
NVIDIA Technical Report NVR-2014-001 2014

Fast Global Illumination Approximations on Deep G-Buffers
Michael Mara1 Morgan McGuire1 Derek Nowrouzezahrai2 David Luebke1

1NVIDIA 2University of Montreal

Direct + Ambient Direct + (1-AO) ⇥ Ambient + Radiosity + Mirror Rays

Figure 1: Left: Direct and hemispherical ambient illumination in San Miguel (6.5M triangles, 968 draw calls). Right: Direct
lighting, approximate radiosity, mirror reflections, and AO computed from a two-layer deep G-buffer in 5 ms at 1080p on
NVIDIA GeForce Titan. The G-buffer was generated in a single 30 ms geometry pass. See our evaluation section for faster
results on more game-like scenes.

Abstract
Deep Geometry Buffers (G-buffers) combine the fine-scale and efficiency of screen-space data with much of the ro-
bustness of voxels. We introduce a new hardware-aware method for computing two-layer deep G-buffers and show
how to produce dynamic indirect radiosity, ambient occlusion (AO), and mirror reflection from them in real-time.
Our illumination computation approaches the performance of today’s screen-space AO-only rendering passes on
current GPUs and far exceeds their quality. Our G-buffer generation method is order-independent, guarantees
a minimum separation between layers, operates in a (small) bounded memory footprint, and avoids any sorting.
Moreover, to address the increasingly expensive cost of pre-rasterization computations, our approach requires
only a single pass over the scene geometry. We show how to apply Monte Carlo sampling and reconstruction to
these to efficiently compute global illumination terms from the deep G-buffers.

The resulting illumination captures small-scale detail and dynamic illumination effects and is substantially more
robust than screen space estimates. It is necessarily still view-dependent and lower-quality than offline rendering.
However, it is real-time, temporally coherent, and plausible based on visible geometry. Furthermore, the lighting
algorithms automatically identify undersampled areas to fill from broad-scale or precomputed illumination. All
techniques described are both practical today for real-time rendering and designed to scale with near-future
hardware architecture and content trends. We include pseudocode for deep G-buffer generation, and source code
and a demo for the global illumination sampling and filtering.

This is the sRGB version of the paper. A “brighter” gamma version
is in our supplement. We recommend on-screen viewing with the
version that most clearly differentiates the images in figure 1.

1. Introduction

Screen-space illumination methods are widely used today
for real-time rendering. For example, screen-space ambi-
ent occlusion (AO) enjoys pervasive application because it
strongly impacts image quality, maps well to GPU archi-
tectures, and is a very fast approximation. This popularity

comes despite its well-known shortcomings for underesti-
mation and view dependence. Meanwhile, voxel-based ap-
proaches for illumination show great promise but have not
been widely deployed because of scalability and fidelity con-
cerns. We observe that many of the benefits of screen-space
and voxels can be combined. In this paper we refine several
different ideas from the literature into a practical, robust,
and real-time lighting solution. Those three constraints are
essential for the games industry. So, we follow the successful
example of screen-space AO and ensure them by relaxing ra-

c� 2014 NVIDIA Corporation and D. Nowrouzezahrai. All rights reserved.

Mara, McGuire, Nowrouzezahrai, and Luebke / Deep G-Buffers

diometric accuracy. Note that a radiometrically-accurate but
inefficient technique would not have “less error” from the
perspective of a developer or player, since missing a frame at
30 Hz is a grave animation error compared to undersampling
indirect light. We characterize the nature of the sampling er-
ror introduced and sketch how to reduce it when more com-
putational performance is available.

From an implementer’s viewpoint, in this paper we
specifically show how to extend today’s popular-but-fragile,
screen-space AO-only passes to robust AO computation, and
even into indirect illumination without significantly increas-
ing the cost over single-layer AO alone. We achieve this
through careful compression, cache management, sampling,
and reconstruction, aided by a new kind of data structure:
the deep geometry buffer with minimum separation (deep
G-buffer), generated efficiently in a single pass over geome-
try. We intentionally developed this illumination solution as
an extension of existing G-buffer generation and illumina-
tion passes. Working with existing rendering passes reduces
the software engineering cost of integration with existing en-
gines, and replacing the AO-only pass with a general indirect
lighting pass in roughly the same performance profile is a
natural evolution for game engines.

We consider deep G-buffer generation separately from
the illumination algorithms that use it because the G-buffer
has more applications than indirect lighting (e.g., direct il-
lumination, depth of field, motion blur, reprojection) in a
rendering engine. The two-layer deep G-buffer generation
method that we present is more expensive than a single-layer
method on today’s content and GPUs, although it is usually
faster than previous methods like depth peeling. We opti-
mized it on current GPUs, but specifically designed it to tar-
get and scale with near-future applications and GPUs. We
observe that games have increasing pre-rasterization GPU
workloads, such as tessellation and skinning, that make mul-
tiple passes over source geometry prohibitively expensive.
We also observe that while the first-generation architectures
with geometry shader units were not particularly efficient,
geometry shader throughput is increasing in recent architec-
tures and there is no inherent reason that it should incur any
performance penalty in the future. To follow these trends,
the deep G-buffer generation method limits its access to ge-
ometry to a single pass and relies on a geometry shader to
perform multi-layer rendering.

Our motivation to compute robust, dynamic indirect illu-
mination quickly is simple to understand. The implementa-
tion of the techniques that we describe for it is also simple,
at least once seen. We provide pseudocode, C++ and GLSL
source code, and a demonstration application for an opti-
mized implementation of radiosity to ensure that implement-
ing it is truly simple and unambiguous. However, deriving
that solution, analyzing its quality, and explaining the con-
straints for efficient execution are more complex tasks. That
is because the exposition requires moving through a set of

interlocking hardware details, algorithms, and mathematics,
e.g., from bandwidth management and architecture trends to
quasi Monte Carlo estimators. We considered presenting the
AO, radiosity, reflection ray casting, temporal filtering, and
single-pass data structure generation ideas as separate arti-
cles, but discovered that the overlap and motivation greatly
benefitted from a single, comprehensive presentation.

Many computer science problems are best solved by a hy-
brid of broad- and fine-scale algorithms. In computer net-
working this leads to the “last mile/link/kilometer” design
approach, that is, tree leaves are often handled separately
from internal nodes. Likewise in sorting algorithms, a radix
or quick sort will often arrange data on a broad scale for an
insertion sort to handle at a small one. Some examples of
this principle in computer graphics are:

Domain Broad-Scale Solutions Fine-Scale Solutions

Visibility occlusion culling,
depth sorting,
frustum culling

z-buffer

Geometry geometry,
subdivision surfaces,
displacement map

bump map,
normal map

Materials different scattering
(BSDF) models

texture maps of
coefficients

Lighting baked light map,
baked light probe,
irradiance volume,
sparse voxel octtree

screen-space,
deep G-buffer

The deep G-buffer lighting terms such as the AO, radios-
ity, and ray tracing that we present are intended to provide
fine detail and address dynamic content, but are also in-
tended to be paired with a fallback broad-scale solution. We
use a currently-popular solution of static light probes as the
fallback in our results. We believe that despite increasing ge-
ometry and material complexity in modern content, normal
maps and texture maps will always be a part of computer
graphics, because it is simply infeasible to scale geometry
and materials to the fine scale of pixel level and below. Like-
wise, we suspect that real-time global illumination methods
will increase in scope and efficiency at the broad scale, but
the illumination techniques presented in this paper will long
remain useful for the “last mile” of fine-scale lighting.

1.1. Contributions
As we describe in the following section, this paper builds on
many existing ideas. For example, many previous research
papers have experimented with using multiple views or lay-
ers to improve screen-space effects [SA07, RGS09, VPG13,
DS05, Hac05, BS09a, BS09b].

The novel value of our work is in bringing these many
ideas together carefully and comprehensively, and then map-
ping them to the constraints of hardware architecture. We

c� 2014 NVIDIA Corporation and D. Nowrouzezahrai. All rights reserved.

Mara, McGuire, Nowrouzezahrai, and Luebke / Deep G-Buffers

contribute a theory for working with deep G-buffers, analy-
sis of their use in a renderer, and practical details necessary
for deploying them. Specifically, this paper contributes:

1. A method for generating a deep G-buffer in a single pass
over geometry on a GPU, designed to scale for perfor-
mance on near-future GPUs and content (sec. 2.3).

2. An adaptation of Scalable Ambient Obscurance for deep
G-buffers (sec 3.1)

3. A robust, physically-motivated radiosity algorithm for
deep G-buffers (sec. 3.2).

4. Camera-space Quasi Monte Carlo sampling (sec. 3.4).
5. Details of screen-space ray tracing (sec. 3.6).
6. Quantitative performance analysis (sec. 4).
7. Qualitative analysis of the major sources of error in our

radiosity approximation (sec. 4).
8. Images, video, and a demo for quality evaluation; these

are strictly better than previous single-layer AO, and of-
ten subjectively much better (sec. 4 and supplement).

9. Source code for an optimized implementation of deep G-
buffer radiosity, AO, and temporal filtering (supplement).

1.2. Related Work
Many have observed that multiple images increase the ro-
bustness of screen-space methods. This paper focusses on
multiple layers from a single camera because doing so grants
three essential advantages:

1. Practicality: leverages the same regular parameterization
as voxels to simplify sampling and reconstruction;

2. Perception: ensure that visible and nearly-visible sur-
faces are sampled well, so frames are self-consistent; and

3. Performance: amortize pre-rasterization operations such
as occlusion culling, tessellation, and skinning.

Generating Layers. Several approaches can render mul-
tiple geometry layers from a single view. In order
of decreasing memory footprint: clip-space voxeliza-
tion [Sch12, CG12], F- and A-buffers [MP01, Car84], ZZ-
buffers [SS89], k-buffers and other bounded A-buffer ap-
proximations [LV00, MB07, BCL⇤07, SML11, Sal13], fre-
quency A-buffer approximations [YK07, SA09, JB10], and
depth peeling [Eve01, BM08]. Of these, depth peeling is
particularly interesting in the context of effects that bene-
fit most from a small number (two or three) depth layers

since it has the smallest memory footprint: prior work shows
that the quality and robustness of screen-space global il-
lumination significantly benefits from even one additional
layer [SA07, RGS09, VPG13].

State-of-the-art approaches for computing the second-
closest surface using a single depth peel require either two
passes over the scene geometry [BM08] or a single pass
with programmable blending [Sal13]. Neither guarantees a
minimum separation. Our higher-performance and order-
independent solution requires only a single geometry pass,
no programmable blending, and works in bounded memory.

Indirect Light. Our shading methods are most directly re-
lated to directional occlusion [RGS09], Vardis et al.’s AO
variant [VPG13] and Bavoil and Sainz multi-layer horizon-
based AO approach [BS09a, BS09b]. The former two ap-
proaches use multiple views (and note their performance
drawbacks), the latter uses a two-layer depth buffer without
minimum separation; we extend these approaches to multi-
ple layers with minimum separation and show how to apply
these approximations to arbitrary indirect bounces and spec-
ular reflection. Our entire shading approach is incorporated
atop a scalable gathering framework [MML12] and bears
some similarities to previous image-space gathering tech-
niques [DS05, SHRH09, NRS14].

2. Deep G-Buffers with Minimum Separation in 1 Pass
Motivation for Multiple Layers. A traditional, single-
layer G-buffer [DWS⇤88, ST90] and a camera frustum vox-
elization store the same data and parameterize the same
space as a regular grid. Therefore, they are the same class
of data structure, representing the extremes of the contin-
uum pictured in figure 2. Traditional G-buffers have high xy-
resolution and the lowest possible z-resolution; they store a
single voxel for each pixel. In contrast, a camera-space vox-
elization has uniform xyz-resolution, measured in either ho-
mogeneous (e.g., [ED06]) or world (e.g., [CNLE09]) space.

Between these extremes are what we call deep G-buffers.
This data structure parameterization has been in use for a
few years in niche applications [Per07,Cha11,NRS14]. It is a
generalization of layered depth images [SGHS98, PLAN98,
Eve01, MB07] to layering a full G-buffer for shading pur-
poses. We extend the previous work with important con-

…

x

z
y

a)  1-Layer G-Buffer
 “Screen space”

b) 2-Layer Deep G-Buffer d) Camera-Space Voxels c) 3-Layer Deep G-Buffer

Figure 2: A continuum of data structures on the content of the homogeneous clip-space view frustum. Traditional G-buffers
(a) have high xy-resolution, minimal z-resolution, and choose the closest surface to fill each voxel. Traditional voxels (d) have
medium xyz-resolution and average surface properties within each voxel. This paper extensively analyzes intermediate case (b).
c� 2014 NVIDIA Corporation and D. Nowrouzezahrai. All rights reserved.

Mara, McGuire, Nowrouzezahrai, and Luebke / Deep G-Buffers

straints on the layers and an efficient method for generating
them.

Traditional, single-layer G-buffer pixels and voxels both
store a regularly-sampled grid of surface point properties
suitable for light transport (i.e., shading), such as position,
surface normal, and reflectance parameters. In the simplest
case, these may be simply a screen-space depth buffer and
binary voxelization, from which position and normal (by
gradient) are inferred. The generation methods may differ
in how they select the value for each element. G-buffer gen-
eration typically chooses each pixel’s properties as those of
the surface closest to the camera that passes through the xy
center. Some voxel generation methods set the voxel proper-
ties from the surface closest to the xyz voxel center [LK10],
while others average the properties of all surfaces within the
voxel [CNLE09]. We extend these generation strategies with
a new minimum separation selection method for deep G-
buffers.

Both data structures have the advantage of decoupling
the cost of illumination computation from geometric com-
plexity. G-buffers are widely used in the games industry for
screen-space effects such as screen-space AO and reflec-
tions. They have been successful there despite the fragility
of computing those effects from a single layer because they
leverage the data already computed for deferred [DWS⇤88]
or forward+ [HMY12] shading and capture fine detail. Real-
time research has shown that voxels-based algorithms are
more stable for broad-scale illumination, but they have not
yet been adopted widely in the industry because they do
not scale well and require entirely new data and method for
generating them that, unlike G-buffer pixels, are not already
present in the system for direct illumination or other effects.

Modern rasterization is designed for visible surface de-
termination and “local” shading operations. When “global”
scene information is required for shading, rasterizing mul-
tiple views or layers can help. Shadow mapping [Wil78] is
perhaps the earliest example of this, where rasterized depth
from the light’s viewpoint is used for shadowing in the cam-
era’s view. Reflective shadow maps [DS05] and orthographic
depth-peeling [Hac05] extend this idea to more complex
shading; other methods have shown that screen-space meth-
ods can be made more robust using many views [SA07,
RGS09, VPG13].

Motivation for Single-Pass Generation. Many images
provide more data, but generating many images from dif-
ferent viewpoints is expensive. Doing so requires process-
ing geometry that is not visible to the primary camera, thus
increasing the cost of submitting geometry for rasterization
rather than amortizing the cost of a single submission over
multiple layers. Furthermore, the most important geome-
try for affecting perception of the final image is often that
which is visible, or nearly visible, to the viewer. A sep-
arate view from, for example, the light’s viewpoint, may

capture significant amounts of information that do not di-
rectly impact this image...or that impact the image, but if the
viewer was not aware of that geometry because it is not vis-
ible, might not notice the absence of its impact compared
to undersampling of visible geometry. This is why Bavoil
and Sainz [BS09a, BS09b] restricted their multiview input
for ambient occlusion estimation to near the view frustum,
producing a depth-only deep G-buffer. However, using mul-
tiple layers of a single view alone is insufficient. Under tra-
ditional methods for generating layers, the vertex processing
overhead is still incurred for each layer and the total cost is
linear in the number of layers. So, it is not sufficient to re-
duce the desired views to multiple layers of a single camera:
we must also produce those layers in a single pass over the
scene geometry.

To quantify the penalty for generating multiple views
or multiple layers of a scene, we asked three developers
of high-performance commercial game engines to profile
their renderers. They found that between one sixth and one
third of the rendering time for a frame is spent on tasks
that occur prior to rasterization in the graphics pipeline.
Such tasks include scene graph traversal, frustum and oc-
clusion culling, tessellation, displacement mapping, proce-
dural geometry generation, skeletal animation, and transfor-
mation [Bra13, Buk13, McG13].This means that even in the
limiting case of writing a one-pixel G-buffer with no raster-
ization or pixel processing cost at all, processing the scene
geometry twice to generate two different views incurs sig-
nificant cost. Furthermore, the pre-rasterization cost of the
graphics pipeline has been increasing as culling and geome-
try processing becomes more sophisticated and more content
is animated.

Motivation for Minimum Separation. We observe that, in
practice, the second-closest surface to the camera often fails
to capture the most useful information for shading purposes.
Decals, non-convex geometry, and fine detail often create lo-
cal structure that occlude the most useful secondary surface.
For example, traditional depth peeling in Sponza (figure 3b)
reveals the second fold of the column’s molding and not (fig-
ure 3c) the full red tapestry behind the column.

To resolve this local structure problem, we enforce a min-
imum separation between layers. When generating the G-
buffer, we select only those fragments that immediately ac-
cessible beyond a constant distance Dz past the primary vis-
ible surfaces.

Note that a k-buffer cannot resolve this problem in
bounded memory, even with single-pass programmable
blending variants [Sal13]. We need more than a k = 2 buffer
to guarantee this minimum separation, since the goal is to
produce two specific layers from a k = • buffer, not the first
two layers. That is, until all surfaces have been rasterized,
each pixel has no way of knowing the minimum acceptable
depth for the second layer, so all surface fragments must be
stored. We now proceed to describe a set of algorithms to

c� 2014 NVIDIA Corporation and D. Nowrouzezahrai. All rights reserved.

Mara, McGuire, Nowrouzezahrai, and Luebke / Deep G-Buffers

a) Primary b) Traditional c) Minimum Separation

Figure 3: Traditional depth peeling provides little additional
information in areas with local structure. Enforcing our new
minimum separation captures the next significant surface.

Normal (Oct32)

Depth Depth32F

Lambertian RGB Color

RG16

RGBA8 Unused

Glossy
Exponent Glossy RGB Color RGBA8

RG16

Screen-Space Velocity

32 bits

Texture Format Contents

Table 1: Each layer of the G-buffer as produced by the gen-
eration pass, in 160 bits/pixel.

Game Year Bits/pixel
Killzone 2 2009 128 [Val09]

StarCraft II 2010 192 [FM08]
Battlefield 3 2011 160 [Cof11]

Crysis 3 2013 96 [CRW13]
Ryse 2013 128 [Sch14]

inFAMOUS: Second Son 2014 328 [Ben14]
Destiny 2014 96 [TTV13]

Table 2: G-buffer sizes for some recent games.

robustly identify these important secondary surfaces with a
small, bounded memory footprint.

2.1. G-buffer Format
Table 1 shows the format for one layer of the deep G-buffer
that we used in our experiments. This is comparable in size
to the G-buffers used in recent games described in table 2.

2.2. A Strawman Two-Pass Algorithm

Listing 1 outlines a multi-pass depth peeling algorithm to
generate a deep G-buffer for frame t. Each frame buffer ren-
der target is a two-element texture array, a feature supported
by current GPUs. We denote the depth buffer layers Zt [0]
and Zt [1]. The geometry shader applies the current trans-

1 // 1st Pass
2 submit geometry with:
3 geometryShader(tri):
4 emit Tt (tri) to layer 0
5 pixelShader(x,y,z):
6 return S(x,y,z)
7

8 // 2nd Pass
9 submit geometry with:

10 geometryShader(tri):
11 emit Tt (tri) to layer 1
12 pixelShader(x,y,z):
13 if (z > Zt [0][x,y]+Dz): return S(x,y,z)
14 else: discard the fragment

Listing 1: A strawman two-pass deep G-buffer genera-
tor with minimum separation Dz using depth peeling. Our
method improves significantly on this baseline.

formation Tt to each triangle, encompassing/abstracting all
model-view-projection and skinning transformations.

For Dz = 0, this algorithm corresponds to traditional depth
peeling [BM08] and, for Dz > 0, it guarantees minimum sep-
aration. The pixel shader applies an arbitrary shading func-
tion S: e.g., for G-buffer generation, S would simply output
material properties. It is possible (and often preferable on
present-day GPUs) to implement this algorithm using two
separate frame buffers, without texture arrays and a geome-
try shader. Our algorithmic structure is chosen so as to make
the analogy and notation clear in the following section.

2.3. Efficient Single-Pass Generation Algorithms

Listing 2 generates two layers with a minimum separation in
a single pass over the geometry, by rendering to both layers
simultaneously. To identify fragments in the second layer,
we require an oracle to predict the depth buffer’s first layer
before that buffer has been rendered. We will describe four
variants of our algorithm, each corresponding to a different
approximation of such an oracle.

Delay Variant. By adding one frame of latency so that the
transformations for the next frame Tt+1 are known at render
time, we can perfectly predict the next frame’s first depth
layer. Frame t reads (line 22) from the oracle computed from
the previous frame, and generates the oracle for frame t + 1
(lines 4, and 25-26) to satisfy the induction. This variant
gives perfect output but requires one frame of latency; in cer-
tain cases (e.g., triple buffering) such latency may already be
present but, typically, we would like to avoid it.

Previous Variant. By simply using the previous frame’s
first depth layer as an approximate oracle, approximation
error increases only as object and camera motion increase.
This can be acceptable in some cases. First, errors will only
appear in the second layer, not on visible surfaces. Second,
the errors are only in the minimum separation: the second

c� 2014 NVIDIA Corporation and D. Nowrouzezahrai. All rights reserved.

Mara, McGuire, Nowrouzezahrai, and Luebke / Deep G-Buffers

1 submit geometry with:
2 geometryShader(tri)
3 emit Tt (tri) to layer 0
4 emit Tt (tri) to layer 1
5 if (VARIANT == Delay) || (VARIANT == Predict):
6 emit Tt+1(tri) to layer 2
7

8 pixelShader(x,y,z):
9 switch (layer):

10 case 0: // 1st layer; usual G-buffer pass
11 return S(x,y,z)
12

13 case 1: // 2nd G-buffer layer: choose the comparison texel
14 if (VARIANT == Delay) || (VARIANT == Predict):
15 L = 2 // Comparison layer
16 C = (x,y,z) // Comparison texel
17 else if (VARIANT == Previous):
18 L = 0; C = (x,y,z)
19 else if (VARIANT == Reproject):
20 L = 0; C = (xt�1,yt�1,zt�1)
21

22 if (zC > Zt�1[L][xC,yC]+Dz): return S(x,y,z)
23 else: discard the fragment
24

25 case 2: // Depth only write to predict Zt+1[0]; no shading
26 return // We only reach this case for Delay and Predict

Listing 2: Our new, efficient single-pass deep G-buffer gen-
erator with minimum separation Dz.

layer still captures only surfaces at the correct positions at
time t. Third, there will only be errors in final moving ob-
jects, and we note that motion overrides perception of pre-
cise intensities and even shape [SA11].

Predict Variant. We can predict Tt+1 using velocities from
any underlying physics/animation simulation, or extrapola-
tion from vertices at t � 1 and t. When velocity prediction
is accurate, this variant yields perfect results (equivalent to
Delay), but without latency. When it is inaccurate, the same
arguments that hold for the Previous variant apply here.

Reproject Variant. Here, we apply reverse reprojec-
tion [NSL⇤07] to perform a minimum separation test against
the first depth layer from frame t�1: we use vertex positions
from t�1 to compute the screen coordinates and depth C for
the visibility test. Note that old depth values are not warped
forward: instead visibility is computed in the “past”. This is
susceptible to errors around moving objects, but less so than
Predict because it can use perfect hindsight velocities from
t � 1. Note that many techniques require such velocities for
use e.g. in screen-space motion blur and antialiasing.

Figure 4 (top) compares the second layer surfaces ob-
tained from each variant, with fast camera motion in Sponza;
Figure 4 (bottom) compares to ground truth minimum sepa-
ration. Previous and Predict can produce large errors. Repro-
ject limits errors to tight regions around silhouettes and adds
no latency, we identify it as our principal solution.

3. Three Applications to Global Illumination

Several applications can benefit from layered deep G-
buffers, including stereo image reprojection, depth of field,
transparency, motion blur, and global illumination. We focus
on the latter.

We first extend screen-space AO to deep G-buffers in sec-
tion 3.1, using AO to modulate a light probe. Despite the
popularity of screen-space AO, extensions of it to screen-
space radiosity have yet to enjoy similar adoption. We sus-
pect this is due primarily to the artifacts present in single-
layer screen-space solutions. To address this, we generalize
our robust AO solution to a robust single-bounce radiosity
method in section 3.2. Multi-bounce radiosity (section 3.3)
is much more challenging as it requires more samples to re-
duce variance. We extend our method with multiple bounces
and then add temporal smoothing and reverse reprojection to
amortize the additional computation, reducing the cost back
to that of computing a single bounce per frame. We note
computing radiosity with a deep G-buffer is similar to Re-
flective Shadow Maps [DS05]. The main differences are that,

2n
d

La
ye

r
D

iff
.f

ro
m

Pe
el

in
g

(a) Delay (b) Previous (c) Predict (d) Reproject

Figure 4: Top: Second-layer surfaces captured by variants of Listing 2 with a moving camera in Sponza. Bottom: Differences
from ground truth produced by Listing 1. Delay is perfect but has latency; Reproject is nearly as good and adds no latency.

c� 2014 NVIDIA Corporation and D. Nowrouzezahrai. All rights reserved.

Mara, McGuire, Nowrouzezahrai, and Luebke / Deep G-Buffers

by operating exclusively in camera space, we can amortize
the cost using work already performed in a deferred-shading
pipeline, allowing us to simulate higher-order effects involv-
ing objects visible to the viewer but not to the light.

Finally, we investigate deep G-buffer mirror reflection
tracing in section 3.6. As future work, we plan to investigate
glossy reflections by either modifying the reflection rays to
use pre-filtered incident lighting (computed on each layer of
the deep G-buffer) or by modifying the BSDF in our radios-
ity algorithm, depending on the width of the glossy lobe.

3.1. Ambient Occlusion
We extend Scalable Ambient Obscurance [MML12] (SAO)
to leverage our layered deep G-buffer and devise a new sam-
pling scheme to further improve its quality (section 3.4).
The original algorithm compensates for undersampling be-
hind primary surfaces (which dominates its sampling error)
with a coarser, biased estimator. Our improvements produce
a more plausible shading falloff, avoid view-dependent halos
on moving objects, and reduce noise.

Ambient Visibility (1�AO) at a view-space point X is:

AV (X) = max

0

@0,1�

vuut p
N

N

Â
i=1

max
�
0,Ai,0,Ai,1

�
1

A (1)

Ai, j = AO(X ,R(Z[j], i)) (2)

where N is the sample count , R(Z, i) reconstructs the posi-
tion of the ith sample using depth buffer Z, and AO is the
Ambient Occlusion at X due to a sample at Y :

AO(X ,Y) =

✓
1�~v ·~v

r2

◆
·max

✓
~v · n̂X �bp

~v ·~v+ e
,0
◆

, (3)

where ~v = Y � X , r is the sample pattern radius (see sec-
tion 3.4), and n̂X is the normal at X . This formulation cor-
responds roughly to SAO’s AV with a union of occluders in
both layers, but without any of the ad-hoc falloff terms.

Our improved sampling scheme (section 3.4) benefits
from explicit normals, and we pack the camera-space Z and
normal values for the two layers into a single texture each,
as shown in table 3 (the radiosity inputs are unused for AO).
For all applications, we employ a modified bilateral recon-
struction that includes normal and plane weights to prevent
blurring across surface discontinuities.

3.2. Single-Scattered Radiosity
Soler et al. [SHRH09] devised a screen-space radiosity ap-
proximation that we extend in a radiometrically correct fash-
ion. Thereafter, we extend the technique to our deep G-
buffer, and propose performance and aesthetically motivated
modifications.

The total irradiance E(X) incident at point X (with reflec-
tivity rX) due to the radiosity B(Y) emitted from the closest

point Y in direction ŵ from X is [CG85, ICG86]

E(X) =
Z

W

B(Y)

p
max(n̂X · ŵ,0) dŵ . (4)

We estimate this integral numerically as

E(X) ⇡ 2p
M Â

samples
B(Y)max(ŵ · n̂X ,0), (5)

where ŵ = Y�X
||Y�X || . The highest-quality version of our ap-

proximation samples N points Y from both G-buffer layers,
but only uses the M for which both

(ŵ ·nX) > 0 and (6)
(ŵ ·nY) < 0. (7)

As for AO, we assume mutually visibility between X and
Y . If the eqn. 7 test is omitted, then the bandwidth for the
entire sampling process can be significantly reduced because
nY need not be read for each sample. Eliminating that test
increases error in the mean of the radiosity approximation,
but by allowing more samples in less time it also reduces the
variance. Thus, one can choose a solution that suppresses
bias or one that suppresses noise. The incident irradiance at
X scatters to outgoing radiosity as

B(X) = E(X) ·rX ·boost(rX), where (8)

boost(r)=1 conserves energy. We scale reflectivity by

boost(r) =
maxl r[l]�minl r[l]

maxl r[l]
, (9)

where l is the wavelength or “color channel”. This amplifies
scattering from saturated surfaces to enhance color bleeding,
which helps visualize results and is also aesthetically desir-
able in entertainment applications (see [Hal10]). Indeed, we
are motivated by the common practice in modern art train-
ing that promotes artificial exaggeration of color bleeding
effects to enhance proximity cues and scene coherence.

n̂X

n̂Y

�̂

X

Y

Viewer&The radiosity B(Y) in the initial in-
put is simply the Lambertian shading
from (boosted) direct illumination. We
iteratively re-apply equations 5 and
8 over multiple frames to simulate
multiple bounces, as detailed in sec-
tion 3.3.

In addition to the illumination
value, the radiosity pass writes the
confidence value M/N at each pixel, reflecting the fraction
of samples affecting the result. At pixels where confidence is
close to 1.0, many nearby points were discovered in the deep
G-buffer that produced a reliable radiosity result (given our
other simplifying assumptions). At pixels where the confi-
dence is close to zero, most samples taken from the deep
G-buffer were not representative of surfaces that could af-
fect that pixel because they were backfacing, so the result is
unreliable. During shading, we therefore linearly interpolate

c� 2014 NVIDIA Corporation and D. Nowrouzezahrai. All rights reserved.

Mara, McGuire, Nowrouzezahrai, and Luebke / Deep G-Buffers

Layer 0 Normal n
(Oct16)

RG32F

RGBA8

R11G11B10F

R11G11B10F

Layer 1 Normal n
(Oct16)

Layer 0 Previous Bounce Radiosity B

Layer 1 Previous Bounce Radiosity B

Layer 0 Camera-space z

Layer 1 Camera-space z

Texture Format Contents

32 bits

Table 3: Input to the radiosity algorithm, packed into 160
bits/pixel to minimize bandwidth and fetch instructions.

between a broad-scale or precomputed illumination solution
and the dynamic deep G-buffer radiosity by the confidence
score. In the results for this paper and the demo application,
we used static radiance and irradiance probes, a common in-
dustry solution [MG12]. We chose this because it was the
easiest to integrate. However, light maps, sparse voxel light-
ing, irradiance volumes, and per-vertex lighting are all viable
alternatives.

The radiosity algorithm takes as input the deep G-buffer
shown in table 1 and efficiently packed data from table 3. On
modern GPUs, bandwidth is at a premium (both to DRAM
and to cache) and packing data both optimizes the cache and
amortizes the cost of issuing a texture fetch instruction and
its execution. So, we pack the frequently sampled data into
low precision and memory-adjacent locations. This includes
camera-space depth (which, combined with camera informa-
tion and texel location encode full position information) for
both layers into a single buffer, and use the Oct16 encod-
ing [CDE⇤14] to pack both layer’s normals into the same
RGBA8 buffer.

The Scalable Ambient Occlusion algorithm introduced a
depth MIP-map computed by rotated-grid downsampling,
which improves cache coherence when sampling over a large
radius in screen space. We inherit that optimization.

3.3. Multiple-Scattered Radiosity

Multiple scattered radiosity requires N samples at each iter-
ation and, in order to decouple render cost from the num-
ber of bounces, we incorporate information from previous
frames in two ways: first, we only advance illumination by
one bounce per frame using progressive computation; sec-
ond, we apply temporal filtering by extending our bilateral
reconstruction across time to pixels from the previous frame.
In each case, we reverse-reproject sample locations to ac-
count for motion. This differs from the reverse-reprojection
of depth in our oracle derivations in section 2.3, but has the
same benefits and drawbacks.

Figure 5: Direct light and radiosity after 1, 2, and 100
frames/bounces.

a) Propagating first layer b) Deep propagation

Figure 6: Gathering radiosity in Warehouse from two G-
buffer layers but only (a) propagating within the first under-
estimates multibounce radiosity in areas of high depth com-
plexity compared to (b) two-layer propagation.

Figure 7: Temporal filtering artifacts under vertical camera
movement in Kitchen at a = 0.98, mitigated at a = 0.85.

1 // tau[N-1] = optimal number of spiral turns for N samples

2 const int tau[] = {1, 1, 2, 3, 2, 5, 2, 3, 2, 3, 3, 5, 5,

3, 4, 7, 5, 5, 7, 9, 8, 5, 5, 7, 7, 7, 8, 5, 8, 11, 12, 7,

10, 13, 8, 11, 8, 7, 14, 11, 11, 13, 12, 13, 19, 17, 13,

11, 18, 19, 11, 11, 14, 17, 21, 15, 16, 17, 18, 13, 17,

11, 17, 19, 18, 25, 18, 19, 19, 29, 21, 19, 27, 31, 29, 21,

18, 17, 29, 31, 31, 23, 18, 25, 26, 25, 23, 19, 34, 19, 27,

21, 25, 39, 29, 17, 21, 27};

Listing 3: Discrepancy-minimizing number of turns t .

c� 2014 NVIDIA Corporation and D. Nowrouzezahrai. All rights reserved.

Mara, McGuire, Nowrouzezahrai, and Luebke / Deep G-Buffers

Progressive Computation. We accumulate higher-order
bounces by incorporating the previous frame’s final indi-
rect irradiance buffer Et�1 in Equation 8, thus simulating n
bounces in n frames (figure 5). Reprojection avoids ghosting
in the presence of dynamic objects, but light will still linger
for many frames on a surface. To limit this effect, we damp
the forward propagation of Et�1 by factor 0 < d 1. Damp-
ing intentionally underestimates illumination. We compen-
sate for that bias by adding a small amount of environment
lighting from a static light probe above the confidence value.

We also propagate radiosity between the two layers,
which is important for multiple scattering in scenes with
high depth complexity (Figure 6). The marginal cost of prop-
agating in the second layer is negligible since it shares gath-
ered samples from the first layer.

Temporal Filtering To smooth our undersampling noise,
we compute an exponentially-weighted moving average
Et = E(1�a)+ reproject(Et�1)a and revert to Et = E for
pixels where the reprojected point is not within 1cm of either
layer (which is indicative of an incorrect velocity estimate).
We recommend (and use) a = 0.85, except where noted. If
a is too large (e.g., 0.95), then dynamic lighting will ex-
perience latency and two kinds of artifacts may appear in
each frame (Figure 7): despite detecting failed reprojections,
ghosting can still appear from incrementally accumulated re-
projection errors (each within the 1cm threshold), and re-
jecting too many samples due to reprojection disocclusion
increases the variance at each pixel.

3.4. Quasi Monte Carlo Sampling

For our AO and radiosity solutions, we place N sample taps
in a spiral of t turns and radius r0, similarly to McGuire et
al. [MML12], however we optimize the pattern’s parameters
to minimize (2D) discrepancy [Shi91] for quasi-Monte Carlo
(QMC) integration. We amortize computation over both lay-
ers by sampling the same points in each. The ith sample at
(x,y) is accessed from texel

(x,y)+hi ûi, where (10)

hi = r0zi (11)
ûi = (cosqi,sinqi) (12)
qi = 2pzit +f (13)
zi = 1

N (i+0.5). (14)

We rotate all samples by an azimuthal angle f chosen ac-
cording to a hash on (x,y), and the sample tap MIP level mi is
mi = blog2(hi/q)c. The constant q is the screen-space radius
at which to first increment MIP levels, chosen based on the
texture cache size.

We compute the optimal values of t (to the nearest inte-
ger) that minimize discrepancy for each N offline and choose
the appropriate value from listing 3 at run-time. McGuire et
al. fixed N = 9 and found t = 7 optimal by manual tuning;
however, the quality of their result degenerates if t = 7 is
used for N 6= 9.

Figure 8 illustrates the impact of our optimized QMC
sample placement. All three images take the same time to
compute (for 99 AO samples). The left-most image has high
discrepancy (t = 7) and exhibits banding since all f = 0.
The center image varies f , but the impact of discrepancy is
still manifested as clusters of noise. Choosing the optimal t
yields a higher quality result (right).

3.5. Recommended Radiosity Parameters

There are five content-independent parameters for the ra-
diosity method. These should be chosen based on the de-
sired performance and image quality for the target hardware
and application. We recommend the three parameter sets in
table 4, which are supplied as presets in the demo. Increas-
ing the number of raw samples N (from which the number
of spiral turns, t , is completely determined by listing 3) re-
duces sample variance. Increasing the number of spatial re-
construction filter taps reduces noise in the final image, but
also blurs out high-frequency illumination. Including the nY
test improves contrast and reduces bias. Raising the mini-
mum MIP level when computing radiosity potentially in-
creases variance of low-frequency terms, leading to large-
scale flickering, but has a significant impact on performance
because it affects cache coherence. The deep G-buffer in-
put fills a guard band around the frame to help stabilize

Figure 8: AO from 99 spiral taps (left) without rotation and suboptimal t , (center) unbiased in 2D via pattern rotation, and (right)
with t chosen by our screen-space QMC optimizer. Results shown without reconstruction to illustrate the variance reduction.

c� 2014 NVIDIA Corporation and D. Nowrouzezahrai. All rights reserved.

Mara, McGuire, Nowrouzezahrai, and Luebke / Deep G-Buffers

Radiosity Reconstruction Use nY Test Minimum Fraction of Guard
Preset Samples (N) Filter Taps (eqn. 7) MIP Level Band Shaded
High Performance 13 9 No 3 10%
Balanced 14 11 Yes 2 50%
High Quality 30 13 Yes 0 80%

Table 4: Three parameter sets for our radiosity algorithm.

the result under camera motion. The output can fill a more
narrow guard band because it only contributes as the previ-
ous bounce’s result. Thus one can increase performance at
the expense of robustness for 2nd and higher order indirect
light by reducing the fraction of the guard band extent within
which radiosity computation occurs.

We tuned all parameter sets for NVIDIA GeForce 770, a
mid-range, one generation old GPU. This is a reasonable tar-
get for games currently in development, since this represents
what one might expect to be low-end bandwidth and process-
ing rates by the time such games are completed. Recall that
we expect the deep G-buffer generation process to be faster
on future hardware, although we do not expect bandwidth to
increase proportionally.

We tuned the High Performance to minimize evaluation
time at the lowest image quality we found acceptable. It just
barely suppresses flickering and noise artifacts and gives a
heavily biased image, but is stable and fast. This what one
might desire for a game with tight performance constraints,
e.g., a high-speed first-person game like Call of Duty. We
tuned High Quality to the point where increasing parameters
gave minimal quality increase. Balanced is at the knee in our
perception of the quality vs. performance curve. We recom-
mend it for a less twitchy game such as Portal or Skylanders.

3.6. Reflection Ray Tracing

We adapt Sousa et al.’s method [SKS11] for screen-space
mirror reflections, as well as an additional radiosity result in
section 4, to use the deep G-buffer. We march reflection rays
in camera space, projecting each point into both G-buffer
layers: if the ray lies within [z,z+Dz] of either point (x,y,z)
at a pixel then we consider that a hit and set the outgoing
radiance of that pixel as the incoming radiance along the
reflection direction (see our supplemental code for our full
implementation). After a maximum distance, or outside the
guard band, we fall back to an environment map lookup.

4. Evaluation

We detail our experimental evaluation of single-pass gen-
eration of layered deep G-buffers with minimum sepa-
ration, and their application to global illumination (GI)
in the scenes from table 5. All results were measured at
1920⇥1080 on a NVIDIA GeForce Titan GPU.

Scene Source Tris Chrs Mshs
Office g3d.sf.net 10k 0 17
Grass turbosquid.com 180k 0 6
Kitchen turbosquid.com 370k 0 77
Warehouse turbosquid.com 640k 34 89
Sponza Crytek 850k 0 56
Old City turbosquid.com 1.2M 0 100
Dockside Call of Duty: Black Ops 2 2.3M 8 20
Op925 Battlefield 3 2.8M 32 66
San Miguel Evolucién Visual 5.9M 0 1196

Table 5: Test scenes used in this paper, with triangle, ani-
mated character, and mesh counts.

1-Layer 2-Layer G-Buffer
Depth Predict

Scene G-Buffer Peel Reproject Previous or Delay
Sponza 3.0ms 6.4ms 6.3 ms 6.3ms 9.5ms
Dockside 4.1 7.9 7.8 7.7 11.9
Op925 5.4 11.6 11.4 11.4 17.4
Kitchen 3.1 6.2 4.6 4.5 5.9
Old City 2.5 4.6 6.3 6.0 9.2
San Miguel 14.5 33.0 29.8 29.8 39.5
Grass 1.5 3.2 3.7 3.7 6.1
Office 0.7 1.8 1.0 1.0 1.4
Warehouse 3.5 7.3 6.9 6.8 9.2

Table 6: Time to generate a G-buffer. For reference, gener-
ating two layers via depth peeling always costs about twice
as much as generating a single layer. Our new method using
the ‘Reproject’ variant is often faster, even on current hard-
ware with a slow geometry shader, and despite our use of an
inexpensive vertex shader (compared to many current game
engines).

4.1. Performance

Table 6 shows that single-pass generation already outper-
forms depth peeling for complex scenes (e.g., San Miguel)
on a high-end GPU today, but underperforms on simple
scenes (e.g., Grass); recall that we designed it for future
GPUs with better geometry shader throughput.

Table 7 shows that the incremental cost of adding a second
layer in GI computation is small. Our algorithms amortize
the pixel iteration, sample tap computation, and framebuffer
overhead – only the bandwidth cost increases measurably
when adding more samples.

c� 2014 NVIDIA Corporation and D. Nowrouzezahrai. All rights reserved.

Mara, McGuire, Nowrouzezahrai, and Luebke / Deep G-Buffers

Radiosity AO
Scene Max Perf. Balanced Max Quality
Kitchen 2.1 + 0.5 ms 3.2 + 0.4 ms 5.4 + 1.0 ms 1.4 + 0.1 ms
Sponza 2.0 + 0.7 3.4 + 0.5 6.3 + 0.9 1.4 + 0.0
Old City 2.1 + 0.4 3.5 + 0.4 6.1 + 0.5 1.8 + 0.1
Dockside 1.8 + 0.5 3.2 + 0.3 6.1 + 0.3 1.7 + 0.1
Op925 2.2 + 0.5 3.6 + 0.3 6.3 + 0.3 1.7 + 0.0
San Miguel 2.2 + 0.5 3.5 + 0.5 6.0 + 0.7 1.7 + 0.0

Table 7: Execution times for two-layer deep G-buffer GI (including spatial and temporal reconstruction filtering), formatted as
first layer + second layer. Amortized overhead makes the incremental cost for the second layer small. For our scenes with mirror
reflective surfaces, the ray trace cost was Kitchen: 1.3 + 0.3 ms; Dockside: 1.7 + 0.1 ms; San Miguel: 1.0 + 0.2 ms.

4.2. Parameter Selection

G-buffer generation depends on a scene-dependent mini-
mum separation constant, Dz: if Dz is too small, then the
second layer will capture superfluous local detail; if Dz is
too large, then the second layer will capture surfaces that are
too distant and may miss important features. For example, in
figure 9, Dz = 1 m fails to capture the blue wall behind the
column and will instead see through to the green wall.

�z = 1m

�z = 1 cm

�z = 25 cm

Figure 9

However, we con-
sistently observe ro-
bust and stable image
quality over a wide
range of Dz settings,
even for high depth
complexity. We sim-
ply used Dz = 50 cm
for all scenes in this paper, including the dense grass shown
in figure 10.

Figure 11 demonstrates the impact of the temporal
weight a on undersampling noise: our temporal filter is an
exponentially-weighted moving average, so the useful range
of a is on the high end of the unit interval; we generally
recommend a = 0.85.

4.3. Image Quality

As few as two layers can make a significant contribution to
the appearance of scenes that have high depth variance and

Figure 10: Two-layer AO is significantly more coherent un-
der motion than one-layer AO, even for high depth complex-
ity scenes like Grass (see video results).

a = 0 a = 0.5 a = 0.85 a = 0.95

Figure 11: Increasing the temporal filter weight a decreases
noise from undersampling in a single frame.

Figure 12: Left: Ambient occlusion in the Op925 parking
garage from Battlefield 3 using two layers. Right: Areas
where artifacts occur without (red) two-layers and (yellow)
minimum separation.

c� 2014 NVIDIA Corporation and D. Nowrouzezahrai. All rights reserved.

Mara, McGuire, Nowrouzezahrai, and Luebke / Deep G-Buffers

Figure 13: Top: An aisle view in Warehouse. Bottom: For
the view across an aisle, a single layer (left) misses the floor,
yielding a result inconsistent with the top image. Two layers
(right) give a more plausible result.

a) 1 layer G-buffer b) 2-layer deep G-buffer
Figure 14: Radiosity in Sponza. A second layer captures re-
flection off the barely-seen purple banners on the right.

depth complexity. Figure 12 shows an increased quality for
AO with a second layer in the deep G-buffer. Figures 13 and
14 demonstrate increased robustness to occlusion and view-
point changes for radiosity. Figure 15 shows an increased
quality for specular reflection.

Figures 1, 13, 14, and 16 also demonstrate that a lay-
ered deep G-buffer can provide sufficient information to in-
directly illuminate large regions that receive no direct light,
provided that direct light appears somewhere in the frame-
buffer (e.g., the second layer or guard band). The results
inherently depend on the viewpoint, but in a way that has
two desirable properties: radiosity and AO fade out smoothly
as surfaces approach glancing angles, so illumination never
“pops”. Furthermore, our results are self-consistent for sur-
faces that are in (or nearly in) view.

There are three sources of error in our deep G-buffer ra-
diosity approximation:

1. It overestimates E by assuming Y is visible from X .

Figure 15: A second layer makes the red containers’ reflec-
tion in Dockside more stable to passing foreground objects.

2. It underestimates E because surfaces not in the deep G-
buffer are not represented.

3. The 2D spiral is biased away from the ideal 3D hemi-
sphere sampling.

4. Ignoring the sample backface (n̂Y) test overestimates E.

Figure 17 explores these assumptions by presenting the same
scene rendered offline with various assumptions relaxed.
This is a qualitative analysis: we’re concerned with where
one perceives differences from ground truth after end-to-end
processing, not the absolute numerical error.

Subimage (a) uses geometric ray casting against triangles
and true 3D hemisphere samples with the full backface test
to produce a ground-truth radiosity + direct illumination so-
lution. The other subimages show all valid combination of
approximations, cumulating in (f) as our fastest approxima-
tion. The major effects that we observe are under-estimation
of indirect light when not using geometric ray casting: (a) vs.
(b); over-estimation of indirect light when discarding the nY
backfacing test: (e) vs (f). Although there is some global loss
of contrast, these somewhat cancel, and the full offline result
(a) and fastest real-time approximation (f) compare reason-
ably.

In these examples, we find that the approximation of as-
suming perfect visibility contributes less perceptible error
than the 2D pattern bias, probably because of the funda-
mental assumption inherited from screen-space AO: closely-
located surfaces that are facing each other often have few oc-
cluders between them. A distant or backfacing surface con-
tributes little radiosity, so its visibility does not impact the
result significantly.

We use reverse reprojection in multiple-scattered radiosity
for both progressive computation and temporal filtering. In
each case, reverse reprojection creates disoccluded regions
(“holes”) at newly revealed locations. Figure 18 shows the
effect of disocclusion on progressive computation (the im-
pact on filtering is comparable). Because the second layer
can fill many disocclusions and radiosity has a wide gather
kernel, the perceptible impact on the final image is small.

c� 2014 NVIDIA Corporation and D. Nowrouzezahrai. All rights reserved.

Mara, McGuire, Nowrouzezahrai, and Luebke / Deep G-Buffers

Figure 16: Top: Sponza under dynamic lighting with a static light probe lighting solution. Bottom: The same scene and lighting
conditions using deep G-buffer radiosity, where indirect lighting changes plausibly and exhibits color bleeding and large-scale
soft shadowing.

(a) Ground truth (b) Approximated visibility (c) Approximated sampling
Sampling: 3D hemisphere 3D hemisphere 2D spiral
Visibility: Geometric ray cast Deep G-buffer ray cast Geometric ray cast
Use n̂Y Test: Yes Yes Yes

(d) Section 3.2 (e) (f)
Sampling: 2D spiral 2D spiral 2D spiral
Visibility: Deep G-buffer ray cast None None
Use n̂Y Test: Yes Yes No

Figure 17: Six estimates of single-scattered radiosity distinguish the qualitative impact of the underlying three approximations
in our fast method. The combination of 3D sampling without a visibility test does not make sense, so it is not represented.

c� 2014 NVIDIA Corporation and D. Nowrouzezahrai. All rights reserved.

Morgan McGuire
Text

Mara, McGuire, Nowrouzezahrai, and Luebke / Deep G-Buffers

(a) [Ideal] converged irradiance for a static camera at position 1. (b) Converged position 1 reprojected to position 2.

(c) [Ideal] converged irradiance at position 2 for a static camera. (d) One frame of moving a camera from position 1 to 2.

(e) Difference between dynamic (d) and idealized static (c) results at
position 2, scaled 3⇥.

(f) Final image lit by the moving camera irradiance from (d) and direct
illumination.

Figure 18: The impact of reprojection (cyan = disoccluded in layer 1; yellow = disoccluded in both layers) on radiosity.

c� 2014 NVIDIA Corporation and D. Nowrouzezahrai. All rights reserved.

Mara, McGuire, Nowrouzezahrai, and Luebke / Deep G-Buffers

5. Conclusions

We introduced the notion of a deep G-buffer with minimum
separation and a novel single-pass method for generating
one, with four variants for solving the problem of needing
the first layer’s depth before it is rendered. We then applied
that data structure to realistic, high-performance global il-
lumination using present-day hardware. Our robust deep G-
buffer indirect illumination sampling frames prior work on
similar effects in the context of radiometric estimation, and
we show how our deep G-buffers can be applied to such sam-
pling applications.

While multiple layers increase robustness in these impor-
tant scenarios, we showed that both the minimum separation
criterion and our single-pass implementation are essential to
generating high-performance, high-quality results. Finally,
we described a sampling and spatio-temporal reconstruction
strategy optimized for both image quality and performance.

Discussion. Our results illustrate, sometimes surprisingly,
that we can often approach quality associated with offline
global illumination using deep G-buffers. The techniques
fail gracefully and in ways that self-identify undersampled
regions, allowing fallback to a broad-scale strategy such as
precomputed light probes or dynamic sparse voxel octtrees.

All of our single pass methods can generalize from 2 to k
G-buffer layers, but the Prediction variant requires rendering
2k�1 layers per frame (k�1 for depth-only). The Reprojec-
tion (and less desirable Previous) variants require rendering
only k layers per frame.

Although the sampling biases that we intentionally in-
troduced for performance affect radiometric correctness, we
observe that results are still stable and give the perception of
plausible global illumination. We speculate that the reason
that the results are pleasing despite radiometric bias is rooted
in similar properties for manually constructed scenes and
images. We observe that 2D artists and live action film di-
rectors only seek to match correct illumination for the scene
at the broad scale. This is most evident on a television set,
where just off camera, an entire sound stage appears rather
than the remainder of the environment implied by the set.
The broad illumination from the missing half of the set is
supplied by large stage lights and diffusers. Within the set,
physics dictates that fine-scale illumination is accurate. Our
methods have a similar property, since they capture the fine-
scale geometry that is visible to the viewer but fall back to
broad-scale for that which is far from being seen.

Index of Supplemental Materials

We include video results and a C++/OpenGL implementa-
tion of deep G-buffer ambient occlusion and radiosity. The
ray casting used for our video and static results are included
with the demo source but are not used in the demo. Tem-
poral filtering is built directly into the open source support

library. Unlike the shader-based lighting passes of AO and
radiosity, single-pass deep G-buffer generation is both sim-
pler to implement and more API dependent, so we leave it
as pseudocode in this paper rather than providing executable
code.

Mara2014DeepGBufferDemo.zip Demonstration ap-
plication:

• README.TXT Information on the demo.
• DeepGBufferRadiosity.exe Demo compiled for

64-bit Windows 7 and 8 machines, tested on NVIDIA
Kepler-architecture GeForce GPUs.

• source/ C++/OpenGL source for the demo, which re-
quires the G3D Innovation Engine [MMO14] to build.

• data/shader/reverseReprojection.glsl
Reverse reprojection sample code.

• data/shader/reconstructFromDepth.glsl
Position from depth and deep G-buffer ray tracing sample
code.

Mara2014DeepGBuffer.mp4 Video results.

Acknowledgements

We thank Aaron Lefohn for motivating us to investigate
single-pass generation and constant feedback on the demon-
stration program, John Hughes for working with us on the
radiometric derivations, Frank Meinl and Guillermo M. Leal
Llaguno for their 3D models, Treyarch and DICE for the
use of their models, and Guedis Cardenas for rigging some
of the scenes. The publicly-distributable models used in our
experiments are available from http://graphics.cs.
williams.edu/data; the others are from TurboSquid
and the named games.

An early version of this work appeared in a 2013 NVIDIA
technical report [MML13], now superseded by this article.

References
[BCL⇤07] BAVOIL L., CALLAHAN S. P., LEFOHN A., COMBA

JO A. L. D., SILVA C. T.: Multi-fragment effects on the GPU
using the k-buffer. In I3D (2007), ACM, pp. 97–104. 3

[Ben14] BENTLEY A.: Engine postmortem of inFA-
MOUS: Second Son, 2014. GDC Talk. URL: http:
//adruab.net/wp-images/GDC14_infamous_
second_son_engine_postmortem.pdf. 5

[BM08] BAVOIL L., MYERS K.:Order independent transparency
with dual depth peeling. Tech. rep., NVIDIA, 2008. 3, 5

[Bra13] BRAINERD W.: Profiling results on Playstation4 at Ac-
tivision Maine, October 2013. Personal comm. 4

[BS09a] BAVOIL L., SAINZ M.: Multi-layer dual-resolution
screen-space ambient occlusion. In ShaderX7, Engel W., (Ed.).
2009. 2, 3, 4

[BS09b] BAVOIL L., SAINZ M.: Multi-layer dual-resolution
screen-space ambient occlusion. In SIGGRAPH 2009 Talks (New
York, NY, USA, 2009), ACM, pp. 1–1. 2, 3, 4

[Buk13] BUKOWSKI M.: Profiling results on NVIDIA GeForce
670 at Vicarious Visions, October 2013. Personal comm. 4

c� 2014 NVIDIA Corporation and D. Nowrouzezahrai. All rights reserved.

http://graphics.cs.williams.edu/data
http://graphics.cs.williams.edu/data
http://adruab.net/wp-images/GDC14_infamous_second_son_engine_postmortem.pdf
http://adruab.net/wp-images/GDC14_infamous_second_son_engine_postmortem.pdf
http://adruab.net/wp-images/GDC14_infamous_second_son_engine_postmortem.pdf

Mara, McGuire, Nowrouzezahrai, and Luebke / Deep G-Buffers

[Car84] CARPENTER L.: The A-buffer, an antialiased hidden sur-
face method. SIGGRAPH 18, 3 (Jan. 1984), 103–108. 3

[CDE⇤14] CIGOLLE Z. H., DONOW S., EVANGELAKOS D.,
MARA M., MCGUIRE M., MEYER Q.: A survey of efficient rep-
resentations for independent unit vectors. Journal of Computer
Graphics Techniques (JCGT) 3, 2 (April 2014), 1–30. URL:
http://jcgt.org/published/0003/02/01/. 8

[CG85] COHEN M. F., GREENBERG D. P.: The hemi-cube: a
radiosity solution for complex environments. SIGGRAPH 19, 3
(July 1985), 31–40. 7

[CG12] CRASSIN C., GREEN S.: Octree-based sparse voxeliza-
tion using the GPU hardware rasterizer. CRC Press, 2012. 3

[Cha11] CHAPMAN J.: Deferred rendering, transparency & al-
pha blending, January 2011. Blog post. URL: http://www.
john-chapman.net/content.php?id=13. 3

[CNLE09] CRASSIN C., NEYRET F., LEFEBVRE S., EISEMANN
E.: GigaVoxels: Ray-guided streaming for efficient and detailed
voxel rendering. In I3D (NY, NY, USA, 2009), ACM, pp. 15–22.
3, 4

[Cof11] COFFIN C.: SPU-based deferred shading for battle-
field 3 on playstation 3, 2011. GDC Talk. URL: http:
//dice.se/wp-content/uploads/Christina_
Coffin_Programming_SPU_Based_Deferred.pdf. 5

[CRW13] CHRIS RAINE T. S., WENZEL C.: Rendering
technologies of crysis 3, 2013. GDC Talk. URL: http:
//www.crytek.com/cryengine/presentations/
the-rendering-technologies-of-crysis-3. 5

[DS05] DACHSBACHER C., STAMMINGER M.: Reflective
shadow maps. In I3D (2005), ACM, pp. 203–231. 2, 3, 4, 6

[DWS⇤88] DEERING M., WINNER S., SCHEDIWY B., DUFFY
C., HUNT N.: The triangle processor and normal vector shader:
A VLSI system for high performance graphics. SIGGRAPH 22,
4 (June 1988), 21–30. 3, 4

[ED06] EISEMANN E., DÉCORET X.: Fast scene voxelization
and applications. In I3D (2006), ACM SIGGRAPH, pp. 71–78.
3

[Eve01] EVERITT C.: Interactive order-Independent trans-
parency. Tech. rep., NVIDIA, 2001. 3

[FM08] FILION D., MCNAUGHTON R.: Starcraft II effects &
techniques. In Advances in real-time rendering in 3D graphics
and games course notes, Tatarchuk N., (Ed.). August 2008. 5

[Hac05] HACHISUKA T.: High-Quality Global Illumination Ren-
dering Using Rasterization. GPU Gems 2 – Addison-Wesley Pro-
fessional, 2005, ch. 38. 2, 4

[Hal10] HALÉN H.: Style and gameplay in the Mirror’s Edge,
July 2010. Stylized Rendering in Games SIGGRAPH Course. 7

[HMY12] HARADA T., MCKEE J., YANG J. C.: Forward+:
Bringing deferred lighting to the next level. In Eurographics
2012-Short Papers (2012), The Eurographics Association, pp. 5–
8. 4

[ICG86] IMMEL D. S., COHEN M. F., GREENBERG D. P.: A
radiosity method for non-diffuse environments. In SIGGRAPH
(1986), ACM, pp. 133–142. 7

[JB10] JANSEN J., BAVOIL L.: Fourier opacity mapping. In I3D
(2010), ACM, pp. 165–172. 3

[LK10] LAINE S., KARRAS T.: Efficient sparse voxel octrees. In
I3D (NY, NY, USA, 2010), ACM, pp. 55–63. 4

[LV00] LOKOVIC T., VEACH E.: Deep shadow maps. In SIG-
GRAPH (2000), ACM Press, pp. 385–392. 3

[MB07] MYERS K., BAVOIL L.: Stencil routed a-buffer. In SIG-
GRAPH Sketches (2007), ACM. 3

[McG13] MCGUIRE M.: Profiling results on NVIDIA GeForce
660 at Unknown Worlds, October 2013. Personal comm. 4

[MG12] MICKAEL GILABERT N. S.: Deferred radiance trans-
fer volumes. Game Developers Conference. URL: http:
//twvideo01.ubm-us.net/o1/vault/gdc2012/
slides/Programming%20Track/Stefanov_
Nikolay_DeferredRadianceTransfer.pdf. 8

[MML12] MCGUIRE M., MARA M., LUEBKE D.: Scalable am-
bient obscurance. In HPG (June 2012). 3, 7, 9

[MML13] MARA M., MCGUIRE M., LUEBKE D.: Lighting
deep G-buffers: Single-pass, layered depth images with mini-
mum separation applied to indirect illumination, December 2013.
NVIDIA Technical Report. 15

[MMO14] MCGUIRE M., MARA M., OTHERS: G3D Innovation
Engine. http://g3d.sf.net, 2014. C++ library, version
10. 15

[MP01] MARK W. R., PROUDFOOT K.: The F-buffer: a
rasterization-order FIFO buffer for multi-pass rendering. In
Graphics Hardware (2001), ACM, pp. 57–64. 3

[NRS14] NALBACH O., RITSCHEL T., SEIDEL H.-P.: Deep
screen space. In I3D (2014), ACM, pp. 79–86. 3

[NSL⇤07] NEHAB D., SANDER P. V., LAWRENCE J.,
TATARCHUK N., ISIDORO J. R.: Accelerating real-time
shading with reverse reprojection caching. In Graphics
Hardware (2007), Eurographics Association, pp. 25–35. 6

[Per07] PERSSON E.: Deep deferred shading, November 2007.
Blog post. URL: http://www.humus.name/index.
php?page=3D&ID=75. 3

[PLAN98] POPESCU V., LASTRA A., ALIAGA D., NETO M.
D. O.: Efficient warping for architectural walkthroughs using
layered depth images. In IEEE Visualization (1998), pp. 211–
215. 3

[RGS09] RITSCHEL T., GROSCH T., SEIDEL H.-P.: Approx-
imating dynamic global illumination in image space. In I3D
(2009), ACM, pp. 75–82. 2, 3, 4

[SA07] SHANMUGAM P., ARIKAN O.: Hardware accelerated
ambient occlusion techniques on GPUs. In I3D (2007), ACM,
pp. 73–80. 2, 3, 4

[SA09] SINTORN E., ASSARSSON U.: Hair self shadowing and
transparency depth ordering using occupancy maps. In I3D’09
(New York, NY, USA, 2009), ACM, pp. 67–74. 3

[SA11] SUCHOW J. W., ALVAREZ G. A.: Motion silences aware-
ness of visual change. Curr. Bio. 21, 2 (2011), 140 – 143. 6

[Sal13] SALVI M.: Pixel synchronization: solving old graphics
problems with new data structures, 2013. SIGGRAPH Courses:
Advances in real-time rendering in games. 3, 4

[Sch12] SCHWARZ M.: Practical binary surface and solid vox-
elization with Direct3D 11. In GPU Pro 3, Engel W., (Ed.). A K
Peters/CRC Press, 2012, pp. 337–352. 3

[Sch14] SCHULZ N.: Moving to the next genera-
tion - the rendering technology of ryse, 2014. URL:
http://www.crytek.com/download/2014_03_
25_CRYENGINE_GDC_Schultz.pdf. 5

[SGHS98] SHADE J., GORTLER S., HE L.-W., SZELISKI R.:
Layered depth images. In SIGGRAPH (1998), ACM, pp. 231–
242. 3

[Shi91] SHIRLEY P.: Discrepancy as a quality measure for sample
distributions. In Eurographics (1991), Elsevier, pp. 183–194. 9

c� 2014 NVIDIA Corporation and D. Nowrouzezahrai. All rights reserved.

http://jcgt.org/published/0003/02/01/
http://www.john-chapman.net/content.php?id=13
http://www.john-chapman.net/content.php?id=13
http://dice.se/wp-content/uploads/Christina_Coffin_Programming_SPU_Based_Deferred.pdf
http://dice.se/wp-content/uploads/Christina_Coffin_Programming_SPU_Based_Deferred.pdf
http://dice.se/wp-content/uploads/Christina_Coffin_Programming_SPU_Based_Deferred.pdf
http://www.crytek.com/cryengine/presentations/the-rendering-technologies-of-crysis-3
http://www.crytek.com/cryengine/presentations/the-rendering-technologies-of-crysis-3
http://www.crytek.com/cryengine/presentations/the-rendering-technologies-of-crysis-3
http://twvideo01.ubm-us.net/o1/vault/gdc2012/slides/Programming%20Track/Stefanov_Nikolay_DeferredRadianceTransfer.pdf
http://twvideo01.ubm-us.net/o1/vault/gdc2012/slides/Programming%20Track/Stefanov_Nikolay_DeferredRadianceTransfer.pdf
http://twvideo01.ubm-us.net/o1/vault/gdc2012/slides/Programming%20Track/Stefanov_Nikolay_DeferredRadianceTransfer.pdf
http://twvideo01.ubm-us.net/o1/vault/gdc2012/slides/Programming%20Track/Stefanov_Nikolay_DeferredRadianceTransfer.pdf
http://g3d.sf.net
http://www.humus.name/index.php?page=3D&ID=75
http://www.humus.name/index.php?page=3D&ID=75
http://www.crytek.com/download/2014_03_25_CRYENGINE_GDC_Schultz.pdf
http://www.crytek.com/download/2014_03_25_CRYENGINE_GDC_Schultz.pdf

Mara, McGuire, Nowrouzezahrai, and Luebke / Deep G-Buffers

[SHRH09] SOLER C., HOEL O., ROCHET F., HOLZSCHUCH N.:
A Fast Deferred Shading Pipeline for Real Time Approximate In-
direct Illumination. Tech. rep., Institut National de Recherche en
Informatique et en Automatique, 2009. 3, 7

[SKS11] SOUSA T., KASYAN N., SCHULZ N.: Secrets of
CryENGINE 3 graphics technology. In SIGGRAPH Courses
(New York, NY, USA, 2011), ACM. 10

[SML11] SALVI M., MONTGOMERY J., LEFOHN A.: Adaptive
transparency. In HPG (2011), ACM, pp. 119–126. 3

[SS89] SALESIN D., STOLFI J.: The ZZ-buffer: A simple and ef-
ficient rendering algorithm with reliable antialiasing. In PIXM’89
(1989), pp. 415–465. 3

[ST90] SAITO T., TAKAHASHI T.: Comprehensible rendering of
3-d shapes. SIGGRAPH 24, 4 (1990), 197–206. 3

[TTV13] TATARCHUK N., TCHOU C., VENZON J.: Destiny:
From mythic science fiction to rendering in real-time. In
SIGGRAPH 2013 Talks (New York, NY, USA, 2013), ACM.
URL: http://advances.realtimerendering.com/
s2013/Tatarchuk-Destiny-SIGGRAPH2013.pdf. 5

[Val09] VALIENT M.: The rendering technology
of killzone 2, 2009. GDC Talk. URL: http:
//www.slideshare.net/guerrillagames/
deferred-rendering-in-killzone-2-9691589. 5

[VPG13] VARDIS K., PAPAIOANNOU G., GAITATZES A.: Multi-
view ambient occlusion with importance sampling. In I3D
(2013), ACM, pp. 111–118. 2, 3, 4

[Wil78] WILLIAMS L.: Casting curved shadows on curved sur-
faces. SIGGRAPH 12, 3 (Aug. 1978), 270–274. 4

[YK07] YUKSEL C., KEYSER J.: Deep Opacity Maps. Tech.
rep., Dept. of Comp. Sci., Texas A&M University, 2007. 3

c� 2014 NVIDIA Corporation and D. Nowrouzezahrai. All rights reserved.

http://advances.realtimerendering.com/s2013/Tatarchuk-Destiny-SIGGRAPH2013.pdf
http://advances.realtimerendering.com/s2013/Tatarchuk-Destiny-SIGGRAPH2013.pdf
http://www.slideshare.net/guerrillagames/deferred-rendering-in-killzone-2-9691589
http://www.slideshare.net/guerrillagames/deferred-rendering-in-killzone-2-9691589
http://www.slideshare.net/guerrillagames/deferred-rendering-in-killzone-2-9691589

