
A Non-Linear Filter for Gyroscope-Based Video
Stabilization

Steven Bell1, Alejandro Troccoli2, and Kari Pulli2

1 Stanford University, Stanford CA
sebell@stanford.edu

2 NVIDIA Research, Santa Clara CA
{atroccoli,karip}@nvidia.com

Abstract. We present a method for video stabilization and rolling-
shutter correction for videos captured on mobile devices. The method
uses the data from an on-board gyroscope to track the camera’s angular
velocity, and can run in real time within the camera capture pipeline. We
remove small motions and rolling-shutter distortions due to hand shake,
creating the impression of a video shot on a tripod. For larger motions,
we filter the camera’s angular velocity to produce a smooth output. To
meet the latency constraints of a real-time camera capture pipeline, our
filter operates on a small temporal window of three to five frames. Our
algorithm performs better than the previous work that uses a gyroscope
to stabilize a video stream, and at a similar level with respect to current
feature-based methods.

Keywords: video stabilization; rolling-shutter; gyroscopes

1 Introduction

Cell phones and other mobile devices have rapidly become the most popular
means of recording casual video. Unfortunately, because cell phones are hand-
held and light-weight devices operated by amateurs in the spur of the moment,
most videos are plagued by camera shake. Such shake is at best mildly distract-
ing, and at worst completely unbearable to watch. Additionally, most mobile
cameras use a rolling shutter sensor, where each horizontal scanline of pixels is
sequentially exposed and read out. When the camera moves during the exposure,
each image row captures a slightly different viewpoint, resulting in a distorted
image. Vertical motions cause the image to be squeezed or stretched vertically,
and horizontal motions shear the image so that vertical lines tilt to left or right.

At the same time, cell phones have gained the processing resources and fea-
tures that make real-time, on-device video processing possible. The majority of
mid-to-high range mobile devices contain a multi-core CPU complex, a graphics
processing unit (GPU) and an inertial measurement unit (IMU) with a 3-axis gy-
roscope. In this paper we address the challenge of performing video stabilization
on such devices, using the gyroscope for motion tracking. Unlike most proposed
stabilization methods, which operate as a post-processing step on a captured



2 Bell, Troccoli, and Pulli

video, our method can run in real-time as part of the camera capture pipeline.
In addition, our motion filter does a better job at removing camera shake than
previous methods that stabilize the video stream using gyroscope data [1].

Correcting a video frame before it is sent to the hardware video encoder is
beneficial in several ways. First, our algorithm has access to uncompressed data,
which is an improvement over off-line methods that need to decode and re-encode
and degrade the video quality when doing so. Moreover, because encoding meth-
ods such as H.264 rely on finding patches of image data which match between
frames, removing frame-to-frame shake and increasing the temporal consistency
of a video may improve the encoding quality and reduce the final storage size.
Finally, it is important to consider that many (perhaps most) videos shot with
cell phones are watched on the same device instead of being uploaded to a shar-
ing site. Likewise, video chatting, because of its real-time peer-to-peer nature,
requires that any stabilization be done on the device without inducing any lag.

Motion tracking is greatly simplified when using a phone’s on-board 3-axis
gyroscope. The camera orientation can be computed from the gyroscope mea-
surements using a handful of multiplications and additions, while image-based
methods must analyze thousands or even millions of pixels. As a result, motion
estimation using the gyroscope can dramatically reduce CPU utilization, mem-
ory bandwidth, and battery usage compared to image-based methods. A typical
MEMS gyroscope consumes about 4 milliwatts [2], while the power consumed
by the CPU and memory traffic can easily be tens or hundreds of milliwatts.

Additionally, image-based methods can fail when features are sparse or when
large objects move in the foreground. A gyroscope, by contrast, always reports
the device motion regardless of how much and in which way the objects in
the scene move. Furthermore, the gyroscope measurements allow us to estimate
intra-frame camera orientations which we can use to accurately correct rolling
shutter on a per-frame basis.

Compared to state-of-the-art stabilizers [3], our method provides a similar
level of stabilization quality at a fraction of the processing cost, with no degra-
dation due to foreground object motion.

2 Background and Prior Work

Video stabilization removes jitter from videos based on the assumption that
high-frequency motions are unintended and are the consequence of hand tremor.
It is essentially a three-stage process, consisting of a motion estimation stage, a
filtering stage that smooths the measured motion, and a re-synthesis stage that
generates a new video sequence as observed by a virtual camera moving under
the filtered motion.

Two-dimensional stabilization involves tracking image keypoints to find the
camera motion between frames, usually modeled as an affine or projective im-
age warp [3–7]. The video is re-synthesized by defining a virtual crop window
that is transformed according to the smoothed camera path. Matsushita et al .
[7] smooth the camera motion by applying a Gaussian kernel to a local window



Non-Linear Filter for Gyroscope-Based Video Stabilization 3

of 2D transforms. Gleicher et al . [4] take a different approach by segmenting
the camera path into shorter paths that follow a particular motion model, as
defined by cinematic conventions. Grundmann et al . [5] integrate this kind of
motion segmentation with saliency, blur, and crop window constraints in a uni-
fied optimization framework.

Image-based tracking methods suffer when depth variations induce pixel mo-
tions that, due to parallax, are not easily modeled by homographies. Further-
more, a rolling-shutter imaging sensor can introduce non-rigid frame-to-frame
correspondences that cannot simply be modeled by a global frame-to-frame mo-
tion model. To address rolling-shutter, Baker et al . [8] estimate and remove
the high-frequency jitter of the camera using temporal super-resolution of low-
frequency optical flow. Following up on their earlier work, Grundmann et al . [3]
developed a model based on a mixture of homographies that track the intra-frame
motions and produces stabilized videos with corrected rolling-shutter distortions.
Liu et al . [6] employ a mesh-based, spatially-variant motion representation cou-
pled with an adaptive space-time path optimization that can handle parallax
and correct for rolling-shutter effects.

Three-dimensional video stabilization techniques track the camera motion
in the world 3D space using structure-from-motion methods [9, 10]. These 3D
methods can deal with parallax distortions caused by depth variations in the
scene, and synthesize the output using image warps that take into account the
scene structure. Still, the motion estimation is brittle if there are not enough
features or sufficient parallax; and these methods are, in general, computationally
expensive.

Gyroscopes are an attractive alternative to feature-based motion estimation,
since they sidestep many of their failure cases. Karpenko et al . [1] and Hanning
et al . [11] describe video stabilization techniques for mobile devices which use
the built-in gyroscope to track the camera orientation. Both of these methods
apply a linear low-pass filter to the gyroscope output. Karpenko et al . [1] use a
Gaussian kernel, while Hanning et al . [11] apply a variable-length Hann window
to adaptively smooth the camera path. In contrast, we introduce a nonlinear
filtering method which completely flattens small motions regardless of frequency,
and performs low-pass smoothing when the virtual camera must move to keep
the crop window inside the input frame. When the camera is nearly still, our
virtual camera is fixed, removing all jitter. When moving, our method acts like
a variable IIR filter, mixing the input velocity with the virtual camera velocity
in a way that smooths the output, while guaranteeing that it tracks the input so
that the crop window never leaves the input frame. This nonlinearity is necessary
because a very low cutoff frequency is required to smooth out low-frequency
motions such as those induced by walking. A large low-pass FIR or IIR filter
introduces lag. Morever, any linear filter with a low enough cutoff frequency to
flatten low-frequency bouncing will also do a poor job tracking the input when
the camera is intentionally moved.

None of the previous cited work has a suitable real-time implementation that
eliminates camera shake. Karpenko et al . [1] implemented a truncated causal



4 Bell, Troccoli, and Pulli

(a) (b) (c) (d)

Fig. 1. Example crop polygons (shown in red) for a variety of scenarios: (a) no motion,
(b) vertical motion causes shrinking, (c) horizontal motion causes shearing, and (d) a
combination of motions causes a complex rolling-shutter distortion.

low-pass filter for their real-time implementation of viewfinder stabilization on
an iPhone. However, as mentioned in their paper, the truncated low-pass filter
attenuates camera shake, but does not completely remove it. They suggest that
for video recording it might be possible to hold back video frames for a longer
period of time to achieve a smoother result, and leave this implementation for
future work. But there is a limit on the number of frames that can be buffered,
and as we show in Section 4, a Gaussian low-pass filter that buffers five frames
still does not eliminate shake, while our method does.

Our primary contribution in this work is a novel smoothing algorithm that
uses the gyroscope to track the camera motion and is suitable for real-time im-
plementation. By using a nonlinear filter, we are able to produce static segments
connected by smooth motions, while tracking the input and using little to no
frame buffering.

3 Algorithm Description

Conceptually, video stabilization can be achieved by creating a crop rectangle
that moves with the scene content from frame to frame as the camera shakes
around. The position of the crop rectangle within the input frame may vary
wildly, but the content within the crop rectangle remains stable, producing a
smooth output. Our method is based on this idea, but instead of moving a
crop rectangle, we move a crop polygon, and the region within the polygon
is projectively warped to create the output video. This more flexible model
allows us to model the distortions introduced by the sensor’s rolling shutter, as
illustrated by Figure 1.

3.1 Camera Tracking Using the Gyroscope

We model the camera motion as a rotation in a global coordinate frame. The
gyroscope provides a series of discrete angular velocity measurements with time-
stamps, which we integrate to produce a function of time that describes the
camera orientation. In theory we could be more precise by also measuring trans-
lation with the device’s accelerometer, but in practice this is difficult and of
limited value. If the camera is 3 meters away from a flat scene, then the image



Non-Linear Filter for Gyroscope-Based Video Stabilization 5

motion induced by a 1 cm translation is equivalent to a rotation of 0.19 degrees,
which is far more likely to occur [12]. Moreover, the process of estimating gravity
and double-integrating acceleration to obtain translation is extremely sensitive
to error; plus the use of translation information requires knowledge about the
depth of objects in the scene.

In order to fix rolling shutter distortions, we need to know the orientation of
the camera at the time a particular row was exposed. Given the timestamp for
the first row of a frame t0, the timestamp for row r is

tr = t0 +
r

fl
ft, (1)

where ft is the total frame time (i.e., the time elapsed between the start of two
consecutive frames) and fl is the frame length in image rows. The frame length
is the sum of the image height (in pixels), plus the number of blanking rows,
where no data is read out. Both of these values depend on the image sensor and
capture mode, but we assume that they are known and constant for the duration
of the video. If these values are not provided by the sensor driver, they can also
be obtained by calibration [13, 14].

We can find the device orientation corresponding to a point x in an image
by calculating its corresponding row timestamp and interpolating the camera
orientation from known samples. Due to hardware and software latencies, there
is a small offset between the frame timestamps and the gyroscope timestamps.
We assume this offset td is known and constant for the duration of the capture.
In practice, we calibrate this offset as detailed in section 3.5.

We use a projective camera model with focal length f and center of projection
(cx, cy); these three parameters define the entries of the camera intrinsic matrix
K. The parameters are calibrated off-line using the OpenCV library [15]. With
the K matrix known, the relationship between corresponding points x1 and x2

on two different frames captured by a rolling-shutter sensor subject to rotational
motion is

x2 = KRc(t2)R−1c (t1)K−1x1, (2)

where the rotation matrix Rc represents the camera orientation in the camera’s
coordinate system as a function of time, and t1 and t2 are the row timestamps
for points x1 and x2.

We can re-write Equation 2 with respect to the gyroscope coordinate system
and time origin as

x2 = KTRg(t2 + td)R
−1
g (t1 + td)T

−1K−1x1, (3)

where Rg is the orientation derived from the gyroscope, T is the transformation
between the camera and the gyroscope coordinate systems, and td is the afore-
mentioned time offset between the gyroscope and camera data streams. Since
most mobile devices have the gyroscope and camera rigidly mounted with axes
parallel to each other, T is simply a permutation matrix. In our implementa-
tion, the transformation T is known since the Android operating system defines
a coordinate system for sensor data [16].



6 Bell, Troccoli, and Pulli

3.2 Motion Model and Smoothing Algorithm

We parametrize the camera path with the camera’s orientation and angular
velocity at each frame. We represent the physical and virtual camera orientations
at frame k with the quaternions p(k) and v(k). The physical and virtual angular
velocities are computed as the discrete angular changes from frame k to frame
k+ 1, and are represented as p∆(k) and v∆(k). Since the framerate is constant,
time is implicit in this representation of the velocity. For each new frame k, our
smoothing algorithm computes v(k) and v∆(k) using the virtual parameters
from the last frame, and the physical camera parameters from the last frame,
the current frame, and optionally a small buffer of future frames (5 or less).

Our smoothing algorithm creates a new camera path that keeps the virtual
camera static when the measured motion is small enough to suggest that the
actual intention is to keep the camera static, and that otherwise follows the
intention of the measured motion with smooth changes in angular velocity. As a
first step, we hypothesize a new orientation for the virtual camera by setting

v̂(k) = v(k − 1) · v∆(k − 1), (4)

where · denotes the quaternion product. Simply, this equation is computing a new
camera orientation by rotating the camera from its last known orientation while
keeping its angular velocity. Given this hypothetical camera orientation v̂(k),
we use Equation 2 to compute the coordinates of the corners of the resulting
crop polygon. In virtual camera space, the crop polygon is a fixed rectangle
centered at the image center, but in physical camera space, it may be be skewed
or warped, and moves around within the frame, as shown in Figure 1. The
crop polygon is smaller than the input size, which leaves a small amount of
“padding” between the polygon borders and the input frame edges, as shown
in Figure 2. We divide this padding into two concentric zones, which we will
refer to as the “inner region” and “outer region”. When the hypothetical crop
polygon lies within the inner region of the image we assert that the hypothesis
v̂(k) is good and make it the current camera orientation. In practice, we find
it advantageous to let the motion decay to zero in this case, which biases the
virtual camera towards remaining still when possible. Thus, if the crop polygon
remains completely within the inner region, we reduce the angular change by a
decay factor d and set the new virtual camera configuration to:

v∆(k) = slerp(qI ,v∆(k − 1), d), (5)

and
v(k) = v(k − 1) · v∆(k − 1). (6)

Here qI represents the identity quaternion, and the slerp function is the spherical
linear interpolation [17] between the two quaternions. In our implementation, we
set the mixing weight to d ≈ 0.95, so that the angular change is only slightly
reduced each frame.

If any part of the hypothetical crop polygon lies outside the inner region, we
update the virtual camera’s angular velocity to bring it closer to the physical



Non-Linear Filter for Gyroscope-Based Video Stabilization 7

Inner (static) region

Outer (movement) regionPadding

Crop polygon

Input frame

Fig. 2. Left: Crop polygon and the division of the padding space. Right: Velocity
mixing weight. Dark blue represents a strong weight (taking the input velocity); white
represents a small weight (keeping the current velocity).

camera’s rate of change:

v∆(k) = slerp(p′∆(k),v(k − 1), α). (7)

Here p′∆ is the orientation change that preserves the relative position of the crop
polygon from one frame to the next, calculated as

p′∆(k) = p(k) · p∗(k − 1) · v(k − 1), (8)

where p∗ denotes the quaternion conjugate that inverts the rotation. This equa-
tion calculates the physical camera motion from the previous to the current
frame in the virtual camera reference coordinate system. The term α is a mixing
weight that is chosen based on how much padding remains between the crop
polygon and the edge of the frame, as illustrated in the right hand side of Fig-
ure 2. Intuitively, if the crop polygon is only slightly outside the inner region,
α should be close to 1, assigning a higher weight to the current velocity. Con-
versely, if the hypothetical crop polygon is near the edge (or even outside), α
should be 0, so that the input velocity is matched, and the crop polygon remains
in the same position relative to the input frame. We calculate α with

α = 1− wβ , (9)

where w ∈ (0, 1] is the maximum protrusion of the crop polygon beyond the inner
region, and β is an exponent that determines the sharpness of the response. In
the extreme case where any corner of the crop polygon would fall outside the
input frame, w takes a value of 1, forcing α to 0 and causing the virtual camera
to keep up with the physical camera.

This algorithm works well, but it occasionally has to make quick changes in
velocity when the crop rectangle suddenly hits the edge. If frames can be buffered
within the camera pipeline for a short time before being processed, then a larger
time window of gyroscope data can be examined, and sharp changes can be
preemptively avoided. In the remainder of this section, we extend our algorithm
to use data from a look-ahead buffer to calculate a smoother path.

We can span a larger window of frames by projecting the virtual camera
orientation forward in time and comparing it to the actual orientation at the



8 Bell, Troccoli, and Pulli

0 10 20 30 40 50 60 70 80 90 100
−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

Frame number

D
eg

re
es

 p
er

 f
ra

m
e

Comparison of lookahead distance

 

 

Input

Lookahead = 0

Lookahead = 5

Lookahead = 10

Fig. 3. Comparison of paths for varying lookahead distances. Larger lookahead values
require more data to be buffered, but produce smoother output paths.

“future” time. Let a be the number of frames to look ahead, and hypothesize

v(k + a) = v(k − 1) · v∆(k)a+1. (10)

We can then compute v∆(k+a) and v(k+a) as we described for the no-lookahead
case. If the projection of the crop polygon a frames into the future is outside the
inner region, we can update v∆(k) to

v∆(k) = slerp(v∆(k + a),v∆(k), γ), (11)

where γ is a mixing factor that defines how much of the lookahead angular
change we should mix with the current one. Using values of γ close to 1 provides
a preemptive nudge in the right direction, without being a hard constraint. Note
that we do not update the virtual camera position that we computed without
lookahead, we only update the virtual camera velocity that we will be using for
the next frame.

Figure 3 shows a comparison of paths for a range of lookahead distances (mea-
sured in frames). Larger lookahead values produce smoother paths, since they
effectively “predict” large motions and gently cause the output to start moving.
But it is important to note that our algorithm can work without lookahead and
still produce good results.

3.3 Output Synthesis and Rolling-Shutter Correction

Once we have computed the new orientation of the virtual camera, we can syn-
thesize the output by projectively warping the crop polygon from the video input
to the virtual camera. Our crop polygon is essentially a sliced rectangle with mul-
tiple knee-points on the vertical edges, as shown in Figure 4. The knee-points
allow us to use a different transform for every slice of the polygon and fix rolling-
shutter distortions. For every slice we compute a homography matrix according



Non-Linear Filter for Gyroscope-Based Video Stabilization 9

H1

H2

H3

Fig. 4. Rolling-shutter correction is done by dividing the crop polygon in slices, each
of which is subject to a different projective warp.

0 50 100
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

Frame number

D
eg

re
es

 p
er

 f
ra

m
e

Walking

 

 

Input

Large inner region

Small inner region

0 50 100
−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

Panning

Frame number

Fig. 5. Single-axis comparison of the effects of the inner region size on the smoothing
result. A larger inner region can filter small motions more aggressively (left), but often
produces sharper motions when the camera moves abruptly (right).

to Equation 2. We fix the rotation matrix Rc(t2) to the orientation of the virtual
output camera, and compute Rc(tk), the orientation of the input camera at each
knee-point, from the gyroscope data. We set the coordinates of the crop polygon
as texture coordinates of an OpenGL shader program that projectively maps the
crop polygon from the input frame to the virtual camera. Note that in order to
effectively correct for rolling-shutter effects, the gyroscope sampling rate should
be higher than the frame read-out time. In our implementation we sample the
gyroscope at 200 Hz and use a total of 10 slices, or 9 knee-points per vertical
edge.

3.4 Parameter Selection

The most important parameters are the size of the output crop polygon and the
amount of padding allocated to the inner and outer regions. The crop size is a
trade-off between smoothing and image quality: larger crop polygons preserve
more of the input image, but leave less padding for smoothing out motions. The
padding allocation is a trade-off between completely removing motion and the



10 Bell, Troccoli, and Pulli

smoothness of the remaining motion. As illustrated in Figure 5, a large inner
region (green) is able to flatten out larger motions such as walking, but must
move more abruptly when the crop window approaches the edge of the frame.

3.5 Gyroscope and Camera Calibration

We solve for the time offset td using a calibration procedure that we developed
for this purpose. We place a calibration pattern, which consists of an asymmetric
grid of circles, in front of the camera. Then we record a video and the gyroscope
readings while rotating the camera vigorously. The circles are easily tracked
across frames, even in the presence of motion blur and rolling shutter effects.
We use the centroid of each circle as a feature point, and solve for td iteratively by
minimizing the sum of re-projection errors according to Equation 3. By repeating
the calibration on multiple data sets we determined that the offset td is nearly
constant. We also considered the possibility of doing an on-line calibration, by
tracking key-points as each frame is captured [18], but the off-line method proved
sufficient for our purposes.

The integration of any static offset in the gyroscope measurements will result
in an estimated orientation that slowly drifts away from the ground truth. How-
ever, our stabilization algorithm is not affected by such drift because it smooths
the relative change of orientation. We measure orientation changes in a window
of one to five frames, and in such a short time span, the integration drift is
negligible.

4 Results

We experimented with a prototype Android tablet, in which we installed a modi-
fied version of the Android OS that reads and saves the gyroscope measurements
while recording video. Using this tablet we recorded a series of videos represent-
ing typical use cases of casual video captured by a cell phone. For comparison
here, we discuss three scenes: a video recorded while walking, a video focusing on
a fountain, and panning video tracking a walking person. For the stabilization
algorithm, we set the width and height of the crop rectangle to be 80% of the
original video size, allocate the remaining 20% in width and height equally to
the inner and outer regions, and set the lookahead to 5 frames. The results show
that our method eliminates the high-frequency jitter while keeping the camera
as still as possible. To compare against previous work we also implemented video
stabilization using a Gaussian low-pass filter of the derived gyroscope orienta-
tions as done by Karpenko et al . [1], using a local window of eleven frames,
giving a forward lookahead of 5 frames as in our method and the same 80% crop
ratio. All original videos and results are included in the supplementary material
that accompanies this paper.

Figure 6 shows a quantitative comparison of the camera’s angular veloc-
ity rate of change for the original video, a stabilized video produced with the
Gaussian filtering of [1], and a stabilized video produced with our method. Our



Non-Linear Filter for Gyroscope-Based Video Stabilization 11

0 50 100 150 200
−0.2

−0.1

0

0.1

0.2
Fountain − angular velocity X

Frame number

D
eg

re
es

 p
er

 fr
am

e

0 50 100 150 200
−1

−0.5

0

0.5
Walking − angular velocity X

Frame number

D
eg

re
es

 p
er

 fr
am

e

0 50 100 150 200
−0.2

−0.1

0

0.1

0.2
Panning − angular velocity X

Frame number

D
eg

re
es

 p
er

 fr
am

e

0 50 100 150 200
−0.1

0

0.1

0.2

0.3

Frame number

D
eg

re
es

 p
er

 fr
am

e

Fountain − angular velocity Y

 

 

Original
Ours
Karpenko et al.

0 50 100 150 200
−0.4

−0.2

0

0.2

0.4
Walking − angular velocity Y

Frame number

D
eg

re
es

 p
er

 fr
am

e

0 50 100 150 200
−1

−0.5

0

0.5
Panning − angular velocity Y

Frame number

D
eg

re
es

 p
er

 fr
am

e

Fig. 6. Angular velocities of the camera in the X and Y axis. We show three different
scenes: a handheld camera pointed at a fountain as steadily as possible (left), a camera
held by a person walking (middle) and a camera panning while tracking a moving
object (right). Our method (green) can eliminate most of the small camera motions.
On the other hand, the Gaussian filter with a small window of support proposed in [1]
can remove high-frequency motions, but fails to completely remove camera shake.

method dramatically reduces the jitter in angular velocity, and even removes
it when possible, thus producing smoother results. The fountain video shows
that we can effectively simulate a static camera. Our method keeps the virtual
camera fixed for the first hundred and fifty frames and, when moving, follows
the actual camera smoothly. In the walking video, our method removes much
of the angular velocity changes, producing an output video which is pleasing
to view. The smoothed camera path is mostly free of rotational motions, but
still contains small vertical periodic motions due to translations of the camera
while walking. This is a limitation of our method, which cannot track transla-
tional camera motion; we discuss how to address this in the future work section.
Finally, the panning video highlights that our method can produce a smooth
virtual panning camera; the graph of angular velocity in the Y axis shows that
our result follows the velocity of the original camera. The green line follows the
original velocity (red line) during frames in the range [100, 150] at the same rate,
though slightly shifted in time. This is by design, since our method tries to keep
the static camera for as long as possible and then follows the original camera ve-
locity. ”Catching up” with the motion to center the crop window would require
introducing additional accelerations.

To further benchmark our method against the state-of-the-art in video sta-
bilization, we uploaded the videos to YouTube and ran the stabilization tool,
which is based on the work of Grundmann et al . [3]. Qualitatively, our method
stabilization results are similar to those produce by the YouTube stabilization. In



12 Bell, Troccoli, and Pulli

(a) (b)

(c) (d)

Fig. 7. Four different frames of the Fountain video blended together. The frames were
sampled at a 10 frame interval from: (a) the original video, (b) the video stabilized
using a truncated Gaussian filtering, (c) the video stabilized by YouTube, (d) the
video stabilized using our method. The blended results on (a) and (b) look blurry, due
to the motion of the camera. In contrast, the results from (c) and (d) look sharp, since
both methods were able to eliminate the camera motion.

Figure 7 we show the results of blending together four frames taken at 10-frame
intervals. The blended image from the original video is blurry, due to the motion
of the camera. On the other hand, the blended images generated by sampling
the stabilized videos produced from our and Grundmann’s method show sharp
results, showing both methods were able to remove the camera motion. Grund-
mann’s method can dynamically adjust the size of the crop window, which we
can observe is larger than ours in some cases, therefore retaining a larger area
of the frame and reducing the zoom effect in the stabilized video. Our method
keeps the size of the crop polygon fixed, but there is no impediment to making
it a dynamic part of the virtual camera configuration, as we discuss in the next
section. Additional comparisons are included with the supplementary material
video.

To fix rolling-shutter effects we determined from the sensor driver that the
effective frame length of our 1080p video recordings was 2214 lines. This cor-
responds to a read-out period of 16 ms and a blanking period of 17 ms. This is
fast enough that it is difficult to perceive rolling-shutter wobble effects within a
single frame. However, the effects quickly become visible in a video, even with
moderate shake. Figure 8 visually shows the effect of rolling shutter correction
by comparing a series of frames in a video with rolling shutter wobble. The sup-



Non-Linear Filter for Gyroscope-Based Video Stabilization 13

Fig. 8. Static visualization of rolling-shutter correction. The left image shows the av-
erage of four frames sampled at 10-frame intervals, without rolling shutter correction.
Stabilization is applied using the top of the frame as a reference, but rolling shutter
wobble causes the bottoms of the frames to be badly aligned. The right image shows
the same four frames with rolling shutter correction applied. The wobble is greatly
reduced, and the entire frame is much sharper.

0 50 100 150 200 250 300
−4

−2

0

2

4

Frame number

D
is
ta
n
ce

in
p
ix
el
s

Center pixel displacement X

 

 

iPhone 5
Ours

0 50 100 150 200 250 300
−4

−2

0

2

4

Frame number

D
is
ta
n
ce

in
p
ix
el
s

Center pixel displacement Y

 

 

iPhone 5
Ours

Fig. 9. Frame-to-frame displacement of the image center for a video sequence captured
with our real-time implementation and an iPhone 5. Our algorithm is able to reduce
motion for low-amplitude high-frequency shakes, as shown in the plot above.

plementary video contains additional video which demonstrates the effaciacy of
our method.

While the comparisons above were done offline in order to run the same
video through multiple filters, we have also implemented our algorithm within
the Android video capture stack, where it runs in real time. The filter itself,
running as a single thread on the CPU, operates in 160 microseconds. The image
warp, implemented as an OpenGL shader on the tablet’s GPU, runs in 15 ms.

Using this real-time implementation and fixing the crop ratio to 90% of the
original frame size, we ran our prototype tablet side-by-side with an iPhone 5,
both fixed rigidly to a supporting frame. A qualitative comparison of the video
sequence shows both look similar, with some instances in which our algorithm
produces better results, such as regions of high-frequency low-amplitude shakes,
as shown in Figure 9.

Our source videos, results and supplementary material video are available at
https://research.nvidia.com/publication/non-linear-filter-gyroscope-based-video-
stabilization .



14 Bell, Troccoli, and Pulli

5 Conclusions and Future Work

We have presented a novel solution for video stabilization with rolling-shutter
correction using the gyroscope in a mobile device. Our method is fast and can
run in real-time within the camera processing pipeline. The stabilization can
work on each incoming frame as it is received, but can also benefit from an
optional buffer window that holds up to five frames. By using the gyroscope
to track the camera motion we are able to do better in some scenes than most
feature-based methods, which fail when there is lack of texture, excessive blur,
or large foreground moving objects. We also improve on previous techniques
that use the gyroscope for camera motion by using a novel filtering approach
that results in smoother motions. To achieve this we assume the intention of the
person recording the video is to keep the camera as static as possible or make a
smooth linear motion. These assumptions hold for a wide range of videos.

Our method may under-perform the state-of-the-art in feature tracking meth-
ods on videos where the camera is subject to large translations. Translational
motion cannot be tracked by the gyroscope. While it might be possible to use
the accelerometer that accompanies the gyroscope in most mobile devices, esti-
mation of translation from the accelerometer readings is less robust due to the
double integration of the accelerometer data. In addition, large translations will
cause occlusions and dis-occlusions in the image due to the parallax. In this case,
projectively warping the crop polygon can cause distortions near the occlusion
boundaries. Unfortunately, more sophisticated methods that can handle parallax
[6] cannot run in real-time.

Our method can run on scenes with no trackable features or large motion
of foreground objects, which feature-based might struggle with. In addition, our
method works at a fraction of the computational time and cost because we don’t
need to compute features at all.

We intend to improve the system in the future in several ways. Firstly, our
current algorithm keeps a fixed-size crop window; better stabilization might be
achieved if we can vary the crop size smoothly across frames. In addition, we
would like to explore the possibility of adding the ability to handle small transla-
tions by visual tracking of a sparse set of features. This tracking will be simplified
by that fact that the camera rotation is already accounted for from the gyro-
scope data, and could be further conditioned to be done only when a significant
change in acceleration is detected by the accelerometer. Finally, we would like
to explore the possibility of storing the gyroscope readings as a separate track of
the output video file, to enable further off-line stabilization using the gyroscope
data if desired.

6 Acknowledgements

We thank Orazio Gallo for his helpful suggestions and feedback on earlier revi-
sions of this paper.



Non-Linear Filter for Gyroscope-Based Video Stabilization 15

References

1. Karpenko, A., Jacobs, D., Baek, J., Levoy, M.: Digital video stabilization and
rolling shutter correction using gyroscopes. Technical Report CTSR 2011-03, De-
partment of Computer Science, Stanford University (2011)

2. Corporation, I.: Mpu-6050 product specification.
http://invensense.com/mems/gyro/documents/PS-MPU-9250A-01.pdf

3. Grundmann, M., Kwatra, V., Castro, D., Essa, I.: Calibration-free rolling shutter
removal. In: IEEE ICCP. (2012)

4. Gleicher, M.L., Liu, F.: Re-cinematography: improving the camera dynamics of
casual video. In: ACM Multimedia. (2007)

5. Grundmann, M., Kwatra, V., Essa, I.: Auto-directed video stabilization with robust
l1 optimal camera paths. In: IEEE CVPR. (2011)

6. Liu, S., Yuan, L., Tan, P., Sun, J.: Bundled camera paths for video stabilization.
ACM Trans. Graph. 32(4) (2013)

7. Matsushita, Y., Ofek, E., Ge, W., Tang, X., Shum, H.Y.: Full-frame video stabi-
lization with motion inpainting. IEEE PAMI 28(7) (2006)

8. Baker, S., Bennett, E., Kang, S.B., Szeliski, R.: Removing rolling shutter wobble.
In: Computer Vision and Pattern Recognition (CVPR), IEEE Conference on, IEEE
(2010) 2392–2399

9. Liu, F., Gleicher, M., Jin, H., Agarwala, A.: Content-preserving warps for 3D video
stabilization. ACM Transactions on Graphics (TOG) 28(3) (2009)

10. Liu, F., Gleicher, M., Wang, J., Jin, H., Agarwala, A.: Subspace video stabilization.
ACM Transactions on Graphics (TOG) 30(1) (2011)

11. Hanning, G., Forslow, N., Forssén, P., Ringaby, E., Tornqvist, D., Callmer, J.:
Stabilizing cell phone video using inertial measurement sensors. In: IEEE ICCV
Workshops. (2011)

12. Joshi, N., Kang, S.B., Zitnick, C.L., Szeliski, R.: Image deblurring using inertial
measurement sensors. ACM Trans. Graph. 29(4) (July 2010) 30:1–30:9

13. Forssen, P., Ringaby, E.: Rectifying rolling shutter video from hand-held devices.
In: IEEE CVPR. (2010)

14. Oth, L., Furgale, P., Kneip, L., Siegwart, R.: Rolling shutter camera calibration.
In: IEEE CVPR. (2013)

15. Various: OpenCV library. http://code.opencv.org
16. Google: Android operating system developers api guide.

http://developer.android.com/guide/topics/sensors/sensors overview.html
17. Shoemake, K.: Animating rotation with quaternion curves. ACM SIGGRAPH

computer graphics 19(3) (1985) 245–254
18. Li, M., Mourikis, A.: 3-D motion estimation and online temporal calibration for

camera-IMU systems. In: Robotics and Automation (ICRA), 2013 IEEE Interna-
tional Conference on. (2013) 5709–5716


