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Figure 1: Large image rendered with Agregate G-Buffer Anti-Aliasing (AGAA). The AGAA results (red outlines) shade only twice per pixel,
give comparable results to the MSAA reference image shaded eight times per pixel, and use 33% less memory. AGAA reduces aliasing by
prefiltering the scene’s sub-pixel geometric detail (foliage, thin railings, etc.) into an aggregate G-buffer that models the distribution of
geometry projecting into each pixel.

Abstract

We present Aggregate G-Buffer Anti-Aliasing (AGAA), a new
technique for efficient anti-aliased deferred rendering of complex
geometry using modern graphics hardware. In geometrically com-
plex situations, where many surfaces intersect a pixel, current ren-
dering systems shade each contributing surface at least once per
pixel. As the sample density and geometric complexity increase,
the shading cost becomes prohibitive for real-time rendering. Under
deferred shading, so does the required framebuffer memory. AGAA
uses the rasterization pipeline to generate a compact, pre-filtered
geometric representation inside each pixel. We then shade this at
a fixed rate, independent of geometric complexity. By decoupling
shading rate from geometric sampling rate, the algorithm reduces
the storage and bandwidth costs of a geometry buffer, and allows
scaling to high visibility sampling rates for anti-aliasing. AGAA
with 2 aggregate surfaces per-pixel generates results comparable to
8x MSAA, but requires 30% less memory (45% savings for 16x
MSAA), and is up to 1.3x faster.

Keywords: anti-aliasing, GPU architecture, graphics pipelines,
shading, decoupled shading, pre-filtering

1 Introduction

High-quality renderers sample geometrically complex environ-
ments, such as those containing foliage, fur, or intricate geome-
try (e.g. the tables and furniture details in figure 1) at high rates
to capture sub-pixel detail. These environments are challenging for
any rendering system, but are particularly difficult for real-time sys-
tems, especially those based on deferred shading, a technique fre-
quently employed by games.

First, despite the high performance of modern GPUs, evaluating the
shading function at high sampling rates remains too costly for real-
time applications. Second, because a deferred shading system de-
lays all shading computations until after geometric occlusions have
been resolved, it must buffer shading inputs for all samples in the
renderer’s G-buffer. At high sampling rates, the storage and mem-
ory bandwidth costs of generating and accessing this buffer become
prohibitive. For example, a 1920×1080 G-buffer holding 16 sam-
ples per pixel encoded using a typical 20-bytes-per-sample layout
requires over 600 MB of storage.

To reduce these costs, game engines typically provision storage
for, and limit shader evaluation to, only a few samples per pixel
(e.g. four [Tatarchuk et al. 2013]). Post-process anti-aliasing tech-
niques [Chajdas et al. 2011; Lottes 2009] increase image quality
using neighboring pixels or temporally re-projected sample infor-
mation from previous frames. Such techniques generally introduce
blur and fail to capture the appearance of sub-pixel details, as illus-
trated in figure 2.

In this paper, we focus on efficiently shading scenes with many dis-
tinct geometric elements contributing to the appearance of a single
pixel, in the context of real-time deferred rendering systems. The
core idea of our technique is to decouple the rate at which lighting



is sampled, which we want to keep as low as possible, from the
sampling rate of geometry and materials. Our goal is to perform
this decoupling while preserving the appearance of high frequency
details in the image.

We achieve this goal by taking inspiration from surface-based pre-
filtering and voxel-based pre-filtering techniques (cf. section 2). We
create a new deferred shading pipeline that dynamically generates
and shades compact per-pixel aggregates of statistically defined at-
tributes, instead of samples from individual scene surfaces. We call
this new data structure an aggregate G-buffer. It compactly en-
codes the distribution of depths, normals, and other shading quan-
tities needed for shading.

We find that only two to three shader evaluations per pixel are re-
quired to achieve image quality (even under motion) commensurate
with densely point-sampled results. Because the proposed method
operates on the outputs of the rasterizer, it is highly general, avoids
analyzing and storing statistics for off-screen or occluded geometry,
and supports dynamic scenes.

The key contributions of this work are:

• A new deferred rendering pipeline that dynamically generates
and shades pre-filtered shading attributes.

• A clustering scheme which distributes geometric samples
among aggregates in order to maximize shading quality.

• A screen-space pre-filtering technique that dynamically filters
attributes from potentially disjoint primitives.

• A shading scheme which operates directly on pre-filtered at-
tributes and handles shadowing correctly.

2 Related Work

Decoupling shading rate from visibility sampling rates is a key
idea in real time rendering, and is used in the context of both for-
ward [Akeley 1993] and deferred rendering [Lauritzen 2010] as
well as in the context of stochastic rasterization [Clarberg et al.
2013; Liktor and Dachsbacher 2012; Ragan-Kelley et al. 2011].
The key idea of each of these approaches is to reuse shading results
across visibility samples from the same surface. Our work is based
on the same reuse principle, but reuse is applied across multiple
(potentially disconnected) primitives.

A simple way to reduce shading work in a deferred shading pipeline
is to shade once per pixel if it contains only one surface, or to shade
every sample in all other cases [Lauritzen 2010]. This scheme
does not reduce memory requirements and speeds up rendering
only when triangles are large, and there is only one triangle cov-
ering most pixels. Other techniques hallucinate additional detail
through data-dependent resampling of shading results in adjacent
pixels [Reshetov 2009; Chajdas et al. 2011; Reshetov 2012] or re-
projection of results from prior frames [NVI 2014; Herzog et al.
2010].

Our work improves on the approach of Salvi et al. [2012], which
analyses the results of dense geometry sampling during rasteriza-
tion to identify and retain exactly one fragment from the n “most
important” surfaces per pixel. However their method discards infor-
mation from all other surfaces, which leads to aliasing in situations
where many surfaces contribute to a pixel’s appearance. Kerzner
and Salvi [2014] improve on this technique by designing a single-
pass rendering algorithm which allows merging shading attributes
belonging to similar non-intersecting planes, at the cost of a soft-
ware evaluation of visibility using an interlocked fragment shader.

Our efforts to maximize image quality given fixed G-buffer storage
also bare similarity to K-buffer-based schemes that merge shading
outputs for anti-aliasing and transparency [Jouppi and Chang 1999;
Bavoil et al. 2007].

Our approach to modeling the distribution of rasterized geome-
try in a pixel takes inspiration from prior efforts to encode and
prefilter geometric detail stored in 2D or 3D textures [Olano and
Baker 2010; Toksvig 2005; Dupuy et al. 2013; Han et al. 2007;
Bruneton and Neyret 2011; Olano and North 1997; Fournier 1992a;
Fournier 1992b]. However, rather than tabulate and prefilter geo-
metric detail for each surface in a rendering preprocess, our work
leverages rasterization to dynamically aggregate per-pixel statistics
across multiple surfaces. Unlike dynamic voxelization-based ap-
proaches [Christensen and Batali 2004] which perform similar ag-
gregation, our system operates in screen space using a compact,
fixed amount of storage, while guaranteeing per-pixel detail.

Techniques such as sprites and billboard clouds [Décoret et al.
2003; Lacewell et al. 2006] allow reflectance from complex geome-
tries to be properly pre-filtered and renderer at low cost but betray
their lack of 3D information when viewed up close. Further, they do
not encode surface attributes for dynamic shading and incur large
storage cost for animated objects.

Last, an alternative approach to reducing rendering costs for geo-
metrically complex scenes is to simplify input geometry prior to
rasterization by approximating it with a lower resolution model
(see Luebke et al. [2002] for a survey of techniques). Simplifi-
cation techniques seek to discard a subset of scene elements while
adjusting surface material properties using aggregate statistics to
preserve overall object appearance [Cohen et al. 1998; Yoon et al.
2006; Cook et al. 2007]. These approaches are attractive in that
they also reduce that cost of geometry processing during rendering,
while our work, like other dynamic filtering approaches, requires
additional geometry processing. However, without fixed-shading
rate guarantees they do not necessarily reduce the cost of shading
or G-buffer storage, which are our primary concerns.
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Figure 2: Complex objects like the Fur Ball exhibit significant sub-
pixel details (up to 32 triangles per pixel here) and cannot be anti-
aliased using post-process screen-space anti-aliasing techniques
like FXAA [Lottes 2009] (top-right). In contrast, our technique
allows capturing these sub-pixel details, while shading only twice
per pixel (bottom-left).

3 Algorithm

Our method analyzes post-projection geometry and represents the
collection of distinct geometric primitives visible in each pixel us-
ing a small, fixed number of geometry aggregates. Each aggregate
corresponds to a subset of the primitives visible in the pixel, includ-
ing their coverage, the mean and standard deviation of primitive



depths and normals, and mean values of relevant surface attributes.

The following subsections describe a four-step process for gener-
ating and storing per-pixel geometry aggregates in an aggregate G-
buffer, and then using the aggregates for efficient deferred shading
of aggregate detail.

3.1 Overview

Our technique operates within a four-stage renderer illustrated in
figure 3:

1. Dense Visibility Sampling (depth + compressed normals
prepass): render geometry, storing depth and compressed nor-
mals using n visibility samples per pixel.

2. Aggregate Assignment: group surface samples visible in a
pixel into c aggregates by analysing per-sample depth + nor-
mal buffer.

3. Aggregate G-buffer generation: generate aggregate G-
buffer by rendering geometry and accumulating shading in-
puts into c aggregates per pixel.

4. Aggregate deferred shading: screen-space deferred lighting
pass(es) using the aggregate shading inputs.

These steps look very similar to the 4 stages of SBAA [Salvi and
Vidimče 2012], nevertheless because the two algorithms make dif-
ferent assumptions, the actual algorithm implemented by each stage
is quite different.

3.2 Dense Visibility Sampling

The goal of the first step is to determine geometric visibility at per
sample granularity, as well as generating a per-sample normal in-
formation that will be used for clustering samples into aggregates
in the subsequent stage. We do so by rasterizing scene geometry
into a screen-space geometry buffer storing depth (standard depth
buffer) and a low-precision surface normal information (cf. lay-
out in figure 5) for each sample. We use a high multi-sampling rate
(e.g., 8×MSAA which is natively supported by the GPU, and up to
32 samples per pixel with emulation) to ensure the geometry buffer
captures the fine-scale geometric details.

In practice, the cost of the dense visibility pass is lower than the
subsequent full geometry pass (sampling all the attributes), since
it only requires generation of surface depth and normals (we store
flat triangle normals and do not evaluate normal maps in this pass).
In the case of transparency surfaces, this pass does also sample the
alpha map to determine coverage (cf. section 3.6).

The outputs of this pass are a multisampled depth-buffer and a low
precision normal buffer. Normals are encoded using (θ, φ) spher-
ical coordinates in pixel-space, and stored inside two 8-bit color
components (RG8, cf. figure 5). Because we are using actual prim-
itive normals, and primitives are back-face culled, then only the
visible hemisphere of normal directions needs to be represented.

3.3 Aggregate Assignment

The second step is to assign each of the n visibility samples to one
of the c aggregates (e.g., c = 2, 3, 4) using a clustering algorithm.
This is done within a compute shader pass (cf. implementation de-
tails in section 4) by using the per-sample depth and low-precision
normal information generated in the previous stage. The output of
the aggregate assignment pass is mapping of samples to clusters
(that we call aggregates metadata). In a 4-cluster configuration, we

encode this mapping using two bits per sample as shown in Fig-
ure 4. Thus the mapping requires two-bytes per pixel when using
8x-MSAA visibility sampling.

Note that because many scenes contain an emissive skybox that
does not require shading, we exclude samples at the maximum
depth value from aggregate assignment. Thus, the aggregate sam-
ple counts sum to less than n and measure the fractional coverage
by objects at finite distance from the camera.

3.3.1 Grouping criteria

In contrast to previous techniques like SBAA [Salvi and Vidimče
2012] or Streaming G-Buffer Compression [Kerzner and Salvi
2014], which group samples which belong to similar surfaces (with
similar plane equations), our goal is to minimize errors dues to
aggregation of samples with correlated attributes [Bruneton and
Neyret 2011]. Consequently, we have no restriction of minimum
similarity between primitives’ support planes, and we support ag-
gregating samples from different disjoint surfaces.

The shading model (based on pre-filtered attributes) accurately es-
timates the full lighting computation only when the value taken by
the different attributes must be statistically independent [Bruneton
and Neyret 2011], meaning there should be no link between the
probability of occurrence of one attribute and the probability of an-
other one. For instance, if within a pixel there is a set of blue sam-
ples which are in shadow and another set of red samples which are
lit, then the correlation between the shadowing and the albedo input
parameters of the shading equation will produce inaccurate results
when filtering them.

Our goal is to assign samples to aggregates in a manner that reduces
the likelihood of highly correlated attributes. In practice, most is-
sues arise from correlation between the surface orientations (which
determines shading), as well as the shadowing, and the other at-
tributes. In addition, because the simple normal distribution model
that we use is uni-modal and isotropic (cf, section 4), a few dissim-
ilar normals can’t be represented precisely in the same aggregate
and we aim at avoiding this case.

Consequently, we designed the clustering algorithm to favor both
shadowing-based and orientation-based grouping of samples. Be-
cause the shadowing information is not available at cluster cre-
ation time, our algorithm favour distance-based grouping of sam-
ples, based on the assumption that shadowing discontinuities are
low enough frequency to be captured by spatial locality.
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Figure 4: Illustration of the memory layout description for per-
pixel aggregates Metadata information used for per-fragment ag-
gregate selection. In this example we use 8× MSAA rasterizaton
and c = 4 aggregates. CS0 − CS7 indicates the two bits (A0,
A1) used to encode the aggregateID associated to each of the 8
coverage samples.

3.3.2 Clustering scheme

We cluster surface samples into aggregates using a fast O(n · c2)
algorithm that can be viewed as a crude approximation to princi-
ple component analysis (see Algorithm 1). In this algorithm, the
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Figure 3: Functional view of the 4 processing stages of the execution pipeline of the technique, together with the output of each stage and
their storage frequency.

distance d between surface samples a and b is given by:

d(xyza, xyzb, n̂a, n̂b) = |(xyza − xyzb)/k|2 +
(1− n̂a · n̂b)

2
,

(1)
where constant k is the characteristic length of the scene. It cancels
the distance units and specifies the largest scale at which one ex-
pects important local detail, i.e., at which orientation differences
should give way to position differences. We used k = 10 cm
for our experiments. This distance function extends meaning-
ful semantics to the scale factor in Chajdas et al.’s [2011] and
Reshetov’s [2012] post-shading aggregating metrics.

Algorithm 1 Aggregate assignment algorithm
1. Define c aggregates

(a) Read depth and normal for each screen-space sample.
Convert depth to position.

(b) Compute average position and normal of all samples
(c) Define first aggregate as sample, s0, that is farthest

from average (using distance metric based on position
+ normal) using Equation 1 to compute distance.

(d) Define second aggregate as sample, s1, that is farthest
from s0.

(e) Define each additional aggregate by finding the sample
with the largest sum of square distances from the exist-
ing aggregates.

2. Assign remaining visible samples to aggregates
(a) Assign each sample to the closest aggregate.

3. Store a sample mask for each aggregate

Note that in order to reduce shading workload to its minimum, we
create aggregates only if they are separated by a minimum distance
t from previously defined aggregates. Once the clusters are de-
fined, the algorithm classifies each sample as belonging to the near-
est cluster using distance function d.

3.4 Aggregate G-buffer Generation

The third step of the algorithm generates the aggregate G-buffer
by rasterizing scene geometry a second time, evaluating material
shader inputs at each visibility sample and combining these values
to compute a statistical model of the attribute’s value for each of
the c aggregates per pixel. Similarly to MIP-mapping based tech-
niques, which pre-filter the parameters of the shading function on a
surface, our technique assumes separability of the terms of the shad-
ing equation in order to average these attributes separately [Brune-
ton and Neyret 2011; Heitz and Neyret 2012]. This requires that the
inputs of the shading function can be factored into linearly combin-
able terms, as we will discuss in section 4.3.

We compute aggregate’s values efficiently by rasterizing the scene

with n×MSAA coverage, using early depth testing to ensure only
visible samples generate fragment coverage in a pixel (thanks to
the depth buffer generated during the prepass). The resulting frag-
ment uses the aggregates metadata information to select the aggre-
gate the current fragment contributes to, then blends its contribution
into the frame-buffer element corresponding to the aggregate. Pseu-
docode for the G-buffer generation pass is given in Algorithm 2,
and further details about it’s implementation on modern GPUs is
discussed in Section 4.2.

3.4.1 Pre-filtered attributes

G-buffer shading parameter are application-specific. We build sta-
tistical distribution information for each shading attribute, in order
to account for the discrepancy during the shading (cf. next section).
We chose to model this statistical information as the first (mean)
and second (variance) moments of a Gaussian distribution. In prac-
tice, we only construct these distributions for the normal directions
and the sub-pixel position of each aggregate, and we only retain the
first moment (average) of the other attributes.

We handle normal distributions using either the Toksvig [2005] ap-
proximation (for isotropic normal distributions) or a LEAN map-
ping distribution [Olano and Baker 2010] for anisotropic normal
distributions. Other distribution schemes such as cLEAN [Baker
2011] and LEADR [Dupuy et al. 2013] could also be used. While
the standard usage of such normal distribution is to model micro-
geometry, we use it to model both micro- and meso- scale geometric
distributions, coming from texture details as well as real triangle-
based geometry.

We don’t explicitly store the roughness (or Blinn-Phong’s specular
exponent), but instead rely on the Toksvig representation to encode
it directly, which also has the advantage of being linearly filterable.

3.5 Deferred shading

The deferred shading stage can be implemented using any screen-
space deferred lighting technique (full-screen pixel shader, GPU
compute shader, per-light bounding box rasterization, etc.). In
contrast to traditional G-buffered shading, which performs shad-
ing once per pixel, or once per sample, our system shades once per
aggregate.

Although AGAA performs n/c fewer surface shader evaluations
than a system using supersampled shading, these evaluations are
more costly. (see Section 5.2). After shading, the result shaded
color for each aggregate is weighted by its relative sample count,
and then all shading results are composited together and over the
background image.



3.5.1 Aggregate shading

Shading an aggregate is very similar to shading a MIP-mapped and
bilinearly-filtered sample from a single surface and material [Olano
and Baker 2010; Han et al. 2007; Olano and North 1997; Fournier
1992b; Fournier 1992a]. Similar to this use case, and in contrast
with volumetric pre-filtering [Heitz and Neyret 2012; Crassin et al.
2009], there is no need for filtering visibility since we rely on the
geometry pre-pass to aggregate visible attributes.

The algorithm is independent of the shading model. For our experi-
ments, we use the Blinn-Phong shading model, and we compute the
pre-filtered shading for the Lambertian and Specular components
separately. Other analytic BRDF models (based on Beckmann or
GGX microfacet distributions for instance) could also be used, as
long as their parameters can be linearly pre-filtered [Bruneton and
Neyret 2011; Olano and Baker 2010].

There are three important differences with surface-based filtering in
our case. First, filtering the specular reflectance is not enough, since
variations in the sub-aggregate surfaces orientations can also lead
to important differences in the diffuse shading as shown in [Dupuy
et al. 2013]. We follow [Baker and Hill 2012] analytic approxi-
mation for filtering the diffuse component from the Toksvig nor-
mal distribution. Second, because the support geometry for these
attributes can spread large depth extents per-pixel, the shadowing
term must also be filtered. This problem will be discussed in the
next section. Finally, very large depth discrepancy within an aggre-
gate can induce potentially important light direction discrepancy in
case of nearby light sources. This case can be accounted for by
re-injecting, for each light source, the variance of light directions
as additional variance in the normal distribution. However in prac-
tice, this effect appear very limited, thanks to our clustering scheme
which tends to avoid such elongated aggregates (cf. section 3.3).

3.5.2 Shadowing

Among local shading terms, shadowing also needs to be filtered in
order to account for differences of light visibility within a given ag-
gregate. This is done independent of the initial number of visibility
samples included within each aggregate. The idea is to sample the
visibility within the shadow-map inside the shape of the aggregate,
which we statistically defined by the mean and variance of the depth
value. In practice, we reconstruct the world-space 3D position and
variance vector, and project them inside the shadowmap to sam-
ple within this footprint using a fixed number of samples (usually
3-4 taps, or using hardware anisotropic filtering). Even though it
is generally not necessary in practice, a more precise filtering can
be obtained by reconstructing the anisotropic ellipsoid shape of the
aggregate from the 3D world-space position of each sample. This
can be done by computing the 3D covariance matrix representing
the statistical distribution of positions within the aggregate.

Instead of numerically sampling the shadowing term, shadow-map
pre-filtering techniques [Donnelly and Lauritzen 2006] could also
be used in order to de-correlate even more the cost of shadowing
from the extent of the aggregate that we are shading. We haven’t
explored this direction, but this is definitely an interesting future
work.

In case of strong correlation between shadowing and other param-
eters, it is also possible to evaluate the shadowing per-sample, dur-
ing the G-buffer generation pass, and pre-multiply the per-sample
albedo and specular coefficients by the shadowing term before ag-
gregating them. However, such an approach makes the shadowing
cost scaling with the number of samples, which is not desirable,
especially when many lights need to be evaluated.

3.6 Handling transparency

Because it supports high sampling rate visibility, our technique
is compatible with stochastic rasterization techniques [Akenine-
Möller et al. 2007] and hardware alpha-to-coverage conver-
sion [Kirkland et al. 1999]. Our implementation rasterizes fine-
detail geometry modelled using alpha-textured polygons (e.g.,
leaves), as well as translucent primitives, using alpha-to-coverage.
Because the visibility is determined during the geometric prepass
(stage 1), the alpha texture sampling and coverage generation only
need to be performed during this pass.

4 GPU Implementation and Optimizations

In this section, we discuss some important details for the efficient
implementation of this algorithm on the GPU.

4.1 Accelerating aggregate assignment

The clustering algorithm in Section 3.3 assumes that surface depth
and normal information is stored per sample as a result of ras-
terization in pass 1. However, many modern GPUs implement
depth-buffer compression mechanisms which store plane equations
and coverage masks for visible triangles within a screen tile, as
opposed to explicit depth samples (See Hasselgren and Akenine-
Möller [2006] for a good description of a modern depth compres-
sion implementations). When the depth buffer is stored in a form
that directly represents the T < c triangles in a tile, aggregate
assignment can be accelerated by operating directly on the stored
triangles, instead of individual samples. That is, when geometric
complexity in a screen region is low, the cost of constructing aggre-
gates for this region can be reduced.

4.2 Target-independent rasterization into the aggre-
gate G-buffer

The aggregate G-buffer generation algorithm, described in Al-
gorithm 2, rasterizes the scene using n MSAA samples, while
the filtered attributes associated to the c per-pixel aggregates are
stored in a set of color render targets with c MSAA samples.
We rely on target independent rasterization, a feature available
through the NV framebuffer mixed samples OpenGL ex-
tension [NVIDIA 2014] to enable the GPU to rasterize and per-
form depth-testing at higher sampling rate than the destination
color targets. For each fragment shader execution, only one
of the c target aggregates is selected using the aggregate se-
lection scheme (Algorithm 2), in order to accumulate the frag-
ment’s attributes. This is achieved by routing the shader out-
put to a given aggregate by modifying its coverage mask (see
the NV sample mask override coverage OpenGL exten-
sion [NVIDIA 2014]).

4.2.1 Visibility-based scaling of attributes

To correctly account for visibility we must accumulate the fragment
shader’s attributes after scaling them by the number of visible sam-
ples. We do so by first configuring the graphics pipeline to perform
an early depth-test, exploiting the depth buffer generated during the
prepass. Second, we set up the input coverage mask provided to the
fragment shader (which is used for scaling) to only contain the sam-
ples passing the depth test (see the EXT post depth coverage
extension [NVIDIA 2014]).



Algorithm 2 G-buffer generation algorithm
1. Set rendering states:

(a) Disable depth writes and set depth test to EQUALS
(b) Enable early depth-test and post-depth coverage
(c) Enable stencil test to keep only the first sample passing

depth test
(d) Enable additive blending on G-buffer storage buffers

2. Render scene. For each fragment, find its aggregate and visi-
ble samples:

(a) ReadMf , coverage mask of fragment’s visible samples
(b) Read Da, aggregates meta-data for the pixel
(c) Find AggregateID by :

i. finding Sid = firstNonZeroBit(Mf )
ii. AggregateID = (Da � (Sid ∗

MAX BITS AGGREGATE ID)) &
(MAX NUM AGGREGATES − 1)

3. Compute G-buffer terms identical to traditional deferred ren-
dering. Optionally compute LEAN mapping terms for nor-
mals.

4. Weight G-buffer terms by fractional coverage from Mf .

5. Route G-buffer results to theAggregateID sample in output
color buffers.

4.2.2 Enforcing one primitive value per sample

Because aggregate values will need to be re-normalized by the num-
ber of samples in their effective coverage mask before shading, it
is important to ensure that no more than one primitive contribute to
the same sample. Even with the depth-test of the generation pass
set to EQUAL, such a situation can happen in case of Z-fighting,
when more than one fragment’s depth value pass the depth test for
a given sample (because they are the same). This would produce
noise artefacts and it can be avoided in a consistent way by using
the stencil test to only keep the first sample value passing the depth
test.

4.3 Aggregate G-buffer memory layout

Current practice in the video games industry tends to use a Blinn-
Phong shading model for deferred shading, storing at least an RGB
albedo value for the diffuse term, one for the specular term (metal),
a roughness coefficient (reciprocal of the Phong’s glossy exponent),
a scalar emissive coefficients and a normal encoded as 2D spher-
ical coordinates. These G-buffer layouts range from 12 bytes to
41 bytes per sample (including depth) [Filion and McNaughton
2014; Tatarchuk et al. 2013; Mittring 2012; Andersson 2011; Cof-
fin 2011; Kasyan et al. 2011; Filion and McNaughton 2008; Valient
2007], with ≈ 20 bytes apparently the most common on PC. For
the sake of our feasibility demonstration, we chose to encode at-
tributes corresponding to the 16 bytes layouts presented in figure 5-
top, which we consider as representative of a real game engine sce-
nario (within the lower bound of the memory requirements).

For AGAA, we rely on the same set of parameters, which we need
to represent as filtered attributes for each aggregate (cf. section 3.5).
We use the aggregate G-buffer layout presented in figure 5-bottom.
It encodes the normal distribution using Toksvig’s normal vector as
RGB16 (normalized, fixed point), the material albedo as RGB10,
the specular coefficient in Y’CbCr color space, using 16b Y’ and
8b Cb and Cr, and the emissive coefficient as R8.

We chose to use fixed-point color formats for increased precision.
In order for the additive blending accumulation to work, all accu-

mulated values (generated per-fragment) must be pre-normalized in
the fragment shader by the total number of samples per-pixel. One
could also use floating point color formats.

Unlike traditional G-buffers, ours do not store explicit roughness
(i.e., the BRDF’s glossy exponent term) directly but instead inject
it as additional variance inside the normal distribution. We save
G-buffer memory by not explicitly storing the distribution of po-
sitions. This is instead computed per aggregate from the multi-
sampled depth buffer during the deferred shading pass.

Because there can be mismatches between per-sample clustering
(maintained by the aggregates metadata) and the fragment values
actually accumulated, a sample counter must also be maintained
to allow the re-normalization of the attributes. We keep this infor-
mation as a per-aggregate coverage mask, which is also used for
reconstructing the distribution of positions.

 

Depth + Stencil Depth + Stencil D24_S8 

Normal Normal RG16F 

Albedo Albedo RGBA8 Emissive Emissive 

Metal RGBA8 Roughness 

Pe
r-

 s
am

pl
e 

(a) G-Buffer layout

(b) AG-Buffer layout

R8 

Depth + Stencil Depth + Stencil D24_S8 

RGBA16 

Albedo Albedo RGB10 

CbCr Metal CbCr Metal RG8 

Y’ Metal Y’ Metal 

Emissive Emissive Pe
r-

 a
gg

re
ga

te
 

Normal distribution (Toksvig) Normal distribution (Toksvig) 

Face Normal (θ, φ) Face Normal (θ, φ) RG8 
Pe

r-
 s

am
pl

e

Covg. 0 Covg. 0 R8(/R16/R32) Covg. 1 Covg. 1 Covg. 2 Covg. 2 

Figure 5: G-buffer layouts we use for classical deferred MSAA
(top, 16 bytes per sample) and AGAA (bottom, 16 bytes per aggre-
gate + 6 bytes per sample). Actual number of bits used for coverage
information depends on MSAA rate used for rasterization.

5 Evaluation

We evaluate the performance and quality of AGAA on five scenes
(Figure 9), chosen to challenge both our algorithm and prior work.
Old City is a game-like scene that has intricate railings, furniture,
and complex foliage. Foliage is a scene from a Epic Unreal Engine
3 demo. The foliage in these two scenes is composed of geomet-
ric and translucent alpha-mapped parts (cf. section 3.6). Furball
(Figure 7-middle) exhibits fine-scale geometry far beyond that used
in video games today. Lastly, the metal scene (Figure 7-bottom)
contains many thin metal tubes (highly tessellated geometry). It
presents the challenge of building suitable geometric aggregates for
highly-curved specular surfaces.

All results have been produced at the resolution of 1920x736 on
an NVIDIA GTX 980 graphics processor (Maxwell GM204) and
using an OpenGL implementation of the algorithm described in
Section 3. We compare our technique to the simple/complex op-
timization of Lauritzen et al. [2010] for deferred shading, which
we configured to ensure no quality degradation compared to brute-
force per-sample shading. For the optimal implementation of this
technique, we rely on the ability to access the compressed repre-
sentation of the depth buffer, which is not currently exposed by
OpenGL. Our implementation emulates this ability, and therefore



does not account for the cost of this emulation in the results. As dis-
cussed in Section 4.1, if this feature were supported natively, using
the depth plane information would not add any additional runtime
cost.

5.1 Image Quality

5.1.1 Video game and artificial scene

Figure 6 compares the rendered output of AGAA against that of
two alternatives: super-sampled shading of each visibility sample
(which we consider a high-quality baseline) and the surface-based
anti-aliasing method of Salvi et al. [2012] configured to use its high-
est quality “merge” clustering predicate (SBAA). We plot the per-
pixel differences between AG-buffer and SBAA renderings (magni-
fied by a factor of 2) against that of the baseline per-sample shading.
Figure 7 provide a similar analysis on more artificial, but higher
complexity scenes and higher sampling rates, with the number of
shading computations per pixel (number of Aggregates/Surfaces)
varying from 1 to 4.

Generally AGAA provides higher image quality than SBAA when
using the same number of shading events per pixel, and it is not
unusual that even with 4 surfaces per pixel, SBAA quality is lower
than AGAA with 2 surfaces per pixel. As expected, the image qual-
ity of both approximations increases with the number of shaded
aggregates (surface clusters in the case of SBAA), but we find that
the AGAA results more closely match those of the baseline.

Our experiments indicate that when rendering intricate geometry
such as foliage, hair, or the detailed furniture forms in Old City,
two aggregates per pixel is sufficient to produce visually pleasing
results. We also found that even though the AGAA results may not
match that of the baseline implementation, the results generally ex-
hibit more temporal stability than the SBAA results. We invite the
reader to inspect the accompanying video to further assess AGAA
temporal stability.

5.1.2 Highly specular surfaces

The benefits of aggregating statistics from all elements contributing
to a pixel, as opposed to a select few, is particularly apparent when
rendering specular surfaces (Figure 7-bottom). By modeling the
distribution of normals featured on the scene’s thin, high-curvature
metal rods, shading using the AG-buffer is able to approximate the
specular highlight well. The SBAA output exhibits severe alias-
ing, even when shading is evaluated four times per pixel. Note that
for this scene, we used the anisotropic LEAN normal distribution
instead of Toksvig.

5.1.3 High sampling rates

Although the aggregate G-buffer enables the renderer to evaluate
shading more sparsely while still preserving image quality, it does
not eliminate the need for dense sampling of scene visibility. Fig-
ure 8 compares the quality of AGAA shading to the baseline as
the visibility sampling rate is increased from 4 to 32 samples per
pixel. Although the AGAA shading rate stays constant (3 aggre-
gates/pixel), the output quality of the AGAA images improves with
the visibility sampling rate, because dense sampling results in more
small primitives captured and contributing to each pixel.

5.2 Execution performance

Table 1 shows execution performance numbers of AGAA
(8× MSAA, C = 2) for various scenes we have tested (Fig. 9),
as well as speed-ups relative to Simple/Complex [Lauritzen 2010].

4x visibility spp 8x visibility spp 32x visibility spp

Per-sample shading

AGAA shading (3 aggregates/pixel)

Visible triangle count

Figure 8: As the visibility sampling rate of rendering is increased,
more triangles contribute coverage to each pixel (bottom row). Al-
though these triangles are not individually shaded in the aggregate
G-buffer renderer, these triangles contribute to the computation of
more accurate and more temporally stable aggregates. Therefore,
both traditional super-sampled rendering (top) and aggregate G-
buffer rendering (middle) benefit from high-rate visibility sampling.

We limit our performance experiments to 8× MSAA, the highest
MSAA rate natively supported by GPU hardware. All scenes fea-
ture one main shadowed light as well as 16 secondary point light
sources, which we consider as a realistic number for representing
the workload exercised by a modern game engine. The only excep-
tion is the Furball scene which uses only one non-shadowed light
source.

AGAA is constantly faster than Simple/Complex, despite the cost
of the additional Z-prepass that we need to perform. This cost is
mostly compensated by a faster geometric generation pass. This
pass benefits from both the early depth culling, and the bandwidth
reduction to the video memory made possible by the reduction of
per-pixel data in the aggregate G-buffer.

Because it performs at most two (even though more costly) shad-
ing events per pixel, most of the speedup of our technique comes
from the shading pass, which for most scenes is at least 2× faster
than the Simple/Complex per-sample shading. This execution time
of the shading pass is impacted by the computation of the depth
distribution information used by the pre-filtered shading. This in-
formation could also be aggregated on the fly like other attributes,
at the cost of a slightly higher memory consumption.

5.3 Memory consumption

We analyzed the memory requirement of AGAA relative to a stan-
dard G-buffer implementation and to SBAA. Results are shown in
figure 10. For AGAA, we used the 16B/Aggregate + 6B/sample
AG-Buffer layout described in section 4.3, with the corresponding
16B/sample layout for classical G-buffer. We believe that this is
somehow representative of what a modern game engine would use.
In addition to the AG-Buffer layout, AGAA requires n × log2(c)
(n MSAA rate, c number of aggregates) additional bits per pixel as



2x
 d

i�
. w

ith
re

fe
re

nc
e

SBAAAGAAReference
1 S 2 S 3 S 4 S1 C 2 C

1

2

3

2x
 d

i�
. w

ith
re

fe
re

nc
e

2x
 d

i�
. w

ith
re

fe
re

nc
e

8x MSAA

Figure 6: Image quality comparison between Aggregate G-buffer Anti-Aliasing (AGAA) and Surface-Based Anti-Aliasing (SBAA) [Salvi and
Vidimče 2012] for 1 to 4 surfaces per pixel. Each zoomed picture correspond to one of the crops in Figure1. Note that AGAA with 2 aggregates
exceeds the quality of SBAA with 4 surfaces.

metadata for clustering (cf. section 4.1). SBAA requires a 1B addi-
tional primitive ID per sample, plus 2B of surface data per surface.

Globally, with C = 2, the benefit of AGAA in terms of memory is
a little under 40% at 8× MSAA, and almost 50% at 16× MSAA.
AGAA requires also∼20% less memory than SBAA for two aggre-
gates and two surfaces. In addition, in the relatively complex scenes
we analysed, AGAA with C = 2 achieves nearly the same image
quality (cf. section 6) as SBAA with S = 4, which corresponds to
a ∼37% memory reduction.

6 Limitations

Figure 11 shows three main failure cases of our technique. Similar
to other pre-filtering techniques ([Bruneton and Neyret 2011]), our
algorithm doesn’t produce accurate results in the presence of im-
portant correlation between independently filtered parameters. Fig-
ure 11 (a) is a typical manifestation of this issue when using only
one aggregate per-pixel. Halos are visible around the leaves of the
tree because samples from the red wall, which is mostly in shadow,
are filtered together with samples from the leaves of the tree, which
are mostly lit. This improperly induces the shading of a yellow-
ish average material which is semi-shadowed. Note that this issue
would not arise here without shadowing.
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Figure 10: Memory consumption of AGAA (top) and SBAA in
MERGE mode (bottom) in percent relative to a full multisampled
G-buffer, depending on the number of aggregates/surfaces and for
8×/16×/32× multisampled rendering. This includes all required
per-sample and per-aggregate storages. In the case of 8× MSAA
and two aggregates, AGAA saves 33% of memory relative to a clas-
sical G-buffer. AGAA requires consistently less memory than SBAA
for the same number of shaded aggregate surfaces.

From our experience, this kind of correlation effect is rarely vis-
ible when using at least two aggregates per pixel, except in very
specific configurations in presence of structured geometry which
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Figure 7: Shading only a few aggregates stored in an aggregate G-buffer often closely approximate the results of super-sampled shading
(shown here compared to 16× super-sampled shading). Image quality is noticeably better than that of Surface-Based Anti-Aliasing (SBAA).
The improvement over SBAA is even more pronounced under motion.
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Figure 9: The five scenes used to test our system, rendered at 1920 × 736 : Old City, UE3 Foliage Map (Courtesy Epic Games), Bamboo,
Metal and Fur Ball.



Time (ms) AGAA Reference Speedups
Scene Z-

Prepass
Aggregate
Def.

Gen. Shading Total Simple/
Complex

Gen. Shading Total Shading Frame

Old City 1.43 0.74 2.34 2.3 6.81 0.33 3.07 4.6 8 2× 1.17×
UE3 FoliageMap 1.76 0.5 1.79 2.45 6.5 0.38 3.18 5.12 8.68 2.09× 1.34×

Bamboo 3.75 0.99 4.28 4.28 13.3 0.34 5.01 9.25 14.6 2.16× 1.10×
Metal 1.43 0.54 1.31 0.93 4.21 0.31 2.45 1.61 4.37 1.73× 1.04×

Fur Ball 1.5 0.58 1.65 0.14 3.87 0.34 3.42 0.31 4.07 2.21× 1.05×

Table 1: Runtime performance (in ms) for the main steps of AGAA (C = 2) at 8×MSAA for various scenes, compared to the Simple/Complex
deferred-shading technique used as a reference. The most right columns show the speed-ups provided by AGAA on the shading pass only and
on the entire frame.
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Figure 11: Illustration of three failure cases for our filtering tech-
nique.

exhibit high degrees of correlation, like the grid in Figure 11 (c)
which shows some high-intensity noise.

In some situations, our technique also fails to accurately model the
sub-pixel geometry inside the aggregates. This is especially true in
case of long and thin geometry, like the thin hairs in Figure 11 (b),
which at some scales produces highly anisotropic normal distri-
butions that our simple anisotropic NDF model (Toksvig) can not
model. This tends to decrease the shaded intensity for such struc-
tures. In order to solve this problem, an anisotropic normal dis-
tribution defined on the entire sphere would be needed. This is a
problem that remains open for future works.

7 Conclusion

This paper introduces aggregate G-buffer anti-aliasing (AGAA), a
technique to improve anti-aliasing of fine geometric details in de-
ferred renderers. It is based on a new mechanism to decouple light
shading rate from the geometric sampling rate.

The primary contribution is a fully dynamic screen-space algorithm
that efficiently aggregates material properties across disjoint sur-
faces. We demonstrate that storing and shading only 2 to 3 aggre-
gates per pixel is sufficient for a wide range of scenes, irrespective
of the number of visibility samples per pixel (i.e., the MSAA rate).
Our technique approaches the quality of super-sampled shading at
a substantially lower memory and compute cost, especially for ef-
fects such as specular highlights, by pre-filtering shader inputs dur-
ing aggregate generation.

The benefits of our technique, both in terms of memory saving and
shading time, improve greatly with the increase of the geometric
sampling rate. This is limited to 8× MSAA on current GPUs.
Looking forward, our technique makes much higher MSAA rates
affordable, motivating GPU hardware support for coverage estima-
tion and depth testing above 8 samples per pixel.

In order to improve quality and reduce shading rate even more, fu-
ture work will design new normal distribution functions and asso-

ciated shading models adapted to our representation, which would
provide a more precise description of filtered surfaces inside aggre-
gates.
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