
Lighting Deep G-Buffers: Single-Pass, Layered Depth Images
with Minimum Separation Applied to Indirect Illumination

Michael Mara Morgan McGuire David Luebke
NVIDIA

Direct + Ambient Direct + (1-AO) × Ambient + Radiosity + Mirror Rays

Figure 1: Left: Direct plus hemisphere ambient illumination in San Miguel, which has 6.5M triangles in 968 draw calls. Right: Real-time
approximate global illumination based on a two-deep G-buffer computed in a single scene geometry submission. At 1920×1080 on NVIDIA
GeForce TITAN, the single-pass two-deep G-buffer costs 33ms, which is 28% less than two single layers by depth peeling. Given the deep
G-buffer, all shading passes (direct, AO, radiosity, mirror) combined execute in 7ms.

Abstract

We introduce a new method for computing two-level Layered Depth
Images (LDIs) [Shade et al. 1998] that is designed for modern
GPUs. The method is order-independent, can guarantee a mini-
mum separation distance between the layers, operates within small,
bounded memory, and requires no explicit sorting. Critically, it also
operates in a single pass over scene geometry. This is important
because the cost of streaming geometry through a modern game
engine pipeline can be high due to work expansion (from patches
to triangles to pixels), matrix-skinning for animation, and the rel-
ative scarcity of main memory bandwidth compared to caches and
registers.

We apply the new LDI method to create Deep Geometry Buffers
for deferred shading and show that two layers with a minimum sep-
aration distance make a variety of screen-space illumination effects
surprisingly robust. We specifically demonstrate improved robust-
ness for Scalable Ambient Obsurance [McGuire et al. 2012b], an
extended n-bounce screen-space radiosity [Soler et al. 2009], and
screen-space reflection ray tracing. All of these produce results that
are necessarily view-dependent, but in a manner that is plausible
based on visible geometry and more temporally coherent than re-
sults without layers.

1 Introduction

Efficient hardware rasterization of triangles enables modern real-
time rendering. Rasterization excels in cases where surfaces with
primary visibility are sufficient to compute shading at every pixel.
In some cases it can be extended with more global information by

NVIDIA Technical Report NVR-2013-004, December 13, 2013.
c© 2013 NVIDIA Corporation. All rights reserved.

rasterizing another view. For example, a shadow map contains pri-
mary visibility information from the light source’s view.

Previous work has shown that multiple views, such as reflec-
tive shadow maps [Dachsbacher and Stamminger 2005] or ortho-
graphic depth peeled projections [Hachisuka 2005] can capture
enough global information to approximate some global illumina-
tion effects. However, when provided with only a single view, these
effects miss too much information to provide temporally coherent
results. The challenge is therefore to increase the efficiency of pro-
ducing multiple views while also extending the shading to operate
with as few views as possible.

Multipass rendering techniques have been popular over the past
decade. However, modern games are increasingly limited by the
cost of making multiple passes over the same geometry. Each pass
recomputes scene traversal, frustum culling, depth sorting, tessel-
lation, and transformations such as vertex-weighted skeletal ani-
mation. Submitting draw calls and changing graphics state also
incur overhead. Low-level APIs such as bindless OpenGL [Bolz
2009], AMD’s Mantle interface [AMD 2013], proprietary console
low-level APIs, and strategies such as vertex pulling [Engel 2013]
can mitigate this expense. In an informal survey [Brainerd 2013;
Bukowski 2013; McGuire 2013], we asked game developers to
measure the cost of the pre-rasterization portion of their rendering
pipeline. For games currently in development, they benchmarked
the net frame cost of rendering to a small 32×32 frame buffer to
minimize the impact of pixel shading. They reported that one sixth
to one third of the cost of rendering a view was spent in these scene
and geometry portions of the pipeline.

These observations motivate us to generate multiple views from
a single pass over the geometry. To do so, we turn to the Layered
Depth Image (LDI) introduced by Shade et al. [1998]. This captures
information about both primary and hidden layers of a single view,
thus enabling shading algorithms to extract more information from
a single pass. Previous research has investigated hardware warping
and rendering of LDIs [Popescu et al. 1998], and hardware-assisted

generation of LDIs through methods such as depth peeling [Everitt
2001] and k-buffers [Myers and Bavoil 2007]. The notion of an LDI
extends directly to other kinds of layered frame buffers. In particu-
lar, we create LDIs of Saito and Takahashi’s Geometry Buffers (G-
buffers) [?]. Single-layer G-buffers are commonly applied today for
deferred shading as pioneered by Deering et al. [1988]. A layered,
or Deep G-Buffer stores at each pixel of each layer the position, nor-
mal, and material parameters required for later shading. It can be
thought of as a frustum voxelization of the scene that has very high
resolution in camera-space x and y but extremely low resolution in
z. This data structure has previously been used for deferred shading
in the presence of transparency [Persson 2007; Chapman 2011]; we
extend it to global illumination and consider efficient generation.
Note that for some algorithms, such as ambient occlusion, this may
be simply a layered depth buffer from which position and approx-
imate normals can be reconstructed. In other cases, full shading
information is required to estimate the scattering of indirect light.

There must be some minimum separation distance between lay-
ers for a deep G-buffer with a small number of layers to be useful
for global illumination, as we show in the following section. With-
out this separation, fine local detail near the first layer prevents cap-
turing information from farther back in the scene. We provide the
first hardware algorithm to generate any kind of LDI, including a
deep G-buffer, with this minimum separation. Furthermore, the al-
gorithm achieves this in a single pass. We then show how to apply
these deep G-buffers to robustly approximate various global illu-
mination effects in real time, and contribute extensions of existing
screen-space lighting techniques of mirror reflection, radiosity, and
ambient occlusion. Our specific contributions are:

• Motivation for minimum separation
• The algorithm for generating LDIs with minimum separation

in a single hardware rendering pass over geometry
• Application of deep G-buffers to screen-space illumination,

using extensive reprojection and both spatial and temporal fil-
tering for robustness and coherence

• Evaluation of illumination quality due to deep G-buffers ver-
sus single-layer results

Throughout this work, we assume future hardware with an ef-
ficient geometry shader and hierarchical early depth test for lay-
ered framebuffers. The geometry shader and layered framebuffer
have previously suffered a chicken-and-egg problem: they are po-
tentially powerful features underutilized by today’s games because
the hardware implementations are unoptimized, and hardware ven-
dors have never had clear use cases to optimize for because they
are rarely used. This paper implicitly seeks to inform future de-
signs by presenting concrete and compelling new use cases. That
is, our techniques are hardware-friendly, but the hardware could be
improved to be friendlier to the techniques.

2 Related Work

Depth Peeling There are many techniques for capturing mul-
tiple layers at a pixel. Ordered by decreasing memory footprint,
these include clip-space voxelization [Schwarz 2012; Crassin and
Green 2012], the F-buffer [Mark and Proudfoot 2001] and A-
buffer [Carpenter 1984], ZZ-buffer [Salesin and Stolfi 1989], k-
buffers and other bounded A-buffer approximations [Lokovic and
Veach 2000; Myers and Bavoil 2007; Bavoil et al. 2007; Salvi
et al. 2011; Salvi 2013], frequency A-buffer approximations [Yuk-
sel and Keyser 2007; Sintorn and Assarsson 2009; Jansen and
Bavoil 2010], and depth peeling [Everitt 2001; Bavoil and Myers
2008].

Of these, depth peeling is particularly interesting for rendering
effects that receive primary benefit from two or three depth layers at

a) Primary b) Traditional c) Minimum separation

Figure 2: Traditional single depth peel gives little information in
areas of high local depth complexity. Minimum separation depth
peel reveals the next major surface, which captures more global
scene information.

a pixel because it has the smallest memory footprint. Previous work
shows that low-frequency screen-space global illumination effects
are among those that gain significant quality and robustness from
even one additional layer such as a depth peel [Shanmugam and
Arikan 2007; Ritschel et al. 2009; Vardis et al. 2013].

Minimum Separation A state of the art, single depth peel pass
returns the second-closest surface to the camera at each pixel. This
can be implemented by with two passes over the scene geome-
try [Bavoil and Myers 2008], or with a single pass that uses pro-
grammable blending [Salvi 2013].

Despite the theoretical applications of a small number of depth
layers, for complex and production assets, we observe that the
second-closest surface often provides little additional information
about the scene. That is because non-convex geometry, decals, and
detail models often create excess local detail that obscure the broad
contours of the scene under peeling. For example, in the Sponza
scene shown in figure 2, a depth peel reveals only the second fold
of the column’s decorative moulding at the top and not the full red
tapestry.

One solution to this local detail problem is to introduce a mini-
mum separation distance between the first and second layers. That
is, modifying the depth peel to select only fragments that are at least
a constant distance beyond primary visible surfaces and in front of
all other surfaces. This is trivial to implement in a two-pass depth
peel but impossible to accomplish in bounded memory using pro-
grammable blending, since until all surfaces have been rasterized
each pixel has no way of knowing what the minimum depth for the
second layer is. That is, programmable blending allows rendering
a k-buffer in a single pass, but we don’t need a k = 2 buffer for this
application: we need two particular layers from a k = ∞ buffer.

Indirect Light We’ve already referenced several screen-space in-
direct light methods. Our method is most directly related to Ritschel
et al.’s [2009] directional occlusion and Vardis et al.’s [2013] AO
approximation. Both previous techniques use multiple views and
note the performance drawbacks of doing so. We make a straight-
forward extension to handling multiple layers and then show how to
factor the approximations to compute arbitrary radiosity iterations
and specular reflection and incorporate McGuire et al.’s [2012b]
scalable gathering to make large gather radii and multiple iterations
practical. Our GI applications are also closely related to previous
image-space gathered illumination [Dachsbacher and Stamminger
2005; Soler et al. 2009].

2.1 Key GPU Concepts

We briefly describe the key GPU texture concepts used by our al-
gorithms, in the language used by the OpenGL abstraction. In

OpenGL, camera-space “depth” or “z” inconsistently refers to a
hyperbolically-encoded value from the projection matrix on the in-
terval [-1, 1] (gl FragCoord.z), that value remapped to [0, 1] (when
reading from a depth sampler), an actual z coordinate that is nega-
tive in camera space, or a z coordinate that is positive. For simplic-
ity, we use “depth” and “z” interchangeably as a value that increases
monotonically with distance from the camera along the view axis
and assume the implementer handles the various mapping discrep-
ancies in the underlying API.

A 2D MIP level (we only use 2D in this paper) is a 2D array
of vector-valued (“RGBA” vec4) pixels. A 2D texture is an array
of MIP-levels. Element m contains 4−m as many pixels as element
0. A texture array is an array of textures whose index is called a
layer. A framebuffer is an array of texture arrays that are bound as a
group for writing. The texture array index in a framebuffer is called
an attachment point and is described by an enumeration constant
(e.g., GL COLOR ATTACHMENT0, GL DEPTH ATTACHMENT), which we
abbreviate as C0...Cn or Z. Note that there are many “offscreen”
framebuffers in a typical rendering system, and they are indepen-
dent of the “hardware framebuffer” used for display. A pixel inside
framebuffer Ft for frame number (“time”) t is fully addressed by:

Ft [attachment].layer(L).mip(m)[x,y] (1)

Geometry is encoded in attribute buffers, e.g., as indexed triangle
lists, and modified by transformations during tessellation, hull, ver-
tex, and geometry shaders. In this paper Tt denotes the frame time-
dependent portion of that transformation, which for rigid bodies is
the modelview projection matrix. The geometry shader selects the
layer of the bound framebuffer’s textures to write to independently
for each emitted primitive. We use this to rasterize variations of an
input triangle against each layer of a framebuffer during peeling.

3 Single-Pass with Minimum Separation

Listing 1 is pseudocode for generating multiple layers of frame
t from geometry Gt under transformation Tt via multi-pass depth
peeling. When ∆z = 0, this code is the classic depth peel [Bavoil
and Myers 2008]. When ∆z > 0, it becomes our straightforward
extension of multipass peeling that guarantees a minimum separa-
tion. The arbitrary shading function S can compute radiance to the
eye, geometry buffers, or any other desired intermediate result. It
is of course possible (and often preferable) to implement this algo-
rithm using two separate frame buffers and no geometry shader. We
present this structure to make the analogy and notation clear when
moving to a single pass.

Listing 2 is our more sophisticated algorithm for directly gen-
erating a two-deep layered depth image with minimum separation
in single pass over the geometry. It renders to both layers simulta-
neously. To do so perfectly, it requires an oracle that predicts the
depth buffer’s first layer before that buffer has been rendered. We
now describe four variants of our algorithm that approximates this
oracle in different ways.

a) Delay: Add one frame of latency (which may already be
present in the rendering system, e.g., under double or triple buffer-
ing) so that the transformations for the next frame Tt+1 are known at
rendering time. This enables perfect prediction of the next frame’s
first depth layer. Frame t reads (in line 16) from the oracle com-
puted for it by the previous frame, and generates the oracle for
frame t + 1 (in lines 9, 18, and 19) to satisfy the induction. The
primary drawback of this variant is that it requires a frame of la-
tency. Reducing latency, even back to single-buffering by racing
the GPU’s scanout, is increasingly desirable for some applications
such as virtual and augmented reality.

1 setDepthTest(LESS)
2 bindFramebuffer(Ft)
3 clear()
4

5 submit Gt with:
6 geometry shader(tri):
7 emit Tt (triangle) to layer 0
8 pixel shader(x,y,z):
9 return S(x,y,z)

10

11 submit Gt with:
12 geometry shader(tri):
13 emit tri to layer 1
14 pixel shader(x,y,z):
15 if (z > Ft [Z].layer(0).mip(0)[x,y]+∆z): return S(x,y,z)
16 else: discard the fragment

Listing 1: Pseudocode for a baseline two-pass LDI/deep G-buffer
with minimum separation ∆z generation using depth peeling. Our
method improves on this baseline. The code processes geometry Gt
using an arbitrary shading/G-buffer write function S of the sampled
fragment position x,y,z. The output resides in two layers of the
texture arrays in Ft .

1 setDepthTest(LESS)
2 bindFramebuffer(Ft)
3 clear()
4

5 submit Gt with:
6 geometry shader(tri)
7 emit Tt (tri) to layer 0
8 emit Tt (tri) to layer 1
9 if (VARIANT == Delay) || (VARIANT == Predict):

10 emit Tt+1(tri) to layer 2
11

12 pixel shader(x,y,z):
13 switch (layer):
14 case 0: // First layer; usual G−buffer pass
15 return S(x,y,z)
16

17 case 1: // Second G−buffer layer: choose the comparison texel
18 if (VARIANT == Delay) || (VARIANT == Predict):
19 L = 2 // Comparison layer
20 C = (x,y,z) // Comparison texel
21 else if (VARIANT == Previous):
22 L = 0; C = (x,y,z)
23 else if (VARIANT == Reproject):
24 L = 0; C = (xt−1,yt−1,zt−1)
25

26 if (zC > Ft−1[Z].layer(L).mip(0)[xC,yC]+∆z): return S(x,y,z)
27 else: discard the fragment
28

29 case 2: // Predict Ft+1[Z].layer(0).mip(0); no shading
30 return // We only reach this case for Delay and Predict

Listing 2: Our new single-pass deep G-buffer generation with min-
imum separation ∆z.

b) Previous: Simply use the previous frame’s first depth layer as
an approximation of the oracle. The quality of the approximation
decreases as scene velocities (including the camera’s) increase. In
practice, this may be acceptable for three reasons. First, errors will
only manifest in the second layer, not in visible surfaces. Second,
the errors are only in the minimum separation value. The second
layer still represents only surfaces that are actually in the scene and

2n
d

L
ay

er
D

iff
.f

ro
m

D
el

ay

(a) Delay (b) Last Frame (c) Predict (d) Reproject

Figure 3: Top: Shaded images of the second layer, generated under each of the four algorithm variants, while rotating the camera erratically in
Sponza, behind one of the corner pillars. Bottom: The diff of the top row images with a ground truth second layer generated through two-pass
depth peeling. The Delay variant is equivalent to ground truth, since we have a perfect oracle. Under rotation (or fast lateral motion), the
Last Frame variant is prone to high error, in this case, for example, it completely peels past the leftmost red banner even though the right part
of the banner shows up in the ground truth version. The Predict variant is an improvement over Delay if the prediction is good. In this case,
under erratic camera rotation, it fairs poorly, overpeeling in much of the same area as Last Frame, and underpeeling (and thus just duplicating
the first layer) in other areas, including the bottom of the red banner. The Reprojection variant fairs better than either Last Frame and Predict,
with only a small amount of error at some depth discontinuities.

are at the correct positions at time t. Third, a viewer may not notice
errors in the resulting image since they will only occur near objects
in motion. Motion overrides perception of precise image intensi-
ties and even shape [Suchow and Alvarez 2011], and furthermore,
the artifacts may themselves be blurred in the image if motion blur
effects are applied.

c) Predict: Predict Tt+1 using the physics and animation sys-
tem’s velocity values, or computing them by forward differences
from the previous and current frame’s vertex positions. When the
velocity available is accurate, this gives perfect results like variant
A but without latency. When the velocity is inaccurate, the errors
and mitigating factors from the Previous variant apply.

d) Reproject: Use the previous frame’s layer 0 depth and use
reverse reprojection on each fragment to peel against it. This is a
variant on reverse reproduction caching [Nehab et al. 2007]. We
propagate the previous frame’s camera-space positions through the
system to the vertex shader, and use it to compute the screen coordi-
nates and depth value of the fragment in the previous frame’s depth
buffer. We are essentially propagating visibility a frame forward in
time. This method is susceptible to reprojection error around sil-
houette edges, but has the added benefits over the Predict variant of
not requiring a third depth layer and always having accurate veloci-
ties. Since this method requires the previous frame’s camera-space
positions, it can increase bandwidth and skinning costs. However,
many production systems already have this information available
in the pixel shader, for use in effects such as screen-space motion
blur [McGuire et al. 2012a].

Figure 3 shows fully shaded output from each of the four variants
for a frame of animation from Sponza, along with differences from
the Delay version, which gives ground truth. The Previous variant,
and the Predict variant when prediction fails, can yield errors over
large portions of the screen. The Reproject variant localizes error
to small portions of silhouette edges in non-pathological scenarios.

4 Applications

There are many potential applications of a deep G-buffer, including
global illumination, stereo image reprojection, depth of field, trans-
parency, and motion blur. We evaluated adaptations of screen-space
global illumination methods to accept deep G-buffers as input with
the goal of increasing robustness to occlusion. Screen-space am-
bient obscurance as a term for modulating environment map light
probes is currently widely used in the games industry, so we begin
there.

Recognizing that the derivation of ambient occlusion is a subset
of that of single-bounce radiosity, we generalize the AO algorithm
to radiosity. We observe despite the popularity and apparent suc-
cess of screen-space ambient occlusion, screen-space radiosity is
currently uncommon. We hypothesize that this is because comput-
ing radiosity from a single layer or view is not effective, and that
the deep G-buffer can makes it practical. Multiple-bounce radiosity
requires many samples to converge, so we use temporal smoothing
and reverse reprojection to obtain those samples while only incur-
ring cost equivalent to computing a single bounce per frame.

We note that radiosity computed on a deep G-buffer is similar
to that computed by Reflective Shadow Maps [Dachsbacher and
Stamminger 2005], which use a second view from the light’s per-
spective. The major differences are that by working in the cam-
era’s space we can amortize the cost of work already performed
in a deferred-shading pipeline and compute higher-order effects in-
volving objects visible to the viewer but not the light. We speculate
that objects visible (or nearly visible) to the viewer are the most
important for plausible rendering.

Finally, we investigate screen-space mirror reflection tracing. As
future work we plan to investigate glossy reflection by modifying
the reflection rays to use pre-filtered versions of the screen or mod-
ifying the BSDF in the radiosity algorithm, depending on the angu-
lar width of the desired glossy lobe.

4.1 Ambient Occlusion

We extend the Scalable Ambient Obscurance [McGuire et al.
2012b] algorithm to take advantage of the deep G-buffer data struc-
ture and make some additional quality improvements. The addi-
tional quality improvements are motivated by the increased robust-
ness; they address sources of error that are dominated by undersam-
pling of the scene in the original algorithm.

Collectively, our changes produce more plausible shading falloff,
avoids the viewer-dependent white halos from the previous work,
and at the same number of samples reduce noise in the final result.

The method begins by extending the MIP computation accept the
deep G-buffer as input. That pass outputs a single texture map with
multiple MIP levels of the depth buffer. The MIP levels are com-
puted by rotated-grid sampling (as in the original SAO) of camera-
space z values. To amortize texture fetch address calculation, at
each MIP level we pack the two depth layers into two color chan-
nels of an RG32F texture.

From the projection matrix and these z values the algorithm
reconstructs camera-space positions. McGuire et al. recovered
camera-space surface normals from this MIP-mapped depth buffer.
To better match the increased quality from multiple layer we revert
to passing an explicit camera-space normal buffer for the first layer.
We do not compute MIP maps of normals or require a second layer
because only normals at full resolution of surfaces visible in the
final image appear in the algorithm.

The net solid-angle weighted Ambient Visibility (1 - AO) at a
camera-space point X in the layer 0 buffer from N samples is

AV (X)=

max

0,1−

√√√√ π

N

N

∑
i=1

max(AO(X ,Ri),AO(X ,Gi),0)

σ

,

(2)
where σ is the intensity scale (σ = 1.0 is a default), Ri is the ith
sample from the R channel and Gi is the corresponding G channel
value. That is, we use the previous work’s algorithm but consider
the union of occlusion from both layers.

Ambient Occlusion at point X with normal n̂X due to a sample
at Y , where~v = Y −X (all in camera space coordinates) is

AO(X ,Y) =
(

1−~v ·~v
r2

)
·max

(
~v · n̂X −β√
~v ·~v+ ε

,0
)
. (3)

This intermediate value can be negative due to the falloff factor as
a result of amortizing the max against zero out into equation 2.

4.2 Radiosity

n̂X

n̂Y

!̂

X

Y

Viewer	

Soler et al. [2009] introduced a screen-space
radiosity approximation. We derive a radio-
metrically correct form-factor computation
for such a method, note the sources of error,
extend it to work with our deep G-buffer,
and then give performance and aesthetically
motivated alterations for a practical algo-
rithm.

The total irradiance E(X) incident at
patch X with normal n̂X due to the radiosity B(Y) exiting each un-
occluded patch Y with normal n̂Y and area AY is [Cohen and Green-
berg 1985]

E(X)≈ ∑
all visible Y

AY B(Y)
max(−ω̂ · n̂Y ,0)max(ω̂ · n̂X ,0)

π||Y −X ||2
, (4)

where ω̂ = Y−X
||Y−X || . The rightmost fraction is the form factor and

both E and B have units of W/m2. This approximation is accurate

when ||Y −X ||2 � AY , i.e., when ω̂ is nearly constant across the
patches.

From the irradiance, an additional scattering event at X with re-
flectivity ρ gives the outgoing radiosity at X ,

B(X) = E(X) ·ρX ·boost(ρX), (5)

where choosing boost(ρX) = 1 conserves energy. BSDF scaling by

boost(ρ) =
maxλ ρ[λ]−minλ ρ[λ]

maxλ ρ[λ]
, (6)

where λ = wavelength or “color channel”, selectively amplifies scat-
tering from saturated surfaces to enhance color bleeding. This is
useful for visualization in our results. It is also aesthetically de-
sirable in some applications, e.g., this was used in the Mirror’s
Edge [Halén 2010] video game. Anecdotally, an art professor in-
forms us that it is a common practice by artists to artificially in-
crease color bleeding in paintings as a proximity cue and to increase
scene coherence.

The initial radiosity B(Y) at each patch Y is simply the Lamber-
tian shading term under direct illumination (with boosting). Each
patch is represented by the depth and normal at a pixel. Its area AY
is that of the intersection of the surface plane through the pixel with
the frustum of the pixel (we simplify this below). To compute mul-
tiple scattering events, simply apply equations 4 and 5 iteratively.

4.2.1 Sources of Error

There are three sources of error in our radiosity approximation
when applied to a deep G-buffer:

1. It overestimates reflection by assuming all Y are visible at X .

2. It underestimates reflection because surfaces not in the frame
buffer are not represented.

3. Some patches may be close together, violating the distance
assumption of equation 4.

We limit the first source of error by sampling only within a fixed-
radius (e.g., 2m) world-space sphere about X . We limit the second
one by considering two depth layers and including a guard band
around the viewport. We mitigate the third source by clamping the
maximum contribution of a patch.

Surfaces parallel to eye rays, backfacing to the camera, and be-
hind the camera remain unrepresented in the two-layer framebuffer.
This error is inherent in our approach and represents a tradeoff of
using a fast depth peel instead of a robust but slower voxelization.

Although it is possible to construct arbitrarily bad cases, we hy-
pothesize that the surfaces represented in a two-layer framebuffer
with a guard band may be the most perceptually important surfaces
to represent. That is because those are the surfaces observed by the
viewer as well as those likely to be revealed in adjacent frames. For
a complex environment, the viewer may be more sensitive to illu-
mination interactions between observed objects than between those
not currently in view.

Finally, an image without GI has error because it underapprox-
imates lighting. The key questions for an application are whether
some plausible dynamic global illumination with bias is better than
none at all and whether the artifacts of this approach are acceptable
in a dynamic context.

4.3 Spatial Sampling Pattern

For both ambient occlusion and radiosity, we choose sample taps as
described in McGuire et al. [2012b] but optimize the parameters to
minimize discrepancy in the pattern. We place s direct samples in

a spiral pattern, spatially varying the orientation about each pixel.
Let (x,y) be the pixel coordinate of the patch we are shading, and
let r′ be the screen-space sampling radius. Sample i is taken from
texel (x,y)+hiûi, where

Let αi = 1
s (i+0.5)

hi = r′αi; θi = 2παiτ +φ (7)
ûi = (cosθi,sinθi). (8)

We rotate the entire pattern for each output pixel (x,y) by angu-
lar offset φ to obtain relatively unique samples at adjacent pixels,
which will then be combined by a bilateral reconstruction filter.
Constant τ is the number of turns around the circle made by the
spiral.

The original Scalable Ambient Obscurance paper reported man-
ually chose τ = 7 and s= 9. We present a general method for gener-
ating good values of τ for any number of sample taps. Discrepancy,
as introduced to the graphics literature by Shirley [Shirley 1991], is
widely used as a measure of how well distributed a set of sample
points are over the unit square.

If you have a set of points on the unit square, you can define the
local discrepancy of any subrectangle as the absolute value of the
difference between the area of the subrectangle and the number of
sample points inside the subrectangle divided by the total number
of points (i.e., how accurately you can estimate an integral on the
subrectangle using only the sample points.) The discrepancy is then
defined as the supremum of the local discrepancies of all rectangles
with one corner at the origin. This definition allows for a simple
O(n2) algorithm to compute the discrepancy. To make discrepancy
robust to 90-degree rotations of the sampling patterns, the definition
can be changed to be the supremum of the local discrepancies of all
subrectangles at any location.

We can still compute that relatively efficiently (since this is an
offline process) by modifying the simple algorithm, which makes
it O(n4): loop over all pairs of points that share their coordinates
with points in the set (the x and y values of a given point can come
from separate points in the sample point set), calculate the local
discrepancy of the box defined by the pair, with and without the
edges included, and take the maximum of them all.

We make a natural modification of discrepancy for point sets on
the unit circle by replacing the boxes with annular sectors. Because
the sampling pattern we use is a simple spiral of radius r, samples
are distributed with density 1/r. Thus, instead of sampling with re-
spect to area, one should sample with respect to weighted area for
a density distribution of 1/r. For an annular sector this is the prod-
uct of the radial length and the angle subtended and is equivalent to
sampling on the side of a cylinder.

We optimized the pattern by exhaustively searching for the
discrepancy-minimizing integer values of τ for given sample count.
The optimal values for 1 through 99 samples are given in listing 3.
We format that matrix as a C array for convenience in copying it to
an implementation.

We note that the manually-tuned constant from the original paper
coincides with our minimal discrepancy values. That paper appar-
ently chose its constants well by eye, but manual tuning would not
be practical for the larger parameter space that we consider.
We choose the MIP level mi of the sample tap:

mi = blog2(hi/q)c (9)

Constant q is the screen-space radius increment at which we switch
MIP levels. We chose it to maintain texture cache efficiency instead
of sample accuracy.

As is common practice, we compensate for the relatively small
number of samples with a bilateral reconstruction blur. We extend
the previous work’s reconstruction with a normal weight and plane
weight to prevent blurring across most surface discontinuities.

1 // tau[n-1] = optimal number of spiral turns for n samples

2 int tau[] = {1, 1, 2, 3, 2, 5, 2, 3, 2,

3 3, 3, 5, 5, 3, 4, 7, 5, 5, 7,

4 9, 8, 5, 5, 7, 7, 7, 8, 5, 8,

5 11, 12, 7, 10, 13, 8, 11, 8, 7, 14,

6 11, 11, 13, 12, 13, 19, 17, 13, 11, 18,

7 19, 11, 11, 14, 17, 21, 15, 16, 17, 18,

8 13, 17, 11, 17, 19, 18, 25, 18, 19, 19,

9 29, 21, 19, 27, 31, 29, 21, 18, 17, 29,

10 31, 31, 23, 18, 25, 26, 25, 23, 19, 34,

11 19, 27, 21, 25, 39, 29, 17, 21, 27};

Listing 3: Discrepancy-minimizing number of turns τ .

4.4 Using Information from Previous Frames

Our algorithm incorporates information from previous frames for
radiosity in two ways. First, it estimates multibounce radiosity by
converging to n-bounces over n frames. Second, it applies tempo-
ral smoothing to reduce sampling noise using a moving average of
previous frames.

While our AO gives high quality results under a small number
of samples and 1-bounce radiosity is acceptable, to compute n-
bounce radiosity one needs a very large number of samples since
each bounce integrates a full hemisphere. To reduce the number of
samples required for a visually compelling result, we instead com-
pute radiosity incrementally, advancing by one scattering event per
frame. We track separately the direct illumination result and (infi-
nite) additional bounces, reverse-reprojecting visibility tests so that
they can be performed against historical values and applying a tem-
poral envelope to limit propagation of error. Of course, AO can be
temporally filtered as well to reduce the number of samples for that
pass even further, as was done in Battlefield 3. We did not find this
necessary in our experimental system where the radiosity computa-
tion dominates the AO.

4.4.1 Multibounce Radiosity

Our algorithm gathers radiosity due to the 2nd and higher order
scattering from the previous frame’s final indirect irradiance buffer
Et−1, reverse-reprojecting sample locations to account for object
and camera motion, and using it to calculate the initial radiosity
buffer to feed into equation 4. This allows n bounces for the cost of
one per frame. We scale previous bounces by p ∈ [0,1] so that they
decay over time when lighting conditions change. This decay in-
tentionally underestimates illumination, which is compensated for
with a dim environment map ambient term. Multiple iterations
quickly converge, see figure 4.

The deep G-buffers store information about points that are un-
seen in the final image but which may contribute to radiosity. We’ve
already shown the impact of considering direct illumination’s con-
tribution from each layer to 1-bounce radiosity. For multi-bounce
radiosity, the contribution of second-and-higher order bounces from
the second layer is less significant than the contribution of direct il-
lumination. However, it can make a perceptible impact on the final

Figure 4: From left to right: Direct illumination only, one bounce
indirect, two bounce indirect, converged multiple bounce indirect.

a) Propagating first layer b) Deep propagation

Figure 5: The two subfigures above depict Warehouse with multi-
bounce radiosity computed on a deep G-buffer. The scene has high
depth complexity and experiences direct illumination through sky-
lights that scatters off the red floor. The callout boxes show a detail
of the third aisle from the camera, visible through shelves. Gather-
ing from two layers but propagating radiosity only within the first
layer fails to light objects visible in the distance in the figure on
the left. Propagating radiosity on both layers improves result by
lighting even objects in the background, as shown on the right.

image in scenes with high depth variance and high depth complex-
ity, see figure 5.

Our implementation is bandwidth limited by the samples gath-
ered. Using the same samples to simultaneously compute indirect
irradiance on two layers thus incurs no observable runtime cost be-
cause the increase in write bandwidth is proportionally negligible
and the compute cost is hidden under the memory cost.

Gathering the second through nth light bounce from a repro-
jected frame is robust because disoccluded regions (the pixels for
which reverse-reprojection does not find a corresponding sample in
the previous depth buffer) do not appear directly in screen space.
The irradiance gather filter is somewhat similar to a huge blur ker-
nel, so unless a disoccluded region affects a large fraction of the
entire image its impact on the result is limited, see figure 6.

Maintaining two layers of course reduces the impact of disoc-
clusions significantly, making it less likely that one will affect a
sizable portion of the entire image. Figure 7 extends the previous
San Miguel example to show that under typical motion, where ob-
jects traverse a small percentage of the frame per picture in scenes
with moderate depth complexity, the second layer can often fill the
disocclusions.

4.4.2 Temporal Filtering

Our algorithm reverse-reprojects and blends Et−1 by factor α into
the current frame final Et buffer at each pixel (i.e., without gather-
ing) to compute an exponential weighted moving average that re-
duces sample variance. When reverse reprojection fails at a pixel,
we simply zero the weight for the previous frame. With a suffi-
ciently high α value, varying the tap locations does not result in
temporal flickering, and can greatly improve the smoothness of the
results, even for very low number of taps. See figure 15.

4.5 Reflection Ray Tracing

Sousa et al. [2011] describe an efficient method for screen-space
ray tracing with few samples. We apply the same idea by simply ray
marching along the reflection ray through both depth buffer layers
and treating each pixel as having the minimum scene thickness. If
the ray hits a texel in the depth buffer layers, then we use that texel’s

Scene Source Tris Chars Meshes
Op925 Battlefield 3 2.8M 24 50
Dockside Call of Duty: Black Ops 2 2.3M 0 13
Sponza Real-time benchmark 650k 0 56
San Miguel Offline benchmark 5.9M 0 1196
Grass turbosquid.com 180k 0 6
Office g3d.sf.net 10k 0 17
Warehouse turbosquid.com 640k 32 89
Old City turbosquid.com 1.15M 0 100
Kitchen turbosquid.com 370k 0 77

Table 1: Test scenes used in this paper.

outgoing radiance as the incident radiance at the mirror surface and
apply the source pixel’s scattering function. If the ray fails to hit a
surface before some arbitrary maximum distance (we use 4 meters
in all of our results), then we fall back to the environment map value
in that direction. Using MIP-maps to speed the tracing in the same
manner as for AO samples, one can easily sample tens of texels per
pixel.

Listing 4 in the appendix gives our full GLSL shader implemen-
tation for the screen-space ray trace portion of this computation. In
one location it uses a compile-time FOR-loop pragma to expand the
two layer test in a convenient way (this could then be extended to
multiple layers easily). If applying our code without our prepro-
cessor (which is available as open source in the G3D Innovation
Engine), the loop must be unrolled by hand.

5 Results

We report representative experimental results that particularly con-
sider the following issues for single-pass generation of deep G-
buffers (which we have taken to mean “with minimum separation
between layers” throughout this paper), and their application to
global illumination:

1. Despite targeting hypothetical future hardware, how does
single-pass deep G-buffer generation performance compare
with depth peeling on a current high-end GPU? (table 2)

2. What is the performance impact of deep G-buffer input versus
a single layer for global illumination? (table 3)

3. Can as few as two layers make a significant contribution to
the appearance of scenes with high depth variance and com-
plexity? (figures 8, 9, 18, 19)

4. How sensitive are complex scenes to having a single
minimum-separation constant? (figure 9 and videos)

5. How do varying parameters affect the temporal filtering? (fig-
ures 15,17)

6. What is the impact on global illumination of disocclusion un-
der reprojection during camera or object motion? How sig-
nificant is the second layer at mitigating artifacts? (figures 6,
7)

7. Deep G-buffers are inherently view dependent. How well can
one light large areas of complex scenes that receive no direct
illumination? (figures 1, 11, 12, 14, 19)

5.1 Scenes

We constructed the test scenes described in table 1 from video
game, stock (e.g., TurboSquid.com), and benchmark assets. We

(a) Et−1 after 100 frames without camera motion. (b) Et−1 after 100 frames at a different camera position and reprojected to match the
camera from (a). Bright yellow shows disocclusions, which we intentionally do not fill
from the second layer in this experiment.

(c) Et computed from direct illumination and Et−1. The indirect irradiance is converged,
so this is identical to (a).

(d) Et computed from direct illumination and the reprojected Et−1 in (b), treating dis-
occluded pixels as black. Gathering during the indirect irradiance pass distributes the
impact of discocclusion.

(e) Difference of (c) and (d) scaled by 5. This is the error introduced by reprojection. (f) Final shaded image using the reprojected result from (d).

Figure 6: Because the irradiance operator has a wide kernel, the net impact of disocclusions can be low. In these images we approximated
indirect irradiance in disoccluded regions as zero to exacerbate the error; using an ambient constant instead further limits their impact.

(a) Dark green: disocclusions filled by the second layer. Yel-
low: remaining disocclusions after considering both layers.

(b) Indirect irradiance buffer Et computed from (a). (c) Remaining error (×5) in the indirect irradiance buffer Et

Figure 7: Reprojection error decreases by using the second layer.

Radiosity AO Ray trace
Scene (Good) (Fast)
Sponza 6.7/10.0 ms 3.9/5.9 ms 2.6/2.7 ms N/A
Dockside 7.4/14.1 3.9/6.0 3.2/3.4
Op925 8.0/13.5 4.1/5.7 2.5/2.7
Old City 6.9/12.1 3.8/5.5 2.7/2.9
Kitchen 5.1/7.3 3.3/4.9 2.9/3.0 1.3/1.6 ms
San Miguel 9.6/12.8 3.6/4.9 2.5/2.7 1.0/1.2

Table 3: Time for screen-space passes of various illumination oper-
ations at 1920×1080 on NVIDIA GeForce Titan.

added skeletally-animated meshes to model the GPU workload of
not only the characters but also dynamic trees, machines, vehicles,
and other objects (e.g., windmill sails, gears) found in a typical
scene, as well as rigid bodies such as crates.

The two actual game scenes are representative of game geometry
for quality evaluation but not for performance. That is because the
way that the developers exported them for us created an unrepresen-
tative number of draw calls. Dockside contains many small meshes
with simplified materials, making it overly expensive to submit to
the GPU. Op925 is a single giant draw call with no materials, mak-
ing it overly inexpensive.

San Miguel has a large number of high-definition materials, and
contains a reasonable number of meshes for that content. However,
that content is substantially more complex than typical real-time
assets, so it is a good predictor of future, but not current, real-time
workloads.

5.2 Single-Pass Layer Generation

Table 2 shows the time to compute the layered representation. The
new single-pass methods are faster than depth peeling, that is, less
than twice as expensive as submitting the scene geometry twice.
With prediction the cost increases, a topic that we discuss in our
conclusions.

5.3 Global Illumination Effects

Table 3 reports the time to compute ambient occlusion, radios-
ity, and specular reflection by screen-space ray tracing for our test
scenes. Each entry contains two times separated by a slash. The
first time is for shading using a single layer of input. The second
time is for shading using a two-layer deep G-buffer. In most cases,
amortization allows image fidelity to increase disproportionally to
rendering time, so the second time is often much less than twice the
cost of the first. We only report ray trace time for Kitchen and San
Miguel because the other scenes do not contain specular surfaces.

5.3.1 Ambient Occlusion

Figure 8 shows the difference between one depth layer and two lay-
ers with a minimum separation for computing AO. With a single
layer, occlusion is underestimated at all areas highlighted in red in
the left image. With a second layer but no minimum separation,
it is still missing at the areas highlighted in yellow. The right im-
age shows the final two-layer result. The difference is even more
striking in motion, as shown in the supplementary video results.
There, the missing occlusion appears as a light halo around depth
discontinuities that is revealed as objects move past each other due
to motion parallax.

Even with only two layers, we observe that AO is temporally sta-
ble in the presence of high depth complexity and gives good results
for a variety of minimum separation constants for scenes like Grass
(figure 9).

a) Single-Layer AO b) Deep G-buffer AO

Figure 8: Ambient occlusion in the Op925 parking garage from
the game Battlefield 3. Both multiple layers and minimum separa-
tion are required for a robust result shown in (b). Red: occlusion
under-estimated by a single layer. Yellow: AO still underestimated
if using two layers without a minimum separation.

5.3.2 Radiosity

Figures 10, 11, 12, 13, and 14 demonstrate the quality of screen-
space radiosity, both with and without multiple bounces. In all
cases screen-space radiosity is a substantial quality improvement
over flat ambient or environment map indirect terms.

Figure 15 demonstrates the effectiveness of temporal filtering
at removing high frequency noise in a static environment, while
the supplementary videos demonstrate its effectiveness at remov-
ing temporal flicker in dynamic environments. Temporal filtering
is susceptible to certain artifacts, including erroneous lighting from

1-Layer 2-Layer G-Buffer via...
Scene G-Buffer Depth Peel Our ‘Previous’ Our ‘Reproject’ Our ‘Predict’ and ‘Delay’
Sponza 4.5 ms 9.6 ms 8.4 ms 8.4 ms 10.5 ms
Dockside 12.7 26.4 19.4 19.6 26.0
Op925 4.2 9.0 11.7 11.7 22.5
Kitchen 3.4 6.5 5.8 5.8 8.1
Old City 9.9 22.0 15.3 15.5 20.8
San Miguel 25.1 51.6 33.1 33.4 60.1
Grass 1.6 3.8 4.0 4.0 6.9
Office 0.4 1.3 0.7 0.7 1.1
Warehouse 9.3 16.4 13.0 13.4 17.4

Table 2: Comparison of the time to compute a single G-buffer to methods for producing a two-layer deep G-buffer, measured on NVIDIA
GeForce Titan at 1920×1080.

Figure 9: Deep G-buffer AO using only two layers remains surpris-
ingly coherent under motion, even for high depth complexity (see
video results). It is also relatively insensitive to the exact minimum
separation constant.

past lighting environments (see figure 16), and ghosting from re-
production error (see figure 17). In both cases the artifact can be
mitigated by choosing relatively low values of α; all images and
videos using temporal filtering in the paper and its supplements use
α ≤ 0.9 unless specifically demonstrating possible artifacts.

Using a deep G-buffer adds significant robustness to screen-
space radiosity, specifically in mitigating severe underestimates of
indirect light, as seen in figure 18 and figure 19.

5.3.3 Reflection

Figure 20 shows screen space reflection of trees in a lake with a two-
layer deep G-buffer, rendered with a 100-tap ray march through the
depth buffer for both layers. The ripples in the lake are displaced
geometry, not a normal map or distortions of a separately rendered
image. Figure 21 shows a detail of the lake taken from near the base
of the thick tree trunk. When rendered with a single layer, areas of
high depth complexity miss reflected surfaces that are captured in
the second layer (as shown in the center image).

Figure 22 demonstrates the gameplay impact of robust reflection.
A character is walking through a starbase. The reflective crates in
(a) use one layer of screen space reflection, so they can only reflect
objects that are visible to the camera. Adding a second layer in
(b) allows the crates to reflect objects around the corner, including
the approaching monster which won’t be visible to the camera for
several frames, as shown in (c). One-layer screen-space reflection
is a rendering trick to make objects look shinier; two-layers makes
it a tactical tool for players.

Environment Map Indirect Screen-space Radiosity

Figure 10: Screen-space radiosity can capture simple dynamic il-
lumination phenomena well compared to a static environment map
probe. We show a completely unlit room with a door to a very
bright adjacent door as the door closes through multiple frames of
animation.

(a) No temporal filtering. (b) Temporal filtering with α = 0.9.

Figure 15: Temporal filtering smoothes the noise due to undersampling in (a), producing the result in (b) without loss of spatial high-
frequencies. The top row are the final indirect irradiance buffers, the bottom row are the final images. Both sets of images were produced
with 3 taps per pixel per frame, with the taps randomly rotated each frame.

a) Reflection with a single G-buffer layer b) The second layer captures important detail c) A new view from around the corner.

Figure 22: Screen-space mirror reflection tracing is more robust with two layers. In this case, the monster around the corner does not appear
in the shiny crates when using a single layer for reflection. The deep G-buffer’s second layer captures it, which would be important for
gameplay.

Figure 11: Top: Sponza with direct illumination and ambient oc-
clusion of an environment probe, representative of typical real-time
lighting today. Bottom: Replacing the environment light probe with
screen-space radiosity brings out color bleeding and increases light-
ing contrast.

6 Conclusions

We’ve introduced single-pass deep G-buffer generation and demon-
strated its viability even on today’s hardware. Under our assump-
tion of a faster geometry stage (and the implicit assumption of more
efficient layered framebuffer rendering in the future), this technique
will perform radically better and we hope that work such as this will
present compelling use cases for the co-development of such hard-
ware and software. We’ve also explored some applications to robust
screen-space approximation of indirect illumination, putting some
previous work and screen-space GI ideas that are currently topical
in the field into a traditional radiometric framework and showing
how deep G-buffers improve their sampling.

The three elements of our title are all essential for this appli-
cation: multiple layers increase robustness, but must be gener-
ated with minimum separation, and single-pass generation is es-
sential for performance. Screen-space GI methods are too viewer-
dependent for most scenes without both multiple layers and sepa-
ration between them, and generating multiple layers or views in is
not viable for many applications without a single-pass method like
the one we describe.

All of our single pass methods can generalize from 2 to N layers
of a G-buffer, but the Prediction Variant requires rendering 2N−1
layers per frame (N− 1 being depth-only). The Reprojection (and
inferior Last Frame) methods require rendering only N layers.

Interesting future work includes applications of single-pass deep
G-buffers or color buffers to post-processed motion blur, depth of
field, and reprojection for nearby views. Reprojection is partic-
ularly interesting for the case of reducing latency in cloud-based
rendering and in rapidly generating stereo image pairs for virtual
reality.

Figure 12: Top: 1-bounce radiosity (p = 0) with a spotlight on the
green banner in Sponza. Bottom: The converged result using p = 1.

We were surprised by the image quality possible from only
screen-space information, since screen-space input obviously de-
pends on the viewer and misses much of the information about the
scene. We originally hypothesized that world-space ray tracing or
light probes would be required to supplement the screen-space data
for visually compelling results. We now find that the screen-space
data combined with static environment maps may suffice for current
game standards. We speculate that one reason that deep screen-
space techniques work well is that the lighting is consistent with
what the viewer currently sees (and is about to see due to layers and
guard bands). That is, the results are self-consistent even though
they are not consistent with the true model, for which humans are
likely unable to anticipate correct complex light transport.

A natural question is whether including a reflective shadow
map [Dachsbacher and Stamminger 2005] in the gather pass from
the direct illumination would justify increasing the cost of shadow
map generation. Shadow rendering typically receives a throughput
boost in hardware up to 300% because it is depth-only, avoiding the
cost of launching fragment shader threads as well as the bandwidth
and computation cost of shading. Deep G-buffer generation also
performs some additional overdraw compared to a normal geome-
try buffer pass, however it operates at a point in the pipeline that
does not have such an extremely optimized alternative and is often
at lower resolution than a shadow map. We think that the cost of
rendering a reflective shadow map will likely be justified and plan
more experiments evaluating the impact on robustness.

Consider deep G-buffer generation and screen-space techniques
in the context of the gaming industry’s current target platforms.
Many of today’s important midrange gaming platforms, including
mobile devices and recent game consoles (e.g., the Playstation4),
do not have the computational power for true dynamic global illu-
mination. Therefore we consider it possible that screen-space tech-
niques like those that we’ve demonstrate will become pervasive and
continue to dominate through the end of the decade. Screen-space

Figure 13: Top: 1-bounce radiosity (p = 0) in San Miguel. Bottom:
The converged result using p = 1.

AO and some screen-space reflection have already followed this
arc. Single-pass deep G-buffer generation on a current game con-
sole may not be desirable in the way that it will likely soon be on
newer GPUs, but we expect that even with two-pass depth peel-
ing or a single layer screen-space GI may soon become a common
approximation.

Looking to higher-end platforms and farther out in time, we ex-
pect approaches like voxel cone tracing and photon mapping to be-
come viable for real-time graphics. Per-pixel path tracing may even
become viable. However, true world-space GI algorithms inher-
ently do not scale well and have high variability in frame times.
That is why even offline film rendering heavily employs render
caches, compositing, and screen-space post-processing. So, true GI
methods are perhaps most interesting for real-time in cases where
they operate at reduced spatial resolution and complexity can be
bounded. In parallel with that observation, we also note that the
advent of hardware tessellation and displacement mapping did not
make older methods such as Blinn’s bump and texture mapping
obsolete–instead, those techniques are used for fine-scale detail
while more accurate methods manage larger scales. Connecting
these two arguments, we speculate that over a decade from, now
true GI will operate at something like half-meter scale and tech-
niques like screen-space AO and GI will still be employed for the
finer scales. Using multiple depth layers to keep those fine-scale
results robust will then likewise continue to be important.

Acknowledgements

We thank John Hughes for helping us work through the radiometric
derivation of radiosity, Frank Meinl and Guillermo M. Leal Llaguno
for their 3D models, and Guedis Cardenas for rigging some of the
scenes. The publicly-distributable models used in our experiments
are available from http://graphics.cs.williams.edu/data;
the others are from TurboSquid and the named games.

Figure 14: Dockside from the Call of Duty: Black Ops 2 game,
shown with only low-frequency textures. From top to bottom: Di-
rect illumination, single-bounce radiosity, and converged multiple
bounce radiosity.

Figure 16: Sponza with a spot light that has just moved from the
banner to the ground, rendered with a single bounce (p = 0). Left:
α = 0.99; the strong green bounce lighting from the previous light-
ing environment is a prominent artifact because α is too large and
prevents the result from adapting to the new lighting conditions.
Right: α = 0.9; most of the erroneous lighting is gone.

http://graphics.cs.williams.edu/data

Figure 17: Animation frame from San Miguel in which the camera
rapidly orbits the table. Left: α = 0.98 creates ghosting artifacts
due to reprojection error in temporal filtering. Right: α = 0.9 re-
duces the ghosting artifacts. This value is still higher than we would
recommend for most scenes.

Figure 18: Top: Radiosity in Sponza using a single G-buffer. Much
of the color bleeding onto the floor is missing because the input
is too dependent on the viewpoint. Bottom: Improved radiosity
using a deep G-buffer due to the second layer capturing additional
information about the scene.

Figure 19: Top: Warehouse, looking down an aisle. Sunlight passes
through skylights and scatters off the red floor, tinting the boxes
and shelves. Middle: Looking through a shelf across an aisle, using
only a single layer. The indirect light from the floor is incorrectly
absent. Bottom: A deep G-buffer captures the floor, which does not
have primary visibility. The illumination is more consistent with
the alternative viewpoint in the top row.

Figure 20: Screen-space reflection from a two-layer deep G-buffer
in Lake.

Figure 21: Left: Reflection with only one layer. Center: With both
layers. Right: The difference, showing the errors corrected by the
second layer.

References

AMD, 2013. Mantle and Radeon R9 press release, 10.
http://amd.com/us/press-releases/pages/amd-unleashes-r9-2013oct07.aspx.

BAVOIL, L., AND MYERS, K. 2008. Order independent transparency with
dual depth peeling. Tech. rep., NVIDIA.

BAVOIL, L., CALLAHAN, S. P., LEFOHN, A., COMBA, JO A. L. D., AND
SILVA, C. T. 2007. Multi-fragment effects on the gpu using the k-buffer.
In I3D’07, ACM, New York, NY, USA, 97–104.

BOLZ, J., 2009. OpenGL bindless extensions.
http://developer.download.nvidia.com/opengl/tutorials/bindless graphics.pdf.

BRAINERD, W., 2013. Game engine profiling results on playstation4 at
activision maine, October. Personal communication.

BUKOWSKI, M., 2013. Game engine profiling results on nvidia geforce 670
at vicarious visions, October. Personal communication.

CARPENTER, L. 1984. The A-buffer, an antialiased hidden surface method.
SIGGRAPH’84 18, 3 (Jan.), 103–108.

CHAPMAN, J., 2011. Deferred rendering, transparency & alpha blending,
January.

COHEN, M. F., AND GREENBERG, D. P. 1985. The hemi-cube: a radiosity
solution for complex environments. SIGGRAPH’85 19, 3 (July), 31–40.

CRASSIN, C., AND GREEN, S. 2012. Octree-Based Sparse Voxelization
Using The GPU Hardware Rasterizer. CRC Press.

DACHSBACHER, C., AND STAMMINGER, M. 2005. Reflective shadow
maps. In I3D’05, ACM, New York, NY, USA, 203–231.

DEERING, M., WINNER, S., SCHEDIWY, B., DUFFY, C., AND HUNT, N.
1988. The triangle processor and normal vector shader: A vlsi system for
high performance graphics. SIGGRAPH Comput. Graph. 22, 4 (June),
21–30.

ENGEL, W., Ed. 2013. Introducing the Programmable Vertex Pulling Ren-
dering Pipeline. CRC Press, 21–38.

EVERITT, C. 2001. Interactive order-independent transparency. Tech. rep.,
NVIDIA.

HACHISUKA, T. 2005. High-quality global illumination rendering using
rasterization.

HALÉN, H., 2010. Style and gameplay in the Mirror’s Edge, July. SIG-
GRAPH 2010 Course Stylized Rendering in Games.

JANSEN, J., AND BAVOIL, L. 2010. Fourier opacity mapping. In I3D’10,
ACM, New York, NY, USA, I3D ’10, 165–172.

LOKOVIC, T., AND VEACH, E. 2000. Deep shadow maps. In SIG-
GRAPH’00, ACM Press, New York, NY, USA, 385–392.

MARK, W. R., AND PROUDFOOT, K. 2001. The F-buffer: a rasterization-
order fifo buffer for multi-pass rendering. In Graphics Hardware, ACM,
New York, NY, USA, 57–64.

MCGUIRE, M., HENNESSY, P., BUKOWSKI, M., AND OSMAN, B. 2012.
A reconstruction filter for plausible motion blur. In Proceedings of the
ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games,
ACM, New York, NY, USA, I3D ’12, 135–142.

MCGUIRE, M., MARA, M., AND LUEBKE, D. 2012. Scalable ambient
obscurance. In HPG’12.

MCGUIRE, M., 2013. Game engine profiling results on nvidia geforce 660
at unknown worlds, October. Personal communication.

MYERS, K., AND BAVOIL, L. 2007. Stencil routed a-buffer. In ACM
SIGGRAPH 2007 sketches, ACM, New York, NY, USA.

NEHAB, D., SANDER, P. V., LAWRENCE, J., TATARCHUK, N., AND
ISIDORO, J. R. 2007. Accelerating real-time shading with reverse re-
projection caching. In Proceedings of the 22Nd ACM SIGGRAPH/EU-
ROGRAPHICS Symposium on Graphics Hardware, Eurographics Asso-
ciation, Aire-la-Ville, Switzerland, Switzerland, GH ’07, 25–35.

PERSSON, E., 2007. Deep deferred shading, November. Blog post,
http://www.humus.name/index.php?page=3D&ID=75.

POPESCU, V., LASTRA, A., ALIAGA, D., AND NETO, M. D. O. 1998.
Efficient warping for architectural walkthroughs using layered depth im-
ages. In IEEE Visualization, 211–215.

RITSCHEL, T., GROSCH, T., AND SEIDEL, H.-P. 2009. Approximating
dynamic global illumination in image space. In I3D’09, ACM, New
York, NY, USA, 75–82.

SALESIN, D., AND STOLFI, J. 1989. The ZZ-buffer: A simple and efficient
rendering algorithm with reliable antialiasing. In PIXM’89, 415–465.

SALVI, M., MONTGOMERY, J., AND LEFOHN, A. 2011. Adaptive trans-
parency. In HPG’11, ACM, New York, NY, USA, 119–126.

SALVI, M., 2013. Pixel synchronization: solving old graphics problems
with new data structures. SIGGRAPH Courses: Advances in real-time
rendering in games.

SCHWARZ, M. 2012. Practical binary surface and solid voxelization with
Direct3D 11. In GPU Pro 3, W. Engel, Ed. A K Peters/CRC Press, Boca
Raton, FL, USA, 337–352.

SHADE, J., GORTLER, S., HE, L.-W., AND SZELISKI, R. 1998. Layered
depth images. In SIGGRAPH’98, ACM, New York, NY, USA, 231–242.

SHANMUGAM, P., AND ARIKAN, O. 2007. Hardware accelerated ambient
occlusion techniques on GPUs. In I3D’07, ACM, New York, NY, USA,
73–80.

SHIRLEY, P. 1991. Discrepancy as a quality measure for sample distribu-
tions. In In Eurographics ’91, Elsevier Science Publishers, 183–194.

SINTORN, E., AND ASSARSSON, U. 2009. Hair self shadowing and trans-
parency depth ordering using occupancy maps. In I3D’09, ACM, New
York, NY, USA, 67–74.

SOLER, C., HOEL, O., ROCHET, F., AND HOLZSCHUCH, N. 2009. A
fast deferred shading pipeline for real time approximate indirect illumi-
nation. Tech. rep., Institut National de Recherche en Informatique et en
Automatique.

SOUSA, T., KASYAN, N., AND SCHULZ, N. 2011. Secrets of CryENGINE
3 graphics technology. In SIGGRAPH ’11 Courses, ACM, New York,
NY, USA.

SUCHOW, J. W., AND ALVAREZ, G. A. 2011. Motion silences awareness
of visual change. Current Biology 21, 2, 140 – 143.

VARDIS, K., PAPAIOANNOU, G., AND GAITATZES, A. 2013. Multi-view
ambient occlusion with importance sampling. In I3D’09, ACM, New
York, NY, USA, 111–118.

YUKSEL, C., AND KEYSER, J. 2007. Deep opacity maps. Tech. rep.,
Department of Computer Science, Texas A&M University.

A Ray Tracing Implementation

Listing 4 is our GLSL implementation of ray-scene intersection
against the surface defined by the deep G-buffer’s depth layers, im-
plemented by ray marching. The interesting parameters are:

• depthBuffer01 Camera-space linear Z floating-point buffer,
with R = layer 0 and G = layer 1.

• clipInfo Clipping plane information: (z f == −inf) ?
vec3(z n, −1.0f, 1.0f) : vec3(z n ∗ z f, z n − z f, z f), where
the near and far plane constants z n and z f are both negative
values.

• jitterFraction A number between 0 and 1 used to offset the
ray randomly at each pixel.

• distance The maximum distance to trace. On return, the ac-
tual distance traced.

• hitTexCoord The [0, 1] texture coordinate in the depth buffer
of the hit location.

• which Index of the layer hit.

The function returns true if something was hit before the maximum
distance or limiting number of iteration steps and false otherwise.

1 bool castRay2(vec3 csOrigin, vec3 csDirection,
2 mat4 projectionMatrix, sampler2D depthBuffer01,
3 vec2 depthBufferSize, vec3 clipInfo,
4 float jitterFraction, int numSteps,
5 const float layerThickness, inout float distance,
6 out vec2 hitTexCoord, out int which) {
7

8 // Current point on the reflection ray in camera space
9 vec3 P = csOrigin;

10

11 // Camera space distance for each ray−march step
12 float stepDistance = distance / numSteps;
13 float rayBumpDistance = 0.02;
14

15 // Off screen
16 hitTexCoord = vec2(−1, −1);
17

18 // Amount that P increments by for every step
19 vec3 PInc = csDirection ∗ stepDistance;
20

21 P += PInc ∗ (jitterFraction + 0.5) + epsilon ∗ csDirection;
22

23 int s = 0;
24 for (s = 0; s < numSteps; ++s) {
25 // Project the trace point P into texture space.
26 // Note that the projection matrix maps to [−1, 1]
27 // coordinates after homogeneous division
28 vec4 temp = projectionMatrix ∗ vec4(P, 1.0);
29

30 // texture space P: Homogeneous division and remap to [0,1]
31 vec2 tsP = (vec2(temp.x, temp.y) / temp.w) ∗ 0.5 + vec2(0.5);
32

33 // Pixel space P
34 ivec2 psP = int2(depthBufferSize ∗ tsP);
35

36 // Camera space z of the background at each layer
37 vec2 sceneZ = texelFetch(depthBuffer01, psP, 0).rg;
38

39 // This is the depth range that the ray covers at this sample
40 float intervalStartRayZ = P.z − PInc.z ∗ 0.5;

41 float intervalEndRayZ = P.z + PInc.z ∗ 0.5;
42

43 float rayZMin = min(intervalStartRayZ, intervalEndRayZ);
44 float rayZMax = max(intervalStartRayZ, intervalEndRayZ);
45

46 vec2 sceneZMin = sceneZ − layerThickness;
47 vec2 sceneZMax = sceneZ;
48

49 // Use a macro instead of a real FOR loop because we
50 // need to use a BREAK statement below
51 # for (int layer = 0; layer < 2; ++layer)
52 // If the point on the ray is behind the scene point at the same
53 // location... (As an optimization, break out of the containing
54 // loop here, but don’t handle the result until outside the loop)
55 if ((rayZMax >= sceneZMin[(layer)]) &&
56 (rayZMin <= sceneZMax[(layer)]) &&
57 (sceneZ[(layer)] > −99999)) {
58 // Hit...or off screen
59 hitTexCoord = tsP;
60 which = (layer);
61 break;
62 }
63 # endfor
64

65 P += PInc;
66 }
67

68 distance = (s + jitterFraction) ∗ stepDistance;
69 return (hitTexCoord.y >= GUARD BAND FRACTION Y) &&
70 (hitTexCoord.x >= GUARD BAND FRACTION X) &&
71 (hitTexCoord.x <= 1.0 − GUARD BAND FRACTION X) &&
72 (hitTexCoord.y <= 1.0 − GUARD BAND FRACTION Y);
73 }

Listing 4: Screen-space ray tracing code in GLSL for two depth
buffer layers.

	Introduction
	Related Work
	Key GPU Concepts

	Single-Pass with Minimum Separation
	Applications
	Ambient Occlusion
	Radiosity
	Sources of Error

	Spatial Sampling Pattern
	Using Information from Previous Frames
	Multibounce Radiosity
	Temporal Filtering

	Reflection Ray Tracing

	Results
	Scenes
	Single-Pass Layer Generation
	Global Illumination Effects
	Ambient Occlusion
	Radiosity
	Reflection

	Conclusions
	Ray Tracing Implementation

