outside
the selected region, or confirm a selection by tapping within, which
triggers an overlay with icons representing various types of edits.
Once the user chooses the type of edit to apply to the selected re-
gion, the user makes a swiping gesture horizontally left or right to
adjust the designated trait, e.g., darker or brighter (Section 4.1).

4 Viewfinder Editing

Image editing on a viewfinder stream of a hand-held camera must
accommodate temporally persistent selection of objects through
sparse user input. We rely on affinity-based edit propagation [An
and Pellacini 2008; Xu et al. 2009], in which edits are modeled as
functions residing in the space of local patch descriptors:

Si : Rd → [−1, 1], i = 1, 2, . . . (1)

where each of S1, S2, . . . corresponds to a particular type of edit,
such as tone, color, saturation or blurriness. We reserve S0 : Rd →
[0, 1] for the selection mask. Then, our goal is to compute the
vector-valued function ~S = (S0, S1, . . .) for the patches in each
viewfinder frame, and to apply corresponding edits in real time. Al-
ternatively, one can think of each image patch having tags Si, either
stored explicitly or interpolated from the tags of nearby patches, in-
dicating the level of selection or the state of an edit.

We use 8-dimensional patch descriptors (d = 8), in which the fea-
tures are the mean and 1st- and 2nd-order derivatives of the log-
luminance, plus the mean CIELUV chrominance, each yielding 1,
2, 3, and 2 values, respectively. Note that we leave out the (x, y)
coordinate, in order to be robust against scene and camera motion.

Existing affinity-based methods attempt to globally optimize or in-



terpolate ~S based on the user-provided samples. The cost of global
optimization or interpolation is often mitigated by preprocessing
the dataset to learn the topology of the patch descriptors or training
a classifier. While this approach works well for offline processing
of video or image sequences, we need to process each viewfinder
frame independently in a streaming fashion.

To achieve this, we store ~S in the permutohedral lattice [Adams
et al. 2010a], a sparse data structure designed for rapid high-
dimensional filtering. The lattice is suitable since it stores high-
dimensional vector-valued function (e.g., ~S) with O(1) cost for in-
cremental update. The lattice internally performs resampling in the
patch descriptor space, which serves to locally propagate the data.

Because we forgo an explicit optimization or interpolation unlike
previous work, edits do not propagate as aggressively, but this issue
is mitigated in three ways: first, we apply edge-aware smoothing
on Si with respect to the scene image whenever a viewfinder frame
is produced. Second, because the user receives feedback interac-
tively as the strokes are made, it is easy and intuitive to control
propagation—the user essentially interactively paints Si. Third,
once the user captures a stack, we rely on existing edit-propagation
algorithms in the literature for high-quality offline processing.

(a) (b)

(c) (d)

Figure 3: Interface for viewfinder editing. (a): The user begins
by stroking over the region of interest. (b): As the user swipes his
finger, the selection updates on the screen. (c): The user confirms
the selection by tapping within the selected region, which invokes
a UI widget offering various edit operations the user can choose
from. The user chooses to edit the hue of the selected region. (d):
As the user swipes his finger horizontally to indicate the sign and
the magnitude of the edit, the viewfinder updates.

4.1 Specifying Edits

Instead of initializing the lattice with all patches present in a given
image, we take a streaming approach: as the user strokes over the
screen and selects patches, we locate only nodes corresponding to
these patches and update their values. Note that unselected patches
are never written into the lattice; if a patch lookup fails at any point,
a default value is assumed for ~S.

As customary in Gaussian filtering, we use 2D homogeneous coor-
dinates to represent each of S0, S1, . . . in the permutohedral lattice.
The actual value of S0, S1, . . . is obtained by dehomogenizing the
2D vector. We will denote the homogeneous form as S̃i : Rd → R2

for each i. These coordinates express the relative weight of the edit.

Edits are specified in three phases, as illustrated in Figure 3: first,

the user strokes over the region of interest, and confirms the selec-
tion by tapping on the selected area. Second, the user is shown a
widget listing the various types of edits supported, and the user taps
on his choice. Third, the user horizontally swipes left or right, in
order to specify how much the edited value should be decreased or
increased. All of the phases are interactive; as the user moves a fin-
ger on the screen, the updated edits are reflected on the viewfinder.
We refer the readers to the supplementary video for demonstrations.

Selection. While the user stroke is being registered, image
patches whose centers are within a small fixed distance from the
touch event are converted to descriptors and are looked up from the
lattice. New nodes are created if they are not found. We increment
the value of S0 for these nodes to signify that they are now selected

S̃0(~p) := S̃0(~p) +

(
1
1

)
. (2)

In practice, a vertex lookup in the permutohedral lattice will return
several nearby vertices, as a means for resampling. We apply the
above equation to these vertices, scaled by the resampling coeffi-
cient. If the user passes over the same texture ~p multiple times in a
single stroke, the dehomogenized value ~S0(~p) will still be 1, but the
weight of the selection will be larger, so ~p will be more influential
in the interpolation performed in the lattice.

The cost of specifying selection isO(1), independent of viewfinder
dimensions and the edit history.

Editing. If the user is in the act of specifying an edit k ∈ [−1, 1]

of type j, then for each selected descriptor ~p, we adjust S̃j(~p) be-
fore applying it to the image.

S̃j(~p) := S̃j(~p) + k ·
(
S0(~p)

1

)
. (3)

As shown in Eq. (3), the extent of the edit is further scaled by the
soft selection mask S0.

Note that this adjustment is not yet written into the lattice. There-
fore, the cost of visualizing each viewfinder frame grows linearly
with the viewfinder dimensions, and is independent of the number
of nodes in the lattice. Once the user finalizes the edit, we can fold
it into the lattice by applying Eq. (3) to every selected patch ~p in
the lattice, and reset S̃0(~p) to zero. Hence, the cost of finalizing an
edit is proportional to the size of the lattice, and independent of the
viewfinder dimensions. While this step is slightly more expensive,
it is only performed when the user signals the end of a discrete edit.

4.2 Edge-Aware Smoothing

In our online implemention of the visualization, we only process
a subsampled set of image patches, saving a significant amount of
time, but yielding edit selection masks at a resolution lower than
that of the viewfinder. The resulting edit masks undergo edge-aware
upsampling using domain transform [Gastal and Oliveira 2011],
with respect to the edges of the viewfinder content. Not only does
this operation allow us to speed up computation, but it also gener-
ates higher-quality masks with better spatial edit propagation. We
also experimented with wavelet-based upsampling [Fattal 2009],
but found that while faster, it yielded slightly worse results.

We also perform the recursive variant of the domain transform fil-
ter across frames to reduce temporal artifacts. In essence, the filter
blends the masks for the previous and the current frames together
where the pixel difference is small to reduce the temporal noise, but
preserves the current frame content where the difference is large
(usually because the edges do not align due to camera motion); be-
cause of this non-linearity we do not need to register the masks.



This helps to suppress flickering in noisy regions, where the result
of the lattice lookup is inconsistent because of spurious texture in-
troduced by the noise.

4.3 Offline Processing

Once the user is satisfied with the edits and presses the shutter, we
perform additional computation to generate edit masks with better
quality. We process image patches at full resolution, generating a
full-size edit mask, which we still smooth spatially with domain
transform. The resulting edit masks are thresholded and eroded to
create a trimap. The trimap is then passed to manifold-preserving
edit propagation [Chen et al. 2012] in order to re-populate low-
confidence areas of the edit mask, where confidence is given by
the homogeneous coordinates in the lattice. We found that this ad-
ditional step helps produce cleaner and more homogeneous masks.
Figure 4 demonstrates an example.

5 Appearance-Based Camera Control

We have thus far described an interface and underlying algorithms
for performing edits directly on the viewfinder and propagating
them forward in time. While this benefits the user by allowing him
to evaluate and rethink composition based on the edits, it also pro-
vides the camera control routines with additional information that
can be used to better select capture parameters. We describe two
such parameter control algorithms: for exposing and focusing for
each pixel based on its intended appearance; we also describe how
to aggregate the results for all the pixels in the viewfinder to pro-
duce a set of metering or focusing parameters for the scene.

5.1 HDR Metering for Display

Currently, HDR metering algorithms such as [Gallo et al. 2012;
Hasinoff et al. 2010] operate to faithfully acquire scene luminance,
attempting to maximize SNR. This philosophy makes sense when
the post-processing to be performed on the luminance data is un-
known, and there is no additional information on the importance of
different scene elements. However, we can leverage the fact that
the entire post-processing pipeline, including tonemapping and lo-
cal edits, is known. The user sees on the viewfinder a tonemapped
HDR image, and if some areas are too dark, brightens them, which
indicates that longer exposures are needed, or darkens saturated ar-
eas to increase contrast, indicating shorter exposures are needed.
The viewfinder image reflects the edits, and once the user is happy
with the result, he can take the high-resolution HDR image. See
Figure 6 for a demonstration of how edits influence HDR metering.

Quantifying Per-Pixel Exposure Requirements. We consider
image fidelity at each pixel, and derive the exposure necessary to
meet a particular threshold. Let L be the physical scene luminance
estimated by the camera, perhaps from multiple exposures; and let
I be the k-bit tonemapped result under a global, strictly monotonic
tonemapping operator T . The user’s edits create an edit map E
which, in a spatially varying manner, modulates the luminance es-
timate L. In our implementation, we set E(x, y) = 26S1(~px,y),
corresponding to an adjustment up to ±6 stops. The viewfinder
finally clamps the result into k bits:

I(x, y) = min
(

2k − 1, T (L(x, y) · E(x, y))
)
. (4)

For each of the 2k display levels, we associate a threshold for ac-
ceptable visual distortion, modeled as a Gaussian noise with stan-
dard deviation σd. In other words, we want the pixel value I(x, y)
on display to have at most a standard deviation of σd for the final,

tonemapped display value. This threshold depends on the view-
ing condition, display resolution, and the user’s visual adaptation,
but for a bright display (photopic vision), we assume that σd is
approximately constant; all the figures in this paper use σd = 1.
See [Mantiuk et al. 2008] for work on display-adaptive tonemap-
ping that relaxes this assumption.

Then, assuming non-saturation, the metering algorithm should at-
tempt to record each pixel’s physical luminance L(x, y) so that its
associated uncertainty σw, when carried through the imaging and
tonemapping processes, has a standard deviation no larger than σd.
For sufficiently small uncertainty, we can apply first-order approx-
imation to the tonemapping process to obtain,

σw(x, y)

∆L(x, y)
≈ σd

∆I(x, y)

=⇒ σw(x, y) ≈ σd

E(x, y) · T ′(L(x, y) · E(x, y))
, (5)

via the chain rule, where T ′(·) stands for dT
dL

.

Finally, we assume a c-bit linear camera that captures the scene and
records raw pixel values:

p(x, y) = min
(

2c − 1, L(x, y) · t ·K +N(0;σr)
)
, (6)

where t is the exposure time; K is a calibration constant; N(0;σr)
is additive (Gaussian) read noise; and we clamp the measurement
to model saturation.

The HDR reconstruction algorithm divides each pixel value by t·K
to estimate L(x, y), which also lowers the standard deviation of the
noise to σr/(t · K). This noise should be below σw(x, y) from
Eq. (5), providing a lower bound on the exposure time:

σr

K
· E(x, y) · T ′(L(x, y) · E(x, y))

σd
≤ t. (7)

We also enforce an upper bound to avoid sensor saturation:

t <
2c − 1

K · L(x, y)
. (8)

For pixels that saturate on the sensor, the estimate L(x, y) must be
such that, when multiplied by E(x, y) and tonemapped, the result
should saturate on display:

t ≤ (2c − 1)E(x, y)

K · T−1(2k − 1)
. (9)

We can easily extend this analysis to handle nonlinear cameras by
folding the inverse camera response function into T . Other sources
of noise, such as photon noise, can be folded into the read noise by
allowing σr in Eq. (7) to vary as a function of the pixel value.

Optimizing HDR Stack. Now that we have derived the neces-
sary conditions on each pixel, we can combine them to solve for a
set of exposures that best satisfy them. Gallo et al. [2012] note that
most scenes are handled by three exposures or fewer, and that most
cameras offer only a limited number of possible exposure values.

We implement a greedy approach that seeks to iteratively maximize
the aggregate objective function

∑
x,y J(x, y, t) with respect to the

exposure time t. The objective function should penalize exposure
times outside the lower and upper bounds B∗(x, y) and B∗(x, y)
derived at each pixel, using Eqs. (7–9), there we set J = 0. Oth-
erwise, if the output pixel P (x, y) is saturated, we favor shorter
exposures. We use the objective function

J(x, y, t) =

{
0, if t 6∈ [B∗(x, y), B∗(x, y)],

1 + α(x, y) log2
t

B∗(x,y)
, otherwise,

(10)



Figure 4: Improving edit mask quality offline. Left: An unedited viewfinder frame (from our tablet implementation), which has already
undergone HDR blending and global tonemapping. Middle: The viewfinder frame with edits made by the user, displayed live. In this
example, the user has brightened the unlit side of the building. Right: The final output after additional offline processing. The insets in the
middle and right images show the computed mask before and after offline refinement. In the refined version, the selection is more homogeneous
and its edges are sharper. While imperfect, the real-time result in the middle is sufficient to give the user a feel for the final output.

illustrated in Fig. 5 (a) and (b) on a logarithmic time axis, with
α(x, y) = −0.3 if the pixel is saturated, and 0.0 otherwise.

1

J(x, y, t)

tB∗(x, y) B∗(x, y)

Case a: P (x, y) is not saturated.

1

J(x, y, t)

tB∗(x, y) B∗(x, y)

Case b: P (x, y) is saturated.

Figure 5: Appearance-based metering via per-pixel analysis. For
each pixel on the screen, we compute the minimal and maximal
permissible exposure values, accounting for the local and global
transforms raw sensor values undergo. (a, b): For metering, each
pixel yields an objective function J(x, y, t) based on the minimum
and maximum per-pixel exposure values B∗(x, y) and B∗(x, y).

When t is mapped to logarithmic domain, the objective in Eq. (10)
becomes a sum of piecewise-linear functions, which we maximize
in linear time using dynamic programming, by pre-computing and
caching the first- and second-order derivatives of the objective. We
greedily find exposures that maximize the objective, removing pix-
els from consideration whenever their requirements are met. We
terminate the procedure upon reaching the maximum stack size or
satisfying a certain percentage of per-pixel requirements.

5.2 Stack Focusing for Display

Another popular target for manipulation is the depth of field. A
focal stack, a set of images focused at different depths, can be com-
bined to simulate extended depth of field [Hasinoff and Kutulakos
2008]; reduced depth of field can be obtained likewise [Jacobs et al.
2012]. If the user can interactively specify the desired manipulation
prior to capture and verify it via visualization in the viewfinder, the
autofocus routine can deduce the minimal focal stack needed.

Quantifying Per-Pixel Focus Requirement. Using our interac-
tive viewfinder, the user paints a mask F : {(x, y)} → [−1, 1]
specifying which regions should be sharper or blurrier in a refer-
ence photograph focused at depth z0 ∈ [zmin, zmax]. We mea-
sure the depths in diopters; under a simple thin-lens model, the
blur size changes linearly with the offset in diopters. Meanwhile,
the viewfinder stream cycles through a number of focus settings to
continuously acquire the scene at various depths and builds a rough

(a) (b)

(c) (d) (e)

Figure 6: The real-time effect of local tonal edits on appearance-
based metering. (a): This tonemapped image was produced from
a 2-image stack at (1.607 ms, 14.874 ms), as determined by our
appearance-based metering. (b): The user brightened the dark
statue on the viewfinder and retook the photo. Our algorithm au-
tomatically adjusted to the new appearance on the viewfinder and
appended an extra shot (79.613 ms) to the stack. (c, d): We show
insets from the center of the two images. (e): Just applying the local
edit to the statue without taking it into consideration during meter-
ing yields much more noticeable noise in the output, compared to
(d) where we accounted for the local edit during metering. The
insets are best viewed on a screen while zoomed in.

depthmap based on a local contrast measure. Then we build an in-
dexing map ẑ, with which we will create the focal stack composite,
as follows: at F = 0 we use the reference depth z0; at F = 1,
the maximally sharp depth z∗; at −1, the maximally blurred depth
(either zmin or zmax); at other values of F we linearly interpolate.

After ẑ is regularized with a cross-bilateral filter using the scene
image, we synthesize the output by indexing into the appropriate
slice of the focal stack at each pixel. When the appropriate depth
is not available, we interpolate linearly from the two nearest slices.
The viewfinder is updated with this synthetic image continuously.

Optimizing Focal Stack. The map ẑ obtained above covers a
continuous range of depths, which is impractical to capture. To
discretize ẑ into a few representative values, we reuse the frame-
work from Section 5.1 for optimizing the sum of piecewise-linear
functions. The per-pixel objective is 1 at the desired depth ẑ(x, y),



linearly reducing to zero at depth error ε (we use ε = 1.0 for a lens
with depth range of 0.0− 10.0 diopters):

J(x, y, z) = max

(
0,

ε− ‖z − ẑ(x, y)‖
ε

)
. (11)

We aggregate this per-pixel objective over all pixels. Because
Eq. (11) is piecewise linear, the aggregate objective can be opti-
mized quickly as in Section 5.1. Once again, we greedily select fo-
cus distances that maximize the objective, stopping when 10 slices
are ordered or if for most of the pixels ẑ is close to one of the focus
distances in the set.

6 Applications and Results

To demonstrate the use of our viewfinder-editing framework (Sec-
tion 4) and the appearance-based camera control routines (Sec-
tion 5), we implemented a camera application incorporating these
modules on two platforms: an x86-architecture laptop1 with a USB
camera (PointGrey Flea3), and an ARM-based tablet2 with its rear
camera controlled by the FCam API [Adams et al. 2010b]. Below
we discuss our results and applications implementation details.

6.1 Appearance-based HDR Acquisition

In this application, we allow the user to make tonal and color edits
on the viewfinder in order to drive HDR acquisition. We request the
image sensor to continuously cycle through a number of exposures.
These exposures are preliminary and are metered for the scene
based on the scene luminance histogram. The image processing is
performed in its own thread that runs asynchronously from the im-
age capture. In each iteration, the most recent frames are registered
by warping them via homographies, recovered from either sparse
image features or gyroscope trace, and blended into an HDR scene
luminance map [Reinhard et al. 2005] using the weights proposed
by Robertson et al. [1999]. The thread then converts the resulting
HDR image to LogLUV format, generates the descriptors for the
image patches, looks up the edit values for those descriptors in the
permutohedral lattice, and performs edge-aware upsampling of the
masks. The remaining tasks of applying the edits and tonemapping
the result (we use Reinhard et al.’s [2002] global tonemapping op-
erator) are executed in the GPU with fragment shaders. Table 1
summarizes the execution times.

Task Platform
x86 ARM

HDR blending 12.18 ms 48.46 ms
Patch descriptor computation 1.49 ms 18.37 ms

Lattice lookup 3.34 ms 12.92 ms
Domain transform 8.77 ms 24.64 ms

Appearance-based metering 1.79 ms 10.35 ms
GPU Processing 1.70 ms 44.38 ms

Total 29.27 ms 159.12 ms
RAW capture rate 20 FPS 10 FPS

Table 1: Timing of the viewfinder editing framework on a laptop
PC and a tablet at VGA resolution. The GPU processing consists of
LogLUV decoding, tonemapping, applying edits, and UI rendering.

During the editing session, the user may alter the tone, hue, or satu-
ration locally, or tweak the global tonemapping. Once the shutter is
actuated, we order the image sensor to capture high-resolution im-
ages at the exposure(s) chosen by our appearance-based metering.

1Intel Core i7-2760QM with NVIDIA Quadro 1000M GPU
2NVIDIA Tegra 3: quad-core Cortex-A9 CPU and ULP GeForce GPU

Evaluation. Using publicly available HDR datasets, we simu-
lated HDR capture with our appearance-based metering algorithm,
and compare the resulting tonemapped output with [Hasinoff et al.
2010], which optimizes for the minimum SNR of the raw luminance
data. As Figure 7 shows, the knowledge of the processing applied to
the HDR data after acquisition is crucial in optimizing overall qual-
ity, since it allows our metering algorithm to safely ignore regions
that will be saturated or too dark on the display. In contrast, Hasi-
noff’s method prescribes a considerably longer exposure in order to
match the SNR of the shadows with that of other regions. For this
comparison, we assumed a 12-bit sensor and simulated read noise
reported by [Granados et al. 2010] for a point-and-shoot camera.

Figure 7: Metering with a fixed time budget. Left: We simu-
lated an HDR stack capture and tonemapping with our appearance-
based metering, assuming the tonemapping shown. Our al-
gorithm chose to capture at (0.50, 9.96, 92.18 ms) for the
memorial dataset on the top, and (5.56, 55.31, 74.06 ms) for the
wardflower dataset on the bottom. Right: We solved for the
optimal exposures using Hasinoff’s method for the same time bud-
get and up to the same number of shots. The optimization yielded
(0.027, 1.70, 101.30 ms) and (0.70, 3.01, 131.87 ms) for the two
datasets. The tonemapped results generated from these exposures
are shown here. These results exhibit more noise in regions that
matter perceptually after tonemapping, compared to our results
on the left. While our metering emphasizes faithfully acquiring
regions that will maintain high contrast after tonemapping, Hasi-
noff’s method maximizes the worst per-pixel SNR of the raw radi-
ance, which causes much of the budget to be spent on the darkest
parts of the scene, which are eventually tonemapped to black. This
issue is aggravated by the very large dynamic range of the scene.

We also collected a high-frame-rate image sequence from which we
can simulate stack acquisition by integrating the frames appropri-
ately, with the intention of demonstrating the effect of scene and
camera motion on HDR photography. See Figure 8, in which we
controlled for the image quality. Our appearance-based metering
successfully captures both the shadows and the edited flowers to



the extent needed, avoiding excessive motion blur in the process,
whereas Hasinoff’s metering parameters introduce more noticeable
motion blur from the scene and leads to artifacts.

Figure 8: Metering for a dynamic HDR scene. The scene contains
flowers on a balcony swaying in the wind. Left: We simulated an
HDR stack capture and tonemapping with our appearance-based
metering, assuming the tonemapping shown. Our algorithm chose
to capture at (5.00 ms, 22.00 ms). Right: We solved for the lowest
total budget (85 ms) that would yield the same tonemapped output
quality for Hasinoff’s method, which is considerably longer than
our total (27.00 ms). The tonemapped output created from these
metering parameters is shown here. Note the halo and ghosting
artifacts stemming from motion blur in the scene is more apparent
on the right. We remark that the two simulated stack acquisitions
are based on a high-speed multiframe dataset, and correspond to
the same physical point in time.

All in all, existing methods that seek to optimize for the raw signal
would be more suitable for creating a very high-fidelity radiance
map for a static HDR scene. When the time budget is limited or
a lower-quality sensor is being used, knowing the post-processing
pipeline helps our metering algorithm deal with these limitations.
Empirical comparisons are given in Figure 1, in which we compare
against a histogram-based HDR metering method.

6.2 Appearance-based Focal Stack Acquisition

The lens module on many mobile devices is equipped with a voice
coil motor that can change the lens position very quickly. Exploit-
ing this feature, we stream images to our pipeline while repeat-
edly cycling through multiple focus positions, effectively acquir-
ing a “live” focal stack. Because changing the focus position also
slightly alters the field of view, we scale each frame appropriately
with a constant for which we calibrate beforehand. Then, the pro-
cessing thread coalesces the most recent stack of frames and builds
a depthmap and an all-focus image. In this step, the frames are reg-
istered to the most recent frame by analyzing the gyroscope trace.
The all-focus image is analogous to the HDR scene radiance map
in the HDR application, acting as the source for image patches for
selections, as described in Section 4.1. The rendering thread conti-
nously recomputes and displays the viewfinder output, obtained by
merging the registered focal stack slices as described in Section 5.2.

The result of such compositions are shown in Figure 9. We found
that for most practical scenes, local edits were crucial for producing
a pronounced reduction in depth of field. The chief reason is that
multiple objects at a meter away or farther (0.0− 1.0 diopters) will
have approximately equal-sized blur, since the circle of confusion
grows linearly with the depth disparity in diopters. Hence, global
edits cannot cause them to have distinctive blurs.

Lastly, producing a faithful all-focus image on a jerky camera is dif-
ficult because of imperfect registration will duplicate strong edges.
This can be quite jarring, so we disable image blending when the
camera is moving very fast, since the user cannot distinguish be-
tween the ghosting artifacts and the motion blur of the device itself.

6.3 Live Video Editing

Because the edit-propagation algorithm we have described is real-
time, it can be used to edit live HDR videos as they are filmed. This
obviates the need to revisit the videos afterwards and decode them
for processing. See Figure 10 for a demonstration. We also note
that while many existing edit propagation work on videos require
keyframes with user strokes every 20 frames or so, our method does
not; we trade off selection quality for robustness against scene and
camera motion.

Finally, Figure 11 shows additional results created with viewfinder
editing, demonstrating scenarios in which our framework can be
useful. Supplementary video provides more demonstrations.

6.4 Limitations

Because the edit-propagation algorithm is based on appearance,
our framework cannot distinguish similar but distinct objects, of-
ten forcing the user to select all or none of them. Using depth cues
or reconstructing the scene geometry may help with discriminating
objects with similar texture. User experience would also be im-
proved by tolerance to inaccurate strokes [Subr et al. 2013]. We
also found that specular objects can be difficult to track temporally,
as their appearance can change drastically at different orientations.

The quality of selection and edit masks during interaction is far
from perfect, albeit by a design choice. The goal was to provide
an approximately WYSIWYG experience during the viewfindering
phase to aid in composition and parameter selection, as well as to
engage the user in a novel photography or videography experience.
While the edit mask quality is improved via offline processing, in-
creased capacity and availability of computational power in mobile
cameras should close this gap in the future.

Next, when we blend multiple exposures to create a composite in
real time, scene and camera motion can lead to artifacts along ob-
ject boundaries. While camera motion can be combated with gyro-
scopes or vision-based algorithms as we do, scene motion requires
non-rigid registration, which is prohibitively expensive. However,
this limitation renders time-efficient stack acquisition even more
important. Note that we avoid registration artifacts in the viewfinder
by using edge-avoiding filtering across time (see Section 4.2).

We also found that bright outdoor conditions can produce glare on
the display and lower the perceivable contrast range, altering the
appearance of the edited image. However, we believe that this prob-
lem can be addressed to a large extent by recent advances in display
technology, such as OLED displays.

Lastly, neither platform (the PointGrey SDK nor the FCam imple-
mentation on the Tegra tablet) used in the paper fully supported
per-frame alteration of capture parameters, and as a result, the rate
at which our application fetched image frames was cut in a third.
The ability to alter capture parameters per-frame without loss of
frame rate is critical in stack photography applications.

7 Conclusion and Future Work

We have presented the first system that implements image editing,
stack composition, and tonemapping directly on a viewfinder, using
a fast edit propagation framework, and demonstrated how to exploit
the resulting WYSIWYG property to drive capture parameters in a
way that leads to less noise and/or less capture time. Our algorithms
are designed to handle streaming data, require no preprocessing,
and are fast enough to provide useful feedback on a mobile device,
for both the user and the camera control algorithms.



(a) (b) (c) (d)

Figure 9: Focus adjustment via viewfinder editing. In our focus editing application, we continuously sample the scene at several depths to
build a depthmap, from which the viewfinder is synthesized. (a): Before any user interaction, the viewfinder shows a regular image. (b): The
result of viewfinder editing, produced by acquiring a suitable focal stack and compositing the slices. On the top image, the user sharpened
the figurine and blurred the background; on the bottom image, the user sharpened the Lego figure. See the supplementary video for the user
interactions. (c): The edit mask produced for these compositions. Red corresponds to sharpening, and blue corresponds to blurring. (d): For
reference, here we show photographs taken with the same tablet, each focused on the respective subject. In the top row, note that the defocus
in the background is limited, whereas the user was able to attain the appearance of a much larger aperture with our system; in the bottom
row, a conventional camera is unable to replicate our nonphysical depth of field, in which objects at the same depth are defocused differently.

(a) (b) (c) (d) (e)

Figure 10: Edit propagation on a live video. (a): In this example featuring a faded volleyball, the user marks a region as selected, corre-
sponding to the ball’s stripes as shown. (b): The user then applies an edit to accentuate the color, restoring the unfaded look. (c-e): This
edit can be seen persisting through frames #150, #300, and #420 of a 30-fps video sequence, despite considerable motion of the ball between
frames and the resulting motion blur. See the supplementary video for the entire sequence.

For future work, we intend to re-examine aspects of the edit prop-
agation that were sacrificed for performance, such as explicit per-
frame tracking. A global coordinate system would provide more
discriminativeness, for example to select only one of several simi-
larly textured objects. We would like to mitigate issues inherent to
a handheld viewfinder, such as noise at high gain, motion blur, and
inaccurate user gestures. The descriptor could be improved to be
robust against lighting changes or specular materials.

Acknowledgements We thank the anonymous reviewers and the
NVIDIA Mobile Visual Computing team for their advice. Jongmin
Baek acknowledges Lucent-Alcatel Stanford Graduate Fellowship.
David Jacobs, Sung Hee Park, Sean Kim aided data collection.

References

ADAMS, A. B., BAEK, J., AND DAVIS, A. 2010. Fast high-
dimensional filtering using the permutohedral lattice. Computer
Graphics Forum 29, 2.

ADAMS, A. B., TALVALA, E., PARK, S. H., JACOBS, D. E.,
ET AL. 2010. The Frankencamera: An experimental platform
for computational photography. ACM Trans. Graph. 29, 4.

AGARWALA, A., DONTCHEVA, M., AGRAWALA, M., DRUCKER,
S., COLBURN, A., CURLESS, B., SALESIN, D., AND COHEN,
M. 2004. Interactive digital photomontage. ACM Trans. Graph.
23, 3.

AN, X., AND PELLACINI, F. 2008. Appprop: all-pairs appearance-
space edit propagation. ACM Trans. Graph. 27, 3.

BIE, X., HUANG, H., AND WANG, W. 2011. Real time edit prop-
agation by efficient sampling. Comp. Graphics Forum 30, 7.

CHEN, X., ZOU, D., ZHAO, Q., AND TAN, P. 2012. Manifold
preserving edit propagation. ACM Trans. Graph. 31, 6.

FARBMAN, Z., FATTAL, R., LISCHINSKI, D., AND SZELISKI, R.
2008. Edge-preserving decompositions for multi-scale tone and
detail manipulation. ACM Trans. Graph. 27, 3.

FARBMAN, Z., FATTAL, R., AND LISCHINSKI, D. 2010. Diffu-
sion maps for edge-aware image editing. ACM Trans. Graph. 29,
6.

FATTAL, R. 2009. Edge-avoiding wavelets and their applications.
ACM Trans. Graph. 28, 3.



(d)(c)(b)(a)

Figure 11: Additional results of viewfinder editing. The HDR composites without local edits are shown on the top for reference. Our results
are on the bottom. (a): The user desaturated all but two peppers on a countertop, and deepened the color of the green pepper. (b): The user
darkened the white statue to enhance the local contrast. Its geometry and texture are now more conspicuous. (c): The user added local edits
to brighten the indoor regions and darken the outdoors. (d): The user increased the brightness of the otherwise dimly lit corridor.

GALLO, O., TICO, M., MANDUCHI, R., GELFAND, N., AND
PULLI, K. 2012. Metering for exposure stacks. Computer
Graphics Forum 31, 2.

GASTAL, E. S. L., AND OLIVEIRA, M. M. 2011. Domain trans-
form for edge-aware image and video processing. ACM Trans.
Graph. 30, 4.

GASTAL, E. S. L., AND OLIVEIRA, M. M. 2012. Adaptive
manifolds for real-time high-dimensional filtering. ACM Trans.
Graph. 31, 4.

GRANADOS, M., AJDIN, B., WAND, M., THEOBALT, C., SEI-
DEL, H.-P., AND LENSCH, H. P. A. 2010. Optimal HDR re-
construction with linear digital cameras. IEEE Computer Vision
and Pattern Recognition, 215–222.

HASINOFF, S. W., AND KUTULAKOS, K. N. 2008. Light-efficient
photography. In European Conf. on Computer Vision, Springer.

HASINOFF, S. W., DURAND, F., AND FREEMAN, W. T. 2010.
Noise-optimal capture for high dynamic range photography. In
Computer Vision and Pattern Recognition, IEEE.

JACOBS, D. E., BAEK, J., AND LEVOY, M. 2012. Focal stack
compositing for depth of field control. Tech. Rep. 1, Stanford
Computer Graphics Laboratory, 10.

LEVIN, A., LISCHINSKI, D., AND WEISS, Y. 2004. Colorization
using optimization. ACM Trans. Graph. 23, 3.

LI, Y., ADELSON, E., AND AGARWALA, A. 2008. ScribbleBoost:
Adding classification to edge-aware interpolation of local image
and video adjustments. Computer Graphics Forum 27, 4.

LI, Y., JU, T., AND HU, S.-M. 2010. Instant propagation of sparse
edits on images and videos. Computer Graphics Forum, 7.

LIANG, C. K., CHEN, W. C., AND GELFAND, N. 2010. Touch-
tone: Interactive local image adjustment using point-and-swipe.
Computer Graphics Forum 29, 2.

LISCHINSKI, D., FARBMAN, Z., UYTTENDAELE, M., AND
SZELISKI, R. 2006. Interactive local adjustment of tonal val-
ues. ACM Trans. Graph. 25, 3.

LIU, L., CHEN, R., WOLF, L., AND COHEN-OR, D. 2010. Opti-
mizing photo composition. Computer Graphic Forum 29, 2.

MANTIUK, R., DALY, S., AND KEROFSKY, L. 2008. Display
adaptive tone mapping. ACM Trans. Graph. 27, 3.

NIK SOFTWARE, 2012. Snapseed | snap it. tweak it. love it. share
it. http://www.snapseed.com. Accessed: 12/11/2012.

RAGAN-KELLEY, J., ADAMS, A., PARIS, S., LEVOY, M., AMA-
RASINGHE, S., AND DURAND, F. 2012. Decoupling algo-
rithms from schedules for easy optimization of image processing
pipelines. ACM Trans. Graph. 31, 4.

REINHARD, E., STARK, M., SHIRLEY, P., AND FERWERDA, J.
2002. Photographic tone reproduction for digital images. ACM
Trans. Graph. 21, 3.

REINHARD, E., WARD, G., PATTANAIK, S., AND DEBEVEC, P.
2005. High Dynamic Range Imaging: Acquisition, Display, and
Image-Based Lighting. Morgan Kaufmann.

ROBERTSON, M. A., BORMAN, S., AND STEVENSON, R. L.
1999. Dynamic range improvement through multiple exposures.
In Int. Conf. on Image Processing, IEEE.

RUBINSTEIN, M., SHAMIR, A., AND AVIDAN, S. 2008. Improved
seam carving for video retargeting. ACM Trans. Graph. 27, 3.

SUBR, K., PARIS, S., SOLER, C., AND KAUTZ, J. 2013. Accurate
binary image selection from inaccurate user input. Computer
Graphics Forum 32, 2.

VAQUERO, D., GELFAND, N., TICO, M., PULLI, K., AND TURK,
M. 2011. Generalized autofocus. In Workshop on Applications
of Computer Vision, IEEE.

WINNEMÖLLER, H., OLSEN, S. C., AND GOOCH, B. 2006. Real-
time video abstraction. ACM Trans. Graph. 25, 3.

XU, K., LI, Y., JU, T., HU, S.-M., AND LIU, T.-Q. 2009. Effi-
cient affinity-based edit propagation using k-d tree. ACM Trans.
Graph. 28, 5.

http://www.snapseed.com

