
A Decomposition for In-place Matrix Transposition

Bryan Catanzaro
NVIDIA Research

bcatanzaro@nvidia.com

Alexander Keller
NVIDIA Research
akeller@nvidia.com

Michael Garland
NVIDIA Research

mgarland@nvidia.com

Abstract
We describe a decomposition for in-place matrix transposi-
tion, with applications to Array of Structures memory ac-
cesses on SIMD processors. Traditional approaches to in-
place matrix transposition involve cycle following, which
is difficult to parallelize, and on matrices of dimension m
by n require O(mn logmn) work when limited to less than
O(mn) auxiliary space. Our decomposition allows the rows
and columns to be operated on independently during in-
place transposition, reducing work complexity to O(mn),
given O(max(m,n)) auxiliary space. This decomposition
leads to an efficient and naturally parallel algorithm: we have
measured median throughput of 19.5 GB/s on an NVIDIA
Tesla K20c processor. An implementation specialized for the
skinny matrices that arise when converting Arrays of Struc-
tures to Structures of Arrays yields median throughput of
34.3 GB/s, and a maximum throughput of 51 GB/s.

Because of the simple structure of this algorithm, it is par-
ticularly suited for implementation using SIMD instructions
to transpose the small arrays that arise when SIMD proces-
sors load from or store to Arrays of Structures. Using this
algorithm to cooperatively perform accesses to Arrays of
Structures, we measure 180 GB/s throughput on the K20c,
which is up to 45 times faster than compiler-generated Ar-
ray of Structures accesses.

In this paper, we explain the algorithm, prove its correct-
ness and complexity, and explain how it can be instantiated
efficiently for solving various transpose problems on both
CPUs and GPUs.

Categories and Subject Descriptors E.1 [Data Struc-
tures]: Arrays; F.2.1 [Analysis of Algorithms and Problem
Complexity]: Numerical Algorithms and Problems

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
PPoPP ’14, February 15–19, 2014, Orlando, FL, USA.
Copyright c© 2014 ACM 978-1-4503-2656-8/14/02. . . $15.00.
http://dx.doi.org/10.1145/2555243.2555253

1. Introduction
In-place matrix transposition is a well-studied problem, with
papers being published on the subject from 1959 [11] until
the present day [1]. In-place transposition for square ma-
trices is straightforward, but for non-square matrices, the
algorithms are more involved. Traditional approaches to in-
place transposition operate by following cycles in the per-
mutation induced by the transposition. Since storing cycle
descriptors requires O(mn) space, cycle following in-place
algorithms with auxiliary storage requirements less than
O(mn) elements have work complexity O(mn logmn), due
to the need to recompute the cycles as the transposition pro-
ceeds [3].

In this paper, we show how the in-place transposition
problem can be decomposed into independent row-wise and
column-wise permutations. By decomposing the transposi-
tion, we improve the algorithmic complexity by perform-
ing smaller permutations out-of-place. With O(max(m,n))
auxiliary storage, our algorithm requires O(mn) work, and
requires no cycle following. Our algorithm works on arrays
linearized in row-major or column-major order.

In contrast to traditional cycle following algorithms,
which can be difficult to parallelize due to poorly distributed
cycle lengths, our decomposed transposition is straightfor-
ward to parallelize, with perfect load balancing due to the
regular structure of the decomposition.

Additionally, our algorithm enables efficient SIMD trans-
positions on the very small arrays that arise from vector
memory operations on SIMD processors. When each lane
of a SIMD processor requests a vector of data, the straight-
forward implementation accesses elements of the vectors
sequentially, which results in strided memory accesses and
dramatically reduced memory throughput. There are several
techniques that can ameliorate this problem, and our algo-
rithm creates a new alternative. Firstly, the data structure it-
self can be transposed in memory, which removes strided
memory accesses. This technique is burdensome to program-
mers, and cannot be applied in many circumstances, such as

This research was, in part, funded by the U.S. Government. The views and
conclusions contained in this document are those of the authors and should
not be interpreted as representing the official policies, either expressed or
implied, of the U.S. Government. Approved for Public Release, Distribution
Unlimited.

when data structures are dictated due to interface constraints
or algorithmic requirements. Alternatively, programmers ac-
cess the data in transposed order to ensure vectorized mem-
ory accesses, performing transpositions in on-chip memory
to route the data to each SIMD lane. This technique is ef-
fective, but allocating on-chip memory in order to perform
this transpose out-of-place can be difficult, especially when
scarce on-chip memory resources are occupied with other
tasks. Our transposition algorithm adds a new technique:
perform the transposition in-place in the register file, without
requiring additional on-chip memory.

This paper makes three main contributions. Firstly, we
present and prove a new algorithm for in-place matrix trans-
position. We show it has optimal work complexity with
reduced auxiliary storage requirements compared to tradi-
tional algorithms. Secondly, we discuss several practical
implementations of this algorithm, on both parallel CPUs
and GPUs, including optimizations to improve cache per-
formance. Finally, we present an implementation that allows
SIMD processors to efficiently perform arbitrary length vec-
tor memory loads and stores, without relying on scarce on-
chip memory resources for an out-of-place transpose.

2. Decomposition
The core of our technique is a decomposition for in-place
matrix transposition that reduces the overall transposition
into a series of independent row and column permutations.

Traditional approaches to in-place transposition view the
problem as a single, monolithic permutation of elements
in an array. In contrast, our algorithm retains the natural
view of the data as a two-dimensional array rather than as a
linearized one-dimensional structure, operating on the rows
and columns of the original array, until the data movement
has been completed for the transposition. The data is then
reinterpreted as a two-dimensional array with transposed
dimensions.

Viewing the data as a two-dimensional array, the transpo-
sition can be accomplished in two directions, which we call
“Rows to Columns” (R2C) and “Columns to Rows” (C2R).
The R2C and C2R transposes are inverses of each other.
These two permutations are illustrated in Figure 1.

We are not the first to view transposition in this man-
ner, for example, see the description of Columnsort in
Leighton [4], where the C2R permutation is called “trans-
pose”, and the R2C permutation is called “untranspose”.

0	
 1	
 2	
 3	
 4	
 5	
 6	
 7	

8	
 9	
 10	
 11	
 12	
 13	
 14	
 15	

16	
 17	
 18	
 19	
 20	
 21	
 22	
 23	

0	
 3	
 6	
 9	
 12	
 15	
 18	
 21	

1	
 4	
 7	
 10	
 13	
 16	
 19	
 22	

2	
 5	
 8	
 11	
 14	
 17	
 20	
 23	

Rows to Columns

Columns to Rows

Figure 1: C2R and R2C transpositions, m = 3, n = 8

We begin by discussing out-of-place versions of these
transpositions, and showing how they relate to traditional
matrix transposition.

Define the standard row-major linearization, where lrm(i, j)
creates a linear index from a row and column index, and
irm(l) and jrm(l) decompose a linear index into a row and
column index, respectively.

lrm(i, j) = j + in (1)

irm(l) =

⌊
l

n

⌋
(2)

jrm(l) = l mod n (3)

With the observation that lrm(irm(l), jrm(l)) = l.
And the standard column-major linearization:

lcm(i, j) = i+ jm (4)

icm(l) = l mod m (5)

jcm(l) =

⌊
l

m

⌋
(6)

With the observation that lcm(icm(l), jcm(l)) = l.
To define the R2C and C2R transpositions, we will use

the following four functions:

s(i, j) = lrm(i, j) mod m (7)

c(i, j) =

⌊
lrm(i, j)

m

⌋
(8)

t(i, j) =

⌊
lcm(i, j)

n

⌋
(9)

d(i, j) = lcm(i, j) mod n (10)

We then define the transpositions:

AC2R[i, j] = A[s(i, j), c(i, j)] (11)

AR2C [i, j] = A[t(i, j), d(i, j)] (12)

Equations 11 and 12 define the transpositions in terms of
gather operations. Since the C2R and R2C transpositions are
inverses of each other, and scatter and gather transpositions
are inverses of each other, we can also define the transposi-
tions in terms of scatter operations:

AC2R[t(i, j), d(i, j)] = A[i, j] (13)

AR2C [s(i, j), c(i, j)] = A[i, j] (14)

For example, consider the element with value 16 high-
lighted in Figure 1, where m = 3, n = 8. On the left, this
element is located at i = 2, j = 0, After the R2C trans-
position, the element is located at i′ = 1, j′ = 5. Look-
ing at Equation 14, we can compute the destination indices:
i′ = s(i, j) = (j + in) mod m = (0 + 2 · 8) mod 3 = 1,
and j′ = c(i, j) =

⌊
j+in
m

⌋
=
⌊
0+2·8

3

⌋
= 5.

Now we show the connection between the R2C and C2R
transposes and the linearized transposition problem.

Theorem 1. The C2R transpose implements transposition
for row-major arrays, and the R2C transpose implements
transposition for column-major arrays.

Proof. To prove this, we will examine linearized versions
of a matrix A and its transpose AT . We will show that the
row-major linearization of AT is equivalent to the row-major
linearization of AC2R.

By the definition of transposition,

AT [i, j] = A[j, i] (15)

Since AT has dimensions n × m, its indexing must be
adjusted slightly. Define

iTrm(l) =

⌊
l

m

⌋
= jcm(l) (16)

jTrm(l) = l mod m = icm(l) (17)

These equations are just Equations 2 and 3 with dimensions
swapped.

Let Arm be a row-major linearized representation of ar-
ray A, indexed with l ∈ [0,mn). Then

AT
rm[l] = Arm[lrm(jTrm(l), iTrm(l))], (18)

where we have linearized AT and A, using the definition of
transposition.

As defined in Equation 11,

AC2R[i, j] = A[s(i, j), c(i, j)] (19)

Linearizing,

AC2R
rm [l] = Arm[lrm(s(irm(l), jrm(l)), c(irm(l), jrm(l)))]

(20)
However:

s(irm(l), jrm(l)) = lrm(irm(l), jrm(l)) mod m

= l mod m = jTrm(l)

c(irm(l), jrm(l)) =

⌊
lrm(irm(l), jrm(l))

m

⌋
=

⌊
l

m

⌋
= iTrm(l)

And so we can substitute to show

AC2R
rm [l] = Arm[lrm(jTrm(l), iTrm(l))] (21)

Therefore, AC2R
rm = AT

rm. Symmetric reasoning shows
AR2C

cm = AT
cm.

Theorem 2. Swapping dimensions m and n before perform-
ing the transpose, the C2R transpose implements transposi-
tion for column-major arrays, and the R2C transpose imple-
ments transposition for row-major arrays.

Proof. Defining versions of lcm, irm, and jrm where m and
n have been swapped:

lscm(i, j) = i+ jn = lrm(j, i)

isrm(l) =

⌊
l

m

⌋
= iTrm(l)

jsrm(l) = l mod m = jTrm(l)

The R2C transpose induces the following permutation:

AR2C
cm [l] = Acm[lcm(jTcm(l), iTcm(l))]

= Acm[lcm(irm(l), jrm(l)]

If we swap m and n first, the resulting index expression is

lscm(isrm(l), jsrm(l)) = lrm(jsrm(l), isrm(l))

= lrm(jTrm(l), iTrm(l))

Since this index expression is the same as in Equation 21, we
see that if m and n are swapped before the transposition, the
R2C permutation transposes a row-major array. Symmetric
reasoning shows that swapping m and n before the trans-
position allows the C2R permutation to transpose a column-
major array.

We have described both the C2R and R2C transpositions
and shown how they can both be used to transpose arrays of
either row-major or column-major linearization.

3. Algorithm
The key insight in this work is that one need not consider the
entire permutation required for performing the transposition
in-place on an array. Instead, we can decompose the transpo-
sition into independent row-wise and column-wise permuta-
tions.

In this section, we prove that the decomposition underly-
ing this technique is sound, and then present the algorithm.
We will restrict our attention to the C2R transposition in this
section, as the R2C transposition is merely the inverse of the
C2R transposition.

As shown Equation 10, the destination column of element
j in row i is:

di(j) = (i+ jm) mod n (22)

where we have fixed i for presentation purposes. We would
like to perform row-wise permutations to send each element
to the correct column required by the transposition. This can
only be done if each element goes to a unique column, oth-
erwise the row-wise operation is not a well-formed permu-
tation, and the transposition is not decomposable.

However, in general, di(j) is not bijective on j ∈ [0, n),
meaning each element does not go to a unique column, and
so the row-wise operation is not a well-formed permutation.

In fact, di(j) is periodic, which means there are guaranteed
to be conflicts in the permutation. However, the periodicity
of di(j) gives us a clue as to how to remove these conflicts,
as we will see.

Let the array have m rows and n columns. Define c =
gcd(m,n), a = m

c , b = n
c .

Lemma 1. ∀i ∈ Z, di(j) is periodic with period b.

Proof. Given j, k ∈ Z,

di(j + kb) =
(
i+
(
j + k

n

c

)
m
)
mod n

=
(
i+ jm+ nk

m

c

)
mod n

= (i+ jm+ nka) mod n

= (i+ jm) mod n = di(j)

Therefore, di(j) is periodic with period b.

Lemma 1 shows that if c > 1, multiple elements in each
row will be sent to the same column, since in that case
b < n. This means that the row-wise permutation that sends
each element to the correct column does not exist if c > 1.
However, note that if m and n are coprime, c = 1, and
the period b = n. Later, we will prove that this means the
decomposition is trivial in this case.

For the case when m and n are not coprime, we would
like to find a set of column-wise permutations that ensure
each element goes to a unique column. We must show that
after these permutations, the destination column for each
element is some new function d′i(j) that is bijective on the
domain [0, n).

Since di(j) is periodic with period b, we adjust the array
in groups of b columns to remove the conflicts. Consider
rotating the columns of a matrix, by which we mean: for
a column x of length m being rotated by k elements, the
rotated column x′[i] = x[(i+k) mod m]. Consider rotating
column j by k =

⌊
j
b

⌋
elements, or equivalently, column j

of the rotated array is gathered from the source array using
index equation

rj(i) =

(
i+

⌊
j

b

⌋)
mod m (23)

Substituting, after rotating all columns of the array, the re-
sulting destination column for each element of the new array
is

d′i(j) =

((
i+

⌊
j

b

⌋)
mod m+ jm

)
mod n (24)

Our task is to prove that Equation 24 is a bijection, which
will show that the rotations have removed conflicts, decom-
posing the transposition.

To do this, the following lemmas are useful.

Lemma 2. ∀x, y ∈ N | 0 ≤ x < b, 0 ≤ y < b,
mx mod n = my mod n implies x = y.

Proof. Proof by contradiction. Assume ∃x, ∃y | 0 ≤ x <
b, 0 ≤ y < b, x 6= y and also that mx mod n = my mod n.
Substituting, acx mod bc = acy mod bc. By cancellability
of congruences, this implies ax mod bc

gcd(c,bc) = ay mod
bc

gcd(c,bc) . Since gcd(c, bc) = c, then ax mod b = ay mod

b must be true. Since a and b are coprime, the modular
multiplicative inverse of a and b exists. Therefore, x mod
b = y mod b must be true. Since we assumed 0 ≤ x < b and
0 ≤ y < b, the modulus is extraneous, and so x = y. But this
is a contradiction, since we assumed earlier that x 6= y.

Lemma 3. Let S =
⋃b−1

h=0 {hm mod n}, and let T =⋃b−1
h=0 {hc}. Then S = T .

Proof. By Lemma 2, we know |S| = b. We also know
|T | = b by inspection. Next, we show that S ⊆ T . To do this,
we show that ∀h ∈ [0, b), ∃k ∈ [0, b) | hm mod n = kc. By
the definition of modulus, hac mod bc = hac− bc

⌊
hac
bc

⌋
=

(ha − b
⌊
hac
bc

⌋
)c = kc, where k ∈ Z. To bound k, we note

that since kc is a remainder with respect to bc, 0 ≤ k < b.
Accordingly, S ⊆ T , and since we already showed |S| =
|T |, it must be true that S = T .

Theorem 3. d′i(j) is a bijection on j ∈ [0, n) for any fixed
i ∈ [0,m).

Proof. Observing that
⌊
j
b

⌋
= l is constant for j ∈ [lb, (l +

1)b), we first analyze the sets

Si,l =

(l+1)b−1⋃
j=lb

{d′i(j)}

=

lb+b−1⋃
j=lb

{((i+ l) mod m+ jm) mod n}

=

b−1⋃
h=0

{((i+ l) mod m+ (lb+ h)m) mod n}

=

b−1⋃
h=0

{((i+ l) mod m+ hm) mod n}

=

b−1⋃
h=0

{((i+ l) mod c+ hm mod n) mod n}

=

b−1⋃
h=0

{(i+ l) mod c+ hm mod n}

=

b−1⋃
h=0

{(i+ l) mod c+ hc} ,

where we first replace d′i(j) by its definition, followed by
removing the offset lb from the index, which allows one to

cancel the resulting additive term

lbm mod n = lbac mod bc = 0

We then distribute the modulus over both remaining terms.
We can replace the expression ((i + l) mod m) mod n
by (i + l) mod c by defining km =

⌊
i+l
m

⌋
and kn =⌊

i+l−kmm
n

⌋
, and r = i+ l − (kmm+ knn). Then

((i+ l) mod m) mod n = r and (i+ l) mod c = r

due to m = ac and n = bc. Noting that (i + l) mod c ∈
[0, c), and hac mod bc is kc, for k ∈ [0, b), we see that
(i + l) mod c + hm mod n < bc = n, so the external
modulus is unnecessary. Then the last line follows from
Lemma 3, noting that the term (i+ l) mod c is independent
of h and so can we can replace the set

⋃b−1
h=0 {hm mod n}

with
⋃b−1

h=0 {hc}.
Now, for any fixed i ∈ [0,m), the range of d′i(j) over the

entire domain [0, n) is

n−1⋃
j=0

{d′i(j)} =

c−1⋃
l=0

Si,l

=

c−1⋃
l=0

b−1⋃
h=0

{hc+ ((i+ l) mod c)}

= [0, n)

because ((i + l) mod c) enumerates all values in [0, c) on
the domain l ∈ [0, c). Therefore d′i(j) is a bijection on
[0, n).

Note that for c = gcd(n,m) = 1,
⌊
j
b

⌋
= 0, yielding

d′i(j) = (i+ jm) mod n = di(j)

This implies that if m and n are coprime, di(j) is naturally
bijective.

Theorem 4. In-place transposition can be decomposed into
independent row-wise and column-wise operations.

Proof. Since d′i(j) is bijective on the domain j ∈ [0, n), then
after pre-rotating columns of the array, each element can
be sent to a unique destination column during independent
row-wise permutations. Once each element is in the correct
destination column, it necessarily has a unique row to which
it should be sent to complete the transposition. Since the
indices in both steps are unique, the row and column wise
permutations are decomposable.

We have already described the column-wise rotations,
and given the set of independent row-wise permutations.
Now we will give the column-wise permutations necessary
to finish the transposition. Since the decomposition ensures
each element is directed to the correct column via row-wise

permutations, we need only consider permuting elements
within the columns.

For the C2R transposition, Equation 7 shows that the
source row of element i in column j is

sj(i) = (j + in) mod m (25)

However, since we rotated the original array to create d′i(j),
the correct source row is a different function. Define:

s′j(i) =

(
j + in−

⌊
i

a

⌋)
mod m (26)

Theorem 5. s′j(i) computes the correct source row indices
to complete the transposition.

Proof. From Equation 8, the source column of element i in
column j for a C2R transposition is

cj(i) =

⌊
(j + in)

m

⌋
(27)

Also note that mn
c = bm = an. When we rotated the

columns of the original array to enable the decomposition,
we rotated groups of b columns together. Each of those b
columns formed a subarray of bm elements. Now, examine
groups of a rows of the array, each of which form subarrays
of an elements. These subarrays have a one-to-one corre-
spondence with the subarrays that were rotated earlier.

To see this, we will show that ∀i ∈ [0,m),∀j ∈ [0, n),
cj(i) ∈ [kb, (k + 1)b), where k =

⌊
i
a

⌋
.

First, note that cj(i) is monotonic in both i and j, so
we can bound it over a domain of interest by its values at
the extrema of the domain. Decompose i = ak + y, where
k =

⌊
i
a

⌋
, and note that due to the definition of k, y ∈ [0, a).

Accordingly, c0(ka) ≤ cj(ka) ≤ cj(i) ≤ cj((k+1)a−1) ≤
cn−1((k + 1)a− 1)

Evaluating the bound,

c0(ka) =

⌊
0 + (ka)n

m

⌋
=

⌊
akb

a

⌋
= kb

Similar reasoning shows that the upper bound cn−1((k +
1)a − 1) = (k + 1)b − 1, Accordingly, over the domain
0 ≤ j < n, it must be true that kb ≤ cj(i) < (k+1)b. Then
it is also true that over this domain,

⌊
cj(i)
b

⌋
= k.

In other words, the source columns for all elements in
group k were rotated by k elements.

k then establishes a one-to-one correspondence between
subarrays comprised of the original columns of the array that
were rotated by k places, and the rows of the array that are
reading from those rotated columns.

Having established this correspondence, we need to ad-
just the source row indices to compensate for the rotation.
Adding the term −k = −

⌊
i
a

⌋
to the original sj(i) function

counteracts this rotation. Accordingly, s′j(i) is the correct set
of row indices to use for the column opersations.

Summarizing, the C2R algorithm is performed in three
steps:

• If gcd(m,n) > 1: Rotate columns by gathering from
each column using rj(i) from Equation 23 into a tempo-
rary vector, then copy the result over the original column.

• Row shuffle: scatter each row into a temporary vector us-
ing indices d′i(j) from Equation 24, then copy the result
over the original row.

• Column shuffle: gather from each column into a tempo-
rary vector using s′j(i) from Equation 26, then copy the
result over the original column.

Combining these three steps leads to a straightforward
statement of the C2R transposition algorithm, using out-of-
place permutations in a temporary buffer of size max(m,n).
This is presented as algorithm 1.
Algorithm 1 In-place C2R transposition of array A

if gcd(m,n) > 1 then
for j in [0, n) do

for i in [0,m) do
tmp[i] = A[rj(i), j] {Gather per eq. 23}

end for
for i in [0,m) do
A[i, j] = tmp[i]

end for
end for

end if
for i in [0,m) do

for j in [0, n) do
tmp[d′i(j)] = A[i, j] {Scatter per eq. 24}

end for
for j in [0, n) do
A[i, j] = tmp[j]

end for
end for
for j in [0, n) do

for i in [0,m) do
tmp[i] = A[s′j(i), j] {Gather per eq. 26}

end for
for i in [0,m) do
A[i, j] = tmp[i]

end for
end for

Figure 2 shows the state of a matrix as it is transposed us-
ing a C2R transposition. Each of the three steps corresponds
to one of the three outermost loops in algorithm 1.

The R2C transposition algorithm is the inverse of the C2R
algorithm. It can be derived by reversing the order of the
permutation steps in the C2R algorithm and interchanging
gather and scatter permutations.

Theorem 6. The decomposed in-place transpose algorithm
has optimal work complexity O(mn), when given auxiliary
space of O(max(m,n)).

0	
 4	
 8	
 12	
 16	
 20	
 24	
 28	

1	
 5	
 9	
 13	
 17	
 21	
 25	
 29	

2	
 6	
 10	
 14	
 18	
 22	
 26	
 30	

3	
 7	
 11	
 15	
 19	
 23	
 27	
 31	

0	
 4	
 9	
 13	
 18	
 22	
 27	
 31	

1	
 5	
 10	
 14	
 19	
 23	
 24	
 28	

2	
 6	
 11	
 15	
 16	
 20	
 25	
 29	

3	
 7	
 8	
 12	
 17	
 21	
 26	
 30	

0	
 9	
 18	
 27	
 4	
 13	
 22	
 31	

24	
 1	
 10	
 19	
 28	
 5	
 14	
 23	

16	
 25	
 2	
 11	
 20	
 29	
 6	
 15	

8	
 17	
 26	
 3	
 12	
 21	
 30	
 7	

0	
 1	
 2	
 3	
 4	
 5	
 6	
 7	

8	
 9	
 10	
 11	
 12	
 13	
 14	
 15	

16	
 17	
 18	
 19	
 20	
 21	
 22	
 23	

24	
 25	
 26	
 27	
 28	
 29	
 30	
 31	

Column rotate

Row shuffle

Column shuffle

Figure 2: C2R transpose of 4× 8 matrix

Proof. In the worst case, the algorithm reads and writes each
element 6 times, performing row and column permutations
out-of-place. This gives the work complexity of O(mn),
which is known to be optimal. The algorithm requires a
temporary vector of size max(m,n) in order to carry out
these out-of-place permutations.

4. Optimizations
The C2R transpose shown in algorithm 1 and its R2C inverse
are defined in terms of both scatter and gather based permu-
tations on both the rows and columns of the array. Practical
considerations of these algorithms may motivate the use of
alternative implementations. For example, gather based for-
mulations are sometimes more efficient, or required due to
functional restrictions. Additionally, we have found it useful
to restrict the column operations: rather than allowing unre-
stricted column shuffles, we perform the column operations
using a composition of two more restricted primitives. Re-
stricting the column operations allows us to optimize mem-
ory access patterns, and enables the in-register implementa-
tion using SIMD instructions.

We also observe that we are free to choose either row-
major or column-major linearization during C2R and R2C
transposes, which is an important optimization.

Theorem 7. The linearization assumed while performing
C2R or R2C transposes does not affect the permutation they
induce

Proof. Let B represent a row-major array that is created by
a C2R transposition using column-major indexing on a row-
major array A.

B[l] = Arm[lcm(s(icm(l), jcm(l)), c(icm(l), jcm(l)))]
(28)

Noting that

lcm

(
x mod m,

⌊ x
m

⌋)
= x (29)

and substituting the C2R source equations from Equa-
tions 7 and 8, as well as from Equations 16 and 17 into
the indexing function above,

lcm(s(icm(l), jcm(l)), c(icm(l), jcm(l))) =

lrm(icm(l), jcm(l)) =

lrm(jTrm(l), iTrm(l))

This proves
B[l] = AC2R

rm [l] (30)

Similar reasoning holds for using row-major indexing on a
column-major array.

Theorem 7 gives us the freedom to index arrays in row-
major or column-major order, regardless of their native stor-
age order. Although the intermediate state during the trans-
position differs depending on the choice of linearization
used to perform C2R or R2C transposes, the fact that the
final result does not depend on this choice simplifies imple-
mentation. This is an important performance optimization,
since we can design the implementation so that row and col-
umn operations always run in fixed directions, regardless of
whether the array was given to us in row or column major
order. This enables us to optimize memory access patterns
to fit cache lines.

4.1 Restricted Column Operations
Instead of implementing arbitrary column shuffles, we have
found it useful to restrict column operations to column rota-
tion and row permutation.

In column rotation, each column of the array is rotated
by some rotation amount, such that the gather based index
equation of the column operation is of the form fj(i) =
(i+ g(j)) mod m.

In row permutation, all rows of the array are permuted,
such that the gather based index equation of the column
operation is of the form f(i), with no dependence on the
column index j. Since the rows are all permuted identically,
the effect is a particular kind of column-wise permutation,
where every column is permuted identically.

4.2 Columns to Rows Optimizations
As specified earlier, if c > 1, we first rotate by gathering
indices rj(i) specified in Equation 23.

The row shuffle indices d′i(j) were specified as a scatter
permutation in Equation 24. To transform it into a gather
permutation, we must find its inverse d′−1i (j).

We will use the modular multiplicative inverse function
mmi(x, y), which is defined for coprime integers x and y:

(x ·mmi(x, y)) mod y = 1

Define a helper function

f(i, j) =

{
j + i(n− 1) i− (j mod c) + c ≤ m

j + i(n− 1) +m i− (j mod c) + c > m

and compute the modular multiplicative inverse a−1 =
mmi(a, b). Then

d′−1i (j) =

(
a−1

⌊
f(i, j)

c

⌋)
mod b+ (f(i, j) mod c) · b

(31)
To decompose the column shuffle given by s′j(i) in Equa-

tion 26 into a column rotation and a row permutation, we
note that for gather-based permutation functions f(i) and
g(i), gathering with indices (f ◦ g)(i) is equivalent to first
gathering with indices f(i), followed by a second gather
with indices g(i). Scatter-based permutations have the oppo-
site ordering under composition. The column shuffle indices
s′j(i) can be decomposed into a column rotation followed by
a row permutation, where the column rotation is:

pj(i) = (i+ j) mod m (32)

And the row permutation is:

q(i) =

(
i · n−

⌊
i

a

⌋)
mod m (33)

This decomposition of a column shuffle into these two
more restricted primitives is correct because (pj ◦ q)(i) =
s′j(i).

4.3 Rows to Columns Optimizations
The row shuffle step in the R2C transpose is simple when
formulated as a gather, since it can just use d′i(j) directly
without the need for inversion.

However, the gather-based indices for the row permute
step require q−1(i). Compute the modular multiplicative
inverse b−1 = mmi(b, a). Then

q−1(i) =

(⌊
c− 1 + i

c

⌋
b−1
)

mod a+(((c−1)i) mod c)·a
(34)

Instead of perfoming a scatter rotation to invert the rota-
tion in the C2R algorithm, we can do a gather rotation with
inverted indices:

p−1j (i) = (i− j) mod m (35)

And the final rotation indices are also inverted from the C2R
pre-rotation indices:

r−1j (i) =

(
i−
⌊
j

b

⌋)
mod m (36)

4.4 Arithmetic Strength Reduction
Evaluating the index equations, such as Equation 31, in-
volves repeated calculations of integer division and integer
modulus. We found a significant performance improvement
by using a strength reduction technique that involves com-
puting a fixed-point reciprocal, and then converting integer
division into a multiplication by the reciprocal followed by a

shift [10]. The modulus can then be computed with an addi-
tional multiplication and a subtraction. This technique amor-
tizes the calculation of the reciprocal across many repeated
divisions or modulus operations.

4.5 On-chip Row Shuffle
Implementing arbitrary row shuffle operations requires two
passes over each row along with the use of temporary stor-
age, as shown in algorithm 1. If on-chip storage is sufficient,
whether in caches or in register files, we can perform row
shuffle operations in a single pass, without writing the inter-
mediate result to temporary storage in memory. For example,
each streaming multiprocessor on the NVIDIA Tesla K20c
processor contains 256 kB of register file—in practice we
found we could use this storage to process rows with up to
29440 64-bit elements in a single pass.

4.6 Cache-aware Rotate
We can improve the performance of column rotations on the
array by ensuring all cache-lines read and written to and
from memory are utilized efficiently. We use a row-major
linearization during the transpose operations, regardless of
the native linearization of the array, in order to ensure that
our indexing maps to cache-lines in a canonical way.

A naive column rotation would involve reading the col-
umn from memory, then storing it in rotated order to a tem-
porary buffer, then copying the temporary buffer back over
the original column. This utilizes cache-lines poorly, espe-
cially when neighboring columns are being rotated by dif-
ferent amounts.

Instead of performing the rotation in this manner, we
break the rotation into two phases, both of which use no tem-
porary storage and thus save the cost of reading and writing
to a temporary buffer. The first phase performs a coarse ro-
tation in place, using cycle following. The coarseness is de-
termined by the size of the cache-line: if we rotate groups
of columns together so that the a sub-row selected from this
group is one cache-line wide, we improve the efficiency of
reading and writing such a sub-row. The sub-row from such
a group may span one cache-line, if it happens to be aligned
to cache-line boundaries, or it may span two cache-lines if it
is not aligned. If the size of one row of the array is evenly
divisible by the cache-line size, we are guaranteed that all
sub-rows will be aligned; otherwise some sub-rows will be
aligned, and others will not. In any case, reading and writ-
ing sub-rows is much more efficient than reading and writing
elements from each column independently.

Cycle-following for rotation is straightforward: when ro-
tating a vector of m elements by r places, there are z =
gcd(m, r) cycles, each of which with length m

z . The ele-
ments in these cycles are also straightforward to compute
analytically: ly(x) = (y + x(m − r)) mod m, for cycle
y ∈ [0, z), and element x ∈ [0, m

z). Having an analytic so-
lution to the cycles makes it straightforward to perform the

coarse rotation, since there is no need to precompute cycle
descriptors.

The goal of the coarse rotation is to ensure that the resid-
ual rotation for each column is bounded. This is true for the
rotations we perform, since both f(j) =

⌊
j
b

⌋
and f(j) =

j mod b have the property that 0 ≤ (f(j+w)− f(j)) mod
m < w, where w is the width of a sub-row, or the number of
columns being rotated together.

Since the residual rotation is bounded, we can then pro-
ceed with a fine in-place rotation pass that reads in the array
block by block, using on-chip memory to store blocks of the
array, rotate it, and write it out block by block. This ensures
off-chip memory bandwidth is efficiently utilized. The fine
rotation pass for a block of columns can be omitted if the
residual rotation amounts for all columns in a block are iden-
tically 0. This is often the case for the C2R prerotation or the
R2C postrotation performed if c > 1, since r(j) =

⌊
j
b

⌋
is a

slow-changing function when b > w.

4.7 Cache-aware Row Permute
The row permute operation can be made cache-aware through
cycle-following. We do not have an analytic solution for
cycles resulting from q(i) and q−1(i), so instead we com-
pute the cycles dynamically and store them in our temporary
memory. Since all rows are permuted identically, we have
only one set of cycles to compute. The number of cycles of
length greater than 1 element is bounded at m

2 , and so we
are guaranteed to have enough storage to hold the cycle lead-
ers and cycle length descriptors. Because cycle-following is
most naturally understood through scatter permutations, we
use q−1(i) for the C2R permutation and q(i) for the R2C
permutation.

As with the cache-aware rotation, this primitive operates
on groups of columns chosen such that one sub-row selected
from such a group is the same size as a cache-line, ensuring
that reading and writing a sub-row is efficient.

5. Implementation
To test our algorithm, we wrote parallel CPU and GPU
implementations and compare them against contemporary
in-place matrix transposition routines. Since an ideal matrix
transpose would read the array once and write the array once,
we calculate throughput in this section as

throughput(m,n, s, t) =
2mns

t
(37)

Where s is the size of an array element, and t is the time for
the complete transposition.

5.1 Parallel CPU Implementation
Our CPU implementation of in-place matrix transposition
is a straightforward OpenMP parallelization of algorithm 1.
We performed two optimizations: using a completely gather
based implementation using d′−1i (j) during the row shuffles,

and using arithmetic strength reduction to lower the cost of
index calculations. We leave cache-aware optimizations for
this implementation to future work.

0.0 0.5 1.0 1.5 2.0 2.5
GB/s

0

150

300

450

600

S
am

pl
es MKL

0.0 0.5 1.0 1.5 2.0 2.5
GB/s

0

30

60

90

120

S
am

pl
es C2R, 1 T

0.0 0.5 1.0 1.5 2.0 2.5
GB/s

0
10
20
30
40
50

S
am

pl
es C2R, 8 T

0.0 0.5 1.0 1.5 2.0 2.5
GB/s

0

25

50

75

100

S
am

pl
es Gustavson

Figure 3: Throughput Histograms of In-Place Matrix Trans-
position CPU Implementations. Median throughput indi-
cated with dashed line. 1 T indicates sequential execution,
8 T indicates execution with 8 threads.

Figure 3 shows histograms of in-place transpose through-
put. We benchmarked transpose throughput on 1000 ran-
domly sized matrices where m,n were chosen uniformly
at random from the interval [1000, 10000). Each array is
comprised of 64-bit elements. We used an Intel Core i7
950 processor with 4 cores and 8 threads. We show perfor-
mance for our method running sequentially, as well as with 8
threads. We also show performance of mkl_dimatcopy(),
the corresponding method from the Intel MKL library, ver-
sion 11.0.1 [2]. Median performance of our sequential im-
plementation on this machine achieved 336 MB/s, which
compares well to MKL’s median performance of 67 MB/s.
Additionally, since our algorithm parallelizes trivially, we
were able to see a median performance of 1.26 GB/s when
using 8 threads. In contrast mkl_dimatcopy() is not par-
allelized, likely due to the complexity of parallelizing tradi-
tional cycle-following algorithms. On this test set, the imple-
mentation described in Gustavson et al. [1] achieves median
performance of 1.27 GB/s, including overhead for packing
and unpacking the array into the tiled format required for
use with their algorithm.

Median Throughputs GB/s
Intel MKL 0.067
C2R, 1 Thread 0.336
C2R, 8 Threads 1.26
Gustavson et al. [1] (double) 1.27

Table 1: Median In-Place Transposition Throughputs on In-
tel Core i7 950 on Arrays of 64-bit Elements

Our performance is comparable to the performance de-
scribed in Gustavson et al. [1], despite the simplicity of our
implementation, which doesn’t employ any of the cache-
aware permutations we outlined earlier, and the complex-
ity of Gustavson’s implementation, which is highly op-
timized for cache accesses. Additionally, our algorithm
has theoretical advantages over Gustavson’s algorithm: our
work complexity is O(mn), while Gustavson’s algorithm
is O(mn logmn), given less than O(mn) auxiliary space.
Similarly to our algorithm, Gustavson’s algorithm also re-
quires O(m) auxiliary space: arrays that are not conve-
niently tiled must be transformed through a packing and
unpacking operation. These results are summarized in Ta-
ble 1.

5.2 Parallel GPU Implementation
Our GPU implementation is also built using gather permu-
tations, with strength reduction, and additionally uses the
cache-aware permutations described in section 4.

5000 10000 15000 20000 25000
number of columns: n

5000

10000

15000

20000

25000

nu
m

be
ro

fr
ow

s:
m

10

12

14

16

18

20

22

24

26

G
B

/s

Figure 4: C2R Performance Landscape on Tesla K20c

Figure 4 shows a sampling of the performance landscape
of the C2R algorithm for 250000 row-major arrays with
sizes m,n ∈ [1000, 25000]. To better visualize structure,
outlier samples that performed faster than the 99th percentile
had their values clamped to the 99th percentile throughput.
The high-performing band on the left of the graph shows that
when the number of columns is small, a row fits in on-chip
memory, significantly improving performance.

5000 10000 15000 20000 25000
number of columns: n

5000

10000

15000

20000

25000

nu
m

be
ro

fr
ow

s:
m

10.0

12.5

15.0

17.5

20.0

22.5

25.0

G
B

/s
Figure 5: R2C Performance Landscape on Tesla K20c

Figure 5 shows the same performance landscape sam-
pling as Figure 4, but using the R2C algorithm, with fast
outliers clamped as explained earlier. The high-performing
band on the top of the graph shows that when the number of
rows is small, an entire column fits in on-chip memory.

Since the C2R and R2C algorithms can both be used for
transposing any array, but their performance characteristics
differ, we combined them using a simple heuristic: if m > n,
use the C2R algorithm, otherwise use the R2C algorithm.
This improves the performance of our transposition routine
and makes it more efficient than either the C2R algorithm or
the R2C algorithm on their own.

Figure 6 shows a histogram of throughput results for sev-
eral implementations running on the NVIDIA Tesla K20c
processor. We benchmarked these implementations on ar-
rays where m,n were chosen uniformly at random from the
interval [1000, 20000).

First, we benchmarked the implementation from Sung [6].
We tested this implementation on 2500 arrays, of which
2155 completed correctly and are reported in Figure 6. The
algorithm published in Sung [6] operates on arrays in a tiled
manner, with the restriction that the dimensions of the tile
must evenly divide the dimensions of the array. However, it
does not choose tile sizes automatically, but instead requires
the user to supply them. In order to test this code on arbitrary
arrays, we used the following heuristic: sort the factors of the
array dimension, then starting with the smallest factors, mul-
tiply them until the tile dimension equals or exceeds some
threshold t. The motivation behind this heuristic is to find a
tile size that is not too small nor too large for the hardware.

For these experiments, we set t = 72, so that the maxi-
mum tile size was 72 × 72. We did not tune over the many
possible tile sizes for each array, since autotuning over data-
dependent parameters is not practical for many applications.
We note this heuristic was able to replicate the maximum

0 5 10 15 20 25 30 35
GB/s

0

40

80

120

160

S
am

pl
es

Sung (float)

0 5 10 15 20 25 30 35
GB/s

0

200

400

600

800

S
am

pl
es

C2R (float)

0 5 10 15 20 25 30 35
GB/s

0

150

300

450

600

S
am

pl
es

C2R

Figure 6: Throughput Histograms of In-Place Matrix Trans-
position GPU Implementations. Median throughput indi-
cated with dashed line. (float) represents implementations
operating on 32-bit elements

performance of 20.8 GB/s reported in Sung [6] on an array
of dimension 7200 × 1800, with tile size 32 × 72. Indeed,
we saw performance of 22.35 GB/s on an array of dimension
7223× 10368, with tile size 31× 64.

As shown in Figure 6, the implementation published in
Sung [6] achieves a median throughput of 5.33 GB/s, when
operating on arrays of 32-bit elements. Tiled algorithms per-
form poorly on arrays with inconvenient dimensions, which
explains why this measurement is lower than the throughput
on the six arrays measured in Sung [6]. We also note that this
implementation works only on arrays of 32-bit elements, and
so its throughput can only be compared to other implemen-
tations that work on arrays of 32-bit elements. Additionally,
we note that the implementation in Sung [6] has auxilary
space requirement of O(mn), since it may in the worst case
require one bit per element of the array. Our asymptotically
reduced auxiliary space requirement is an important advan-
tage of our algorithm. We refer the reader to Sung et al. [8]
for further development of this algorithm and implementa-
tion.

We also provide results for our algorithm. To make a
direct comparison to Sung [6], we instantiated our algo-
rithm for arrays of 32-bit elements, and measured a me-
dian throughput of 14.23 GB/s. When operating on arrays
of 64-bit elements, our implementation measured a me-
dian throughput of 19.53 GB/s. The double-precision ar-

Median Throughputs GB/s
Sung [6] (float) 5.33
C2R (float) 14.23
C2R (double) 19.53

Table 2: Median In-place Transposition Throughputs on
NVIDIA Tesla K20c on Arrays of 32-bit Elements (float)
and 64-bit Elements (double)

rays transpose at higher throughput because the unstructured
reads of array elements required for our row shuffle opera-
tion are more efficient when operating on 64-bit elements.
These results are summarized in Table 2.

6. SIMD Vector Memory Accesses
Many algorithms mapped onto SIMD processors require
vector loads and stores. Programmers often strive to increase
the amount of sequential work that can be mapped onto a
SIMD lane, in order to reduce the algorithmic overhead of
parallelization; this requires vector loads and stores because
each SIMD lane is consuming or producing a vector of data.
Similarly, directly operating on Arrays of Structures (AoS)
is convenient for programmers, but also requires arbitrary
length vector loads and stores, as each SIMD lane loads or
stores a structure. Although most processors provide limited
vector loads and stores for a few fixed datatypes, using them
can be inconvenient and suboptimal, since the size of a de-
sired vector load or store may not map cleanly to the vec-
tor loads and stores provided by the hardware. Using com-
piler generated loads and stores for arbitrarily sized vector
accesses often interacts poorly with the memory subsystem,
since the vector loads and stores are implemented as a se-
quential series of strided memory operations, leading to poor
memory bandwidth utilization.

6.1 Data Layout Conversion
As we explained in the introduction, one technique for deal-
ing with this problem is to convert Arrays of Structures into
Structures of Arrays, to eliminate the strided memory ac-
cesses. Our algorithm can perform this conversion in-place.
Consider an Array of Structures of m elements, each of
which is a structure containing n fields. Then the data is laid
out in memory as a row-major m× n array, and transposing
it into an n×m array corresponds to the Structure of Arrays
data layout.

This can be done directly with the array transposition
implementation we outlined earlier, but it performs poorly in
practice because it is parallelized expecting m and n to both
be relatively large, and for data layout conversion one of the
two dimensions (the structure size) is very small, while the
other (the array dimension) is very large.

We created specialized implementations of the transpose
algorithm for arrays where one of the dimensions is large
and the other is very small. These implementations perform

all column operations in on-chip memory, since we can
guarantee that the number of rows is very small by choosing
the C2R or R2C algorithm appropriately.

This specialization is faster than the general implementa-
tion we described earlier, thanks to its better use of on-chip
memory.

0 10 20 30 40 50 60
GB/s

0

100

200

300

400

500

S
am

pl
es

Figure 7: In-place transpose throughput for Array of Struc-
ture to Structure of Array conversion.

Figure 7 shows Array of Structures to Structures of Ar-
rays conversion performance, where the structures are com-
prised of 64-bit elements. We tested performance on 10000
randomly sized Arrays of Structures, where the structure
size was between [2, 32) elements, and the number of struc-
tures in the array was between [104, 107) We achieve me-
dian performance of 34.3 GB/s, and maximum performance
of 51 GB/s.

6.2 SIMD Vector Memory Accesses
In some circumstances, Arrays of Structures do not need to
be converted to Structures of Arrays at all: the transposition
can be performed lazily as data is accessed. Our algorithm
enables efficient, arbitrary length vector loads and stores,
without the need to allocate on-chip memory to perform an
out-of-place transpose.

Consider a SIMD vector of n SIMD lanes, each holding
m items. This forms an array of dimension m × n in the
register file. Using a shuffle instruction to interchange data
between SIMD lanes, we can perform row shuffles, and
using register operations locally to each SIMD lane, we
can perform column operations. We will explain how this
is done.

6.2.1 Row Shuffle
Most SIMD instruction sets provide a row shuffle that allows
processing elements to communicate with other elements in
their array. We can use this shuffle instruction directly to
implement the row shuffles described in the algorithm. For

SIMD processors that do not provide a shuffle instruction,
the shuffle can be simulated using a very small amount of
on-chip memory that can hold one register for each SIMD
lane.

6.2.2 Dynamic column rotation
In this primitive, each processing element rotates its vec-
tor by some distance, determined dynamically. Since each
SIMD lane may rotate by a different amount, if this rota-
tion were implemented with branching based on the rotation
amount, this primitive would introduce SIMD divergence,
dramatically reducing efficiency. To avoid this problem, we
note that the rotation can be performed analogously to a bar-
rel rotation implemented as a VLSI circuit. We can perform
the rotation in-place in dlog2 me steps, by statically iterating
over the bits of the rotation amount, and conditionally rotat-
ing each SIMD lane’s vectors by distance d = 2k at each
step. This eliminates branches, even when each SIMD lane
rotates its array by a different amount. This approach uses
completely static register indexing, using conditional moves
to perform the dynamic rotation. This comes at a cost: we
must do dlog2 me select instructions per element.

6.2.3 Static row permutation
In this primitive, each processing element statically per-
mutes its vector in the same way. Since the permutation is
statically known, and is constant for all processing elements,
in many cases this permutation can be implemented stati-
cally without any hardware instructions: it is performed in
the compiler by logically renaming elements in each column
vector.

6.2.4 Implementation
This algorithm allows SIMD processors to read and write
vectors of data at full memory bandwidth. Since n is con-
stant for a given architecture, and m, the size of the structure
in registers, is static, the task of computing indices can be
simplified through careful strength reduction and static pre-
computation.

Figures 8 and 9 show the throughput vector loads and
stores using this technique achieve on the NVIDIA Tesla
K20c processor. The line marked “C2R” is using our trans-
pose algorithm based on shuffle instructions to enable effi-
cient memory accesses, and can achieve full memory band-
width. The line marked “Vector” is using the native 128-
bit vector loads and stores provided by the K20c proces-
sor. This can be efficient when the requested vector length
is equal to 16 bytes, and is general more efficient than ele-
ment wise loads and stores, but is not as efficient as perform-
ing the transpose. The line marked “Direct” uses compiler-
generated element wise loads and stores. Figure 8 shows
throughputs on unit-stride accesses, where each SIMD lane
is loading or storing contiguous structures. The technique
also works for random accesses to arrays of structures: in
this case, indices must also be passed between SIMD lanes

T* ptr; // Private to each CUDA thread

coalesced_ptr <T> c_ptr(ptr);

T loaded = *c_ptr; //Load and R2C transpose

*c_ptr = value; //C2R Transpose and store

Figure 10: High level interface

using shuffles. For random access, throughput improves as
the size of the structure approaches the cache-line width, as
shown in Figure 9.

Our transpose mechanism enables higher throughput on
all regimes, both when performing unit strided vector mem-
ory accesses, as well as when performing randomized vec-
tor memory addresses. The performance differential can be
large, up to 45× for the case of unit-stride vector stores,
compared to compiler generated stores. These benchmarks
illustrates the utility of this technique for processors such as
the K20c.

Although we can achieve full memory bandwidth when
performing transpositions in registers, there may still be
cases where performing the transposition in memory is ad-
vantageous. Since our algorithm accommodates both the
register-based transpose as well as the full storage trans-
pose, the best solution for the particular application can be
exploited.

6.2.5 Interface
Figure 10 shows a high level interface in CUDA C++ [5]
that makes use of this transpose. Because the transpose does
not require allocating on-chip memory, it is straightforward
to create a coalesced_ptr<T> wrapper type that performs
transpositions internally. Every CUDA thread has its own
pointer pointing to a structure of type T that it wishes to
load or store. Directly dereferencing this pointer would lead
to the undesirable performance characteristics described in
the previous section. However, simply wrapping this pointer
in a coalesced_ptr<T> type ensures that all dereferences
occur through transpositions, and are therefore efficient.

7. Related Work
As in-place matrix transposition is a well studied field, there
are several important related works with which to relate our
algorithm.

We already discussed Gustavson et al. [1] and Sung [6] in
Section 5.

Tretyakov and Tyrtyshnikov [9] present an algorithm for
in-place matrix transposition that has optimal work com-
plexity of O(mn) while requiring only O(min(m,n)) auxil-
iary space. This algorithm was presented without any exper-
imental results, but we note that it requires up to 24 swaps
per element, which corresponds to reading and writing each
element 48 times, since each swap involves 2 reads and 2
writes. Our algorithm requires reading and writing each el-

0	

50	

100	

150	

200	

0	
 16	
 32	
 48	
 64	

G
B/
s	

Size	
 of	
 structure	
 (bytes)	

Unit-­‐stride	
 AoS	
 Store	
 C2R	
 Store	

Direct	
 Store	

Vector	
 Store	

(a) Store Bandwidth

0	

50	

100	

150	

200	

0	
 16	
 32	
 48	
 64	

G
B/
s	

Size	
 of	
 structure	
 (bytes)	

Unit-­‐stride	
 AoS	
 Load-­‐Store	
 C2R	
 Load/Store	

Direct	
 Load/Store	

Vector	
 Load/Store	

(b) Copy Bandwidth

Figure 8: Unit-stride Array of Structures Access

0	

50	

100	

150	

200	

0	
 16	
 32	
 48	
 64	

G
B/
s	

Size	
 of	
 structure	
 (bytes)	

Random	
 AoS	
 Sca:er	
 C2R	
 Sca/er	

Direct	
 Sca/er	

Vector	
 Sca/er	

(a) Scatter Bandwidth

0	

50	

100	

150	

200	

0	
 16	
 32	
 48	
 64	

G
B/
s	

Size	
 of	
 structure	
 (bytes)	

Random	
 AoS	
 Gather	

C2R	
 Gather	

Direct	
 Gather	

Vector	
 Gather	

(b) Gather Bandwidth

Figure 9: Random Array of Structures Access

ement 6 times, in the worst case, which we believe gives
it practical advantages. Additionally, the simplicity of our
algorithm enables straightforward, efficient parallel imple-
mentation, as well as the in-register transpose that arises
when SIMD processors perform vector memory accesses.

Sung et al. [7] propose a partial Arrays of Structures to
Structures of Arrays transform. Because the cost of the full
transposition using traditional algorithms is too high, the pa-
per recommends modifying the program to use a hybrid Ar-
ray of Structure of Tiled Array format, where the transposi-
tion cost is reduced by transposing tiles rather than elements
of the array. As this introduces non-trivial complexity to the
task of addressing elements of the array, the authors propose
a compiler and runtime that hide this complexity from the
programmer. In contrast, with our approach, we can afford
to do the full transposition to convert to a true Structure of
Arrays format, or alternatively, can leave the data in an Ar-
ray of Structure format and perform SIMD transpositions as
the data is loaded and stored.

8. Conclusion
In this paper, we have shown a decomposition for in-place
matrix transposition. This decomposition has theoretical ad-

vantages compared to prior algorithms: it reduces work com-
plexity of the transposition when auxiliary storage space is
limited by reducing the scope of each permutation to a sin-
gle row or column. The decomposition leads to a naturally
parallel algorithm for in-place matrix transposition that has
optimal work complexity of O(mn), given auxiliary stor-
age space of O(max(m,n)). Our algorithm has either work
or space complexity advantages over many published algo-
rithms for in-place matrix transposition.

We have shown that the algorithm is correct, and given
performance results showing its efficiency for several imple-
mentations on CPUs and GPUs. We have also shown how
specializations of this algorithm can efficiently convert be-
tween Arrays of Structures and Structures of Arrays. Finally,
the regular structure of our algorithm lends itself to an in-
place transpose on the register file of a SIMD processor,
which can allow access to Arrays of Structures at full mem-
ory bandwidth. Because the algorithm operates in-place, it
is particularly easy to integrate into existing code, without
requiring the user to allocate on-chip storage for the trans-
position. The software we have developed to illustrate this
algorithm is publically available.

Acknowledgments
This research was funded in part by the DARPA PERFECT
program and the U.S. Department of Energy FastForward
program.

We wish to thank Manjunath Kudlur, Sean Treichler,
Sean Baxter, John Owens, Brandon Lloyd, and Pace Nielsen
for discussions that improved this work.

References
[1] F. Gustavson, L. Karlsson, and B. Kågström. Parallel and

cache-efficient in-place matrix storage format conversion.
ACM Transactions on Mathematical Software, 38(3):1–32,
Apr. 2012. doi: 10.1145/2168773.2168775.

[2] Intel. Intel MKL, 2013. URL http://software.intel.

com/en-us/intel-mkl.

[3] D. E. Knuth. The Art of Computer Programming, volume 3.
Addison-Wesley, 1973. ISBN 0-201-03803-X.

[4] T. Leighton. Tight bounds on the complexity of parallel sort-
ing. In Proceedings of the Sixteenth Annual ACM Symposium
on Theory of Computing, STOC ’84, pages 71–80, New York,
NY, USA, 1984. ACM. doi: 10.1145/800057.808667.

[5] J. Nickolls, I. Buck, M. Garland, and K. Skadron. Scalable
parallel programming with CUDA. ACM Queue, pages 40–

53, Mar./Apr. 2008. doi: 10.1145/1365490.1365500.

[6] I.-J. Sung. Data layout transformation through in-place trans-
position. PhD thesis, University of Illinois, Department of
Electrical and Computer Engineering, May 2013. URL http:

//hdl.handle.net/2142/44300.

[7] I.-J. Sung, G. D. Liu, and W.-M. W. Hwu. DL: A data
layout transformation system for heterogeneous computing.
In Innovative Parallel Computing (InPar), May 2012. doi:
10.1109/InPar.2012.6339606.

[8] I.-J. Sung, J. Gómez-Luna, J. M. González-Linares, N. Guil,
and W.-M. W. Hwu. In-place transposition of rectangu-
lar matrices on accelerators. In Principles and Practices
of Parallel Programming (PPoPP), PPoPP ’14, 2014. doi:
10.1145/2555243.2555266.

[9] A. A. Tretyakov and E. E. Tyrtyshnikov. Optimal in-place
transposition of rectangular matrices. Journal of Complexity,
25(4):377–384, Aug. 2009. doi: 10.1016/j.jco.2009.02.008.

[10] H. S. Warren. Hacker’s Delight. Addison-Wesley Profes-
sional, 2002. ISBN 978-0-201-91465-8.

[11] P. F. Windley. Transposing matrices in a digital com-
puter. The Computer Journal, 2(1):47–48, Jan. 1959. doi:
10.1093/comjnl/2.1.47.

http://dx.doi.org/10.1145/2168773.2168775
http://software.intel.com/en-us/intel-mkl
http://software.intel.com/en-us/intel-mkl
http://dx.doi.org/10.1145/800057.808667
http://dx.doi.org/10.1145/1365490.1365500
http://hdl.handle.net/2142/44300
http://hdl.handle.net/2142/44300
http://dx.doi.org/10.1109/InPar.2012.6339606
http://dx.doi.org/10.1145/2555243.2555266
http://dx.doi.org/10.1016/j.jco.2009.02.008
http://dx.doi.org/10.1093/comjnl/2.1.47

	Introduction
	Decomposition
	Algorithm
	Optimizations
	Restricted Column Operations
	Columns to Rows Optimizations
	Rows to Columns Optimizations
	Arithmetic Strength Reduction
	On-chip Row Shuffle
	Cache-aware Rotate
	Cache-aware Row Permute

	Implementation
	Parallel CPU Implementation
	Parallel GPU Implementation

	SIMD Vector Memory Accesses
	Data Layout Conversion
	SIMD Vector Memory Accesses
	Row Shuffle
	Dynamic column rotation
	Static row permutation
	Implementation
	Interface

	Related Work
	Conclusion

