
Appears in the Proceedings of the 2015 International Symposium on High Performance Computer Architecture (HPCA)

Unlocking Bandwidth for GPUs in CC-NUMA
Systems

Neha Agarwal‡ ∗ David Nellans† Mike O’Connor† Stephen W. Keckler† Thomas F. Wenisch‡
University of Michigan‡ NVIDIA†

nehaag@umich.edu, {dnellans,moconnor,skeckler}@nvidia.com, twenisch@umich.edu

Abstract—Historically, GPU-based HPC applications have had
a substantial memory bandwidth advantage over CPU-based
workloads due to using GDDR rather than DDR memory. How-
ever, past GPUs required a restricted programming model where
application data was allocated up front and explicitly copied into
GPU memory before launching a GPU kernel by the programmer.
Recently, GPUs have eased this requirement and now can employ
on-demand software page migration between CPU and GPU
memory to obviate explicit copying. In the near future, CC-
NUMA GPU-CPU systems will appear where software page
migration is an optional choice and hardware cache-coherence
can also support the GPU accessing CPU memory directly.
In this work, we describe the trade-offs and considerations in
relying on hardware cache-coherence mechanisms versus using
software page migration to optimize the performance of memory-
intensive GPU workloads. We show that page migration decisions
based on page access frequency alone are a poor solution and
that a broader solution using virtual address-based program
locality to enable aggressive memory prefetching combined with
bandwidth balancing is required to maximize performance. We
present a software runtime system requiring minimal hardware
support that, on average, outperforms CC-NUMA-based accesses
by 1.95×, performs 6% better than the legacy CPU to GPU
memcpy regime by intelligently using both CPU and GPU
memory bandwidth, and comes within 28% of oracular page
placement, all while maintaining the relaxed memory semantics
of modern GPUs.

I. INTRODUCTION

GPUs have enabled parallel processing for not just graphics
applications but for a wide range of HPC installations and
data-centers like Amazon’s elastic compute cloud (EC2). With
this massively parallel processing often comes an insatiable
demand for main memory bandwidth as GPUs churn through
data at an ever increasing rate. To meet this bandwidth demand,
many GPUs have been designed with attached high-bandwidth
GDDR memory rather than standard DDR memory used by
CPUs. As a result, many GPUs today have GDDR bandwidth
that is 2-5× higher than the memory bandwidth available to
the CPU in the system. To make best use of the bandwidth
available to GPU programs programmers manually copy the
data over the relatively slow PCIe bus to the GPU memory,
and – only then – launch their GPU kernels. This up-front data
allocation and transfer has been necessary since transferring
data over the PCIe bus is a high overhead operation, and a
bulk transfer of data amortizes this overhead. This data manip-
ulation overhead also results in significant porting challenges
when retargeting existing applications to GPUs, particularly for

∗ A large portion of this work was done when Neha Agarwal was an intern
at NVIDIA.

��� ��������
���	


���
���

���
���

��
���

��� ���

��

�� �
�
�
�

����	
���	�	��

����


��
���

���
��� 
��

���

�����

�	 ��!"#�$%��	&�'!

��� ��������
���	


���
���

���
���

��
���

�����

�$��	��"#���(�	%#)���$�*#�	&��!#+��#�� 	#�� ������

,$�$�	"#����	#���	�	��#�� �-��%.�%��#���	�����	��
�� 	#�� ������#/'�����*

�
�
�
0

�
�
�
0

Fig. 1: System architectures for legacy, current, and future
mixed GPU-CPU systems.

high-level languages that make use of libraries and dynamic
memory allocation during application execution.

Recognizing the obstacle this programming model poses
to the wider adoption of GPUs in more parallel applications,
programming systems like NVIDIA’s CUDA, OpenCL, and
OpenACC are evolving. Concurrently, GPU-CPU architectures
are evolving to have unified globally addressable memory
systems in which both the GPU and CPU can access any
portion of memory at any time, regardless of its physical
location. Today this unified view of memory is layered on top
of legacy hardware designs by implementing software-based
runtimes that dynamically copy data on demand between the
GPU and CPU [1]. As depicted in Figure 1, over the next
several years it is expected that GPU and CPU systems will
move away from the PCIe interface to a fully cache coherent
(CC) interface [2]. These systems will provide high bandwidth
and low latency between the non-uniform memory access
(NUMA) pools attached to discrete processors by layering
coherence protocols on top of physical link technologies such
as NVLink [3], Hypertransport [4], or QPI [5]. CC-NUMA



access to host memory from the GPU makes the software
page migration used today an optional feature thanks to the
improved bandwidth, latency, and access granularity that cache
coherence can provides.

While interconnect advancements improve GPU-CPU con-
nectivity, no reduction is expected in the memory bandwidth
differential between CPU and GPU-attached memory. On-
package memories such as High Bandwidth Memory (HBM)
or Wide-IO2 (WIO2) may in fact increase this differential as
GPU bandwidth requirement continues to grow, feeding the
ever increasing number of parallel cores available on GPUs
used by both graphics and compute workloads. On the other
hand, architects will likely continue to balance latency, power,
and cost constraints against raw bandwidth improvement for
CPU attached memory, where bandwidth and application per-
formance are less strongly correlated. With application data
residing primarily in CPU memory on application start-up,
the GPU can access this memory either via hardware cache-
coherence (which improves memory system transparency to
the programmer) or by migrating a memory page into GPU
physical memory (facilitating greater peak bandwidth for fu-
ture requests). In this work we specifically examine how to best
balance accesses through cache-coherence and page migration
for a hypothetical CC-NUMA GPU-CPU system connected by
a next generation interconnect technology. The contributions
of this work are the following:

1) Counter-based metrics to determine when to migrate
pages from the CPU to GPU are insufficient for finding an
optimal migration policy to exploit GPU memory bandwidth.
In streaming workloads, where each page may be accessed
only a few times, waiting for N accesses to occur before
migrating a page will actually limit the number of accesses
that occur after migration, reducing the efficacy of the page
migration operation.

2) TLB shootdown and refill overhead can significantly
degrade the performance of any page migration policy for
GPUs. We show that combining reactive migration with virtual
address locality information to aggressively prefetch pages can
mitigate much of this overhead, resulting in increased GPU
throughput.

3) The legacy intuition to migrate all data to the GPU local
memory in an attempt to maximize bandwidth fails to leverage
the bandwidth available via the new CC-NUMA interface. A
page migration policy which is aware of this differential and
balances migration with CC-NUMA link utilization will out-
perform either GPU or GPU memory being used in isolation.

4) We present a software based memory placement system
that, on average, outperforms CC-NUMA based accesses by
1.95×, performs 6% better than the legacy CPU to GPU
memcpy approach by intelligently using both CPU and GPU
memory bandwidth, and comes within 28% of oracular page
placement, all while maintaining the relaxed memory seman-
tics of modern GPUs.

II. MOTIVATION AND BACKGROUND

A by-product of the GPU’s many-threaded design is that it
is able to maintain a large number of in-flight memory requests
and execution throughput is correlated to memory bandwidth
rather than latency, as compared to CPU designs. As a result,

Fig. 2: GPU performance sensitivity to memory subsystem
performance where GDDR provides 200GB/s, DDR provides
80GB/s, and memcpy bandwidth is 80GB/s.

GPUs have chosen to integrate high bandwidth off-package
memory like GDDR rather than accessing the CPU’s DDR
directly or integrating DDR locally on the GPU board. This
choice is motivated by our observation that the performance of
some GPU compute workloads would degrade by as much as
66% if the traditional GDDR memory on a GPU were replaced
with standard DDR memory, as seen in Figure 2.

In current CPU/GPU designs, GPU and CPU memory
systems are private and require explicit copying to the GPU
before the application can execute. Figure 2 shows the effect of
this copy overhead on application performance by comparing
GDDR to GDDR+memcpy performance which includes the
cost of the programmer manually copying data from the DDR
to the GDDR before launching the GPU kernels. While this
copy overhead varies from application to application, it can
be a non-trivial performance overhead for short-running GPU
applications and can even negate the effectiveness of using the
high bandwidth GDDR on-board the GPU in a limited number
of cases.

While it is technically possible for the GPU to access CPU
memory directly over PCIe today, the long latency (microsec-
onds) of the access makes this a rarely used memory operation.
Programming system advancements enabling a uniform global
address space, like those introduced in CUDA 6.0 [1], relax
the requirement forcing programmers to allocate and explicitly
copy memory to the GPU up-front, but do nothing to improve
the overhead of this data transfer. Further, by copying pages
from the CPU to the GPU piece-meal on demand, these
new runtimes often introduce additional overhead compared
to performing a highly optimized bulk transfer of all the data
that the GPU will need during execution. The next step in the
evolution of GPUs, given the unified addressing, is to optimize
the performance of this new programming model.

A. Cache Coherent GPUs

The key advancement expected to enable performance is
the introduction of CC-NUMA GPU and CPU systems. Using



cache coherence layered upon NVLink, HT, or QPI, GPUs
will likely be able to access CPU memory in hundreds of
nanoseconds at bandwidths up to 128GB/s by bringing cache
lines directly into GPU caches. Figure 2 shows the upper bound
(labeled ORACLE) on performance that could be achieved if
both the system DDR memory and GPU GDDR memory were
used concurrently, assuming data had been optimally placed in
both technologies. In this work, we define oracle placement to
be a priori page placement in the GPU memory (thus requiring
no migration), of the minimum number of pages, when sorted
from hottest to coldest, such that the GDDR bandwidth is fully
subscribed during application execution.

Because initial CPU/GPU CC-NUMA systems are likely to
use a form of IOMMU address translation services for walking
the OS page tables within the GPU, it is unlikely that GPUs
will be able to directly allocate and map their own physical
memory without a call back to the CPU and operating system.
In this work, we make a baseline assumption that all physically
allocated pages are initially allocated in the CPU memory and
only the operating system or GPU runtime system executing
on the host can initiate page migrations to the GPU. In such
a system, two clear performance goals become evident. The
first is to design a memory policy that balances CC-NUMA
access and page migration to simply achieve the performance
of the legacy bulk copy interface without the programming
limitations. The second, more ambitious, goal is to exceed this
performance and approach the oracular performance by using
these memory zones concurrently, enabling a peak memory
bandwidth that is the sum of the two zones.

Achieving either of these goals requires migrating enough
data to the GPU to exploit its high memory bandwidth while
avoiding migrating pages that may never be accessed again.
Every page migration increases the total bandwidth require-
ment of the application and over-migration potentially reduces
application performance if sufficient bandwidth headroom in
both the DDR and GDDR is not available. Thus, the runtime
system must be selective about which pages to migrate. The
runtime system also must be cognizant that performing TLB
invalidations (an integral part of page migration) on a GPU
does not just halt a single processor, but thousands of compute
pipelines that may be accessing these pages through a large
shared TLB structure. This shared TLB structure makes page
migrations between a CPU and GPU potentially much more
costly (in terms of the opportunity cost of lost execution
throughput) than in CPU-only systems.

In addition to managing the memory bandwidth overhead
of page migration and execution stalls due to TLB shootdowns,
the relative bandwidth utilization of both the CPU and GPU
memory must be taken into account when making page mi-
gration decisions. When trying to balance memory bandwidth
between two distinct memory zones, it is possible to over-
or under-subscribe either memory zone. Migrating pages too
slowly to the GPU memory will leave its local memory sitting
idle, wasting precious bandwidth. Conversely, migrating pages
to the GPU too aggressively may result in under-utilization of
the CPU memory while paying the maximum cost in terms
of migration overheads. A comprehensive CPU-GPU memory
management solution will attempt to balance all of these
effects to maximize memory system and GPU throughput in
future mobile, graphics, HPC, and datacenter installations.

B. Related Work
Using mixed DRAM technologies or DRAM in conjunc-

tion with non-volatile memories to improve power consump-
tion on CPUs has been explored by several groups [6]–
[10]. The majority of this work attempts to overcome the
performance reductions introduced by non-DDR technologies
to improve capacity, power consumption, or both. In CC-
NUMA systems, there has been a long tradition of examining
where to place memory pages and processes for optimal perfor-
mance, typically focusing on reducing memory latency [11]–
[16]. Whereas CPUs are highly sensitive to memory latency,
GPUs can cover a much larger latency through the use of
multi-threading. More recent work on page placement and
migration [17]–[23] has considered data sharing characteris-
tics, interconnect utilization, and memory controller queuing
delays in the context of CPU page placement. However,
the primary improvements in many of these works, reducing
average memory latency, will not directly apply in a GPU
optimized memory system.

Several recent papers have explored hybrid DRAM-NVM
GPU attached memory subsystems [24], [25]. Both of these
works consider a traditional GPU model where the availability
of low latency, high bandwidth access to CPU-attached mem-
ory is not considered, nor are the overheads of moving data
from the host CPU onto the GPU considered. Several papers
propose using a limited capacity, high bandwidth memory as a
cache for a larger slower memory [26], [27], but such designs
incur a high engineering overhead and would require close
collaboration between GPU and CPU vendors that often do not
have identically aligned visions of future computing systems.

When designing page migration policies, the impact of
TLB shootdown overheads and page table updates is a constant
issue. Though most details about GPU TLBs are not public,
several recent papers have provided proposals about how
to efficiently implement general purpose TLBs that are, or
could be, optimized for a GPU’s needs [28]–[30]. Others have
recently looked at improving TLB reach by exploiting locality
within the virtual to physical memory remapping, or avoiding
this layer completely [31]–[33]. Finally, Gerofi et al. [34]
recently examined TLB performance of the Xeon Phi for
applications with large footprints, while McCurdy et al. [35]
investigated the effect of superpages and TLB coverage for
HPC applications in the context of CPUs.

III. BALANCING PAGE MIGRATION AND
CACHE-COHERENT ACCESS

In the future, it is likely GPUs and CPUs will use a shared
page table structure while maintaining local TLB caches. It
remains to be seen if the GPU will be able to natively walk
the operating system page tables to translate virtual to physical
address information, or if GPUs will use an IOMMU-like
hardware in front of the GPU’s native TLB to perform such
translations. In either case, the translation from virtual to
physical addresses will be implicit, just as it is today for
CPUs, and will no longer require trapping back to the CPU
to translate or modify addresses. As a result, when page
mappings must be modified, all CPUs—and now the GPU—
must follow appropriate steps to safely invalidate their local
TLB caches. While CPUs typically use a TLB per CPU-core,
GPUs use a multi-level global page table across all compute



����

�
�
��
�	


�
�
�

��
��
	�
�


��
�

��

���

���

���	
�	����	���	������

���	
�	����	���	 	���	������

!�	��"������#	$������$�	����

%������	��"�������
����&�&������$����	��$�'���	�������	(�"���

������'��"	��"������
�����������"
								���'����

)�����	)����
�!���	(��*	&��������

���	
�	����	���	������

Fig. 3: Opportunity cost of relying on cache coherence versus
migrating pages near beginning of application run.

pipelines. Therefore, when TLB shootdowns occur, the penalty
will not stall just a single CPU pipeline, it is likely to stall
the entire GPU. Whereas recent research has proposed intra-
GPU sharer tracking [29] that could mitigate these stalls,
this additional hardware is costly and typically unneeded for
graphics applications and thus may not be adopted in practice.

Figure 3 provides a visual representation of the effect of
balancing memory accesses from both DDR (CPU-attached)
and GDDR (GPU-attached) memory. Initially, pages reside
entirely in DDR memory. Without migration, the maximum
bandwidth available to GPU accesses (via cache coherence to
the DDR memory) will be limited by either the interconnect
or DDR memory bandwidth. As pages are migrated from
DDR to GDDR, the total bandwidth available to the GPU
rises as pages can now be accessed concurrently from both
memories. Migrations that occur early in kernel execution will
have the largest effect on improving total bandwidth, while
later migrations (after a substantial fraction of GDDR memory
bandwidth is already in use) have less effect. Performance is
maximized when accesses are split across both channels in
proportion to their peak bandwidth. Figure 3 shows the total
bandwidth that is wasted if pages are not migrated eagerly,
early in kernel execution. The key objective of the migration
mechanism is to migrate the hottest pages as early as possible
to quickly ramp up use of GDDR memory bandwidth. Never-
theless, migrating pages that are subsequently never accessed
wastes bandwidth on both memory interfaces. In this section,
we investigate alternative DDR-to-GDDR memory migration
strategies. In particular, we contrast a simple, eager migration
strategy against more selective strategies that try to target only
hot pages.

A. Methodology

To evaluate page migration strategies, we model a GPU
with a heterogeneous memory system comprising both GDDR
and DDR memories. The GDDR memory is directly attached
and addressable by the GPU, as in existing systems. We
assume DDR memory may be accessed by the GPU via
a cache-line-granularity coherent interface at an additional

Simulator GPGPU-Sim 3.x
GPU Arch NVIDIA GTX-480 Fermi-like
GPU Cores 15 SMs @ 1.4Ghz
L1 Caches 16kB/SM
L2 Caches Memory Side 128kB/DRAM Channel
L2 MSHRs 128 Entries/L2 Slice

Memory system
GPU-Local GDDR5 8-channels, 200GB/sec aggregate
GPU-Remote DDR4 4-channels, 80GB/sec aggregate
DRAM Timings RCD=RP=12,RC=40,CL=WR=12
GPU-CPU 100 GPU core cycles
Interconnect Latency

TABLE I: Simulation environment and system configuration
for mixed memory GPU/CPU system.

100 GPU cycle latency (in addition to the DDR access
latency). We derive our latency estimates from SMP CPU
interconnects [36]. We find that these additional 100 cycles
of latency have relatively little impact on GPU application
performance (compared to a hypothetical baseline with no
additional latency), as GPUs are already effective in hiding
such latency. Across the suite of applications we study, the
mean performance degradation due to interconnect latency is
3%, and at worst 10%.

We extend GPGPU-Sim [37] with a model of this GDDR5-
DDR4 heterogeneous memory. Table I lists our simulation
parameters. We make several additional enhancements to the
baseline GTX-480 model to better match the bandwidth re-
quirements of future GPUs (e.g., increasing the number of miss
status handling registers, increasing clock frequency, etc). We
assume a GDDR bandwidth of 200GB/s and a DDR bandwidth
of 80 GB/s.

We model a software page migration mechanism in which
migrations are performed by the CPU based on hints provided
asynchronously by the GPU. The GPU tracks candidate migra-
tion addresses by maintaining a ring buffer of virtual addresses
that miss in the GPU TLB. The runtime process on the CPU
polls this ring buffer, converts the address to the page aligned
base address and initiates migration using the standard Linux
move_pages system call.

As in a CPU, the GPU TLB must be updated to reflect
the virtual address changes that result from migrations. We
assume a conventional x86-like TLB shootdown model where
the entire GPU is treated like a single CPU using tradi-
tional interprocessor interrupt shootdown. In future systems,
an IOMMU performing address translations on behalf of the
GPU cores is likely to hide the specific implementation details
of how it chooses to track which GPU pipelines must be
stalled and flushed during any given TLB shootdown. For this
work, we make a pessimistic assumption that, upon shootdown,
all execution pipelines on the GPU must be flushed before
the IOMMU handling the shootdown on behalf of the GPU
can acknowledge the operation as complete. We model the
time required to invalidate and refill the TLB entry on the
GPU as a parameterized, fixed number, of cycles per page
migration. In Section III-B we examine the effect of this
invalidate/refill overhead on the performance of our migration



policy, recognizing that the implementation of TLB structures
for GPUs is an active area of research [28], [30].

We model the memory traffic due to page migrations
without any special prioritization within the memory controller
and rely on the software runtime to rate-limit our migra-
tion bandwidth by issuing no more than 4 concurrent page
migrations. We study our proposed designs using memory
intensive workloads from Rodinia [38] and some other recent
HPC applications [39]–[42]. These benchmarks cover varied
application domains, including graph-traversal, data-mining,
kinematics, image processing, unstructured grid, fluid dynam-
ics and Monte-Carlo transport mechanisms.

B. Results

To understand the appropriate balance of migrating pages
early (as soon as first touch on the GPU) or later (when partial
information about page hotness is known), we implemented a
page migration policy in which pages become candidates for
software controlled page migration only after they are touched
N times by the GPU. Strictly migrating pages on-demand be-
fore servicing the memory requests will put page migration on
the critical path for memory load latency. However, migrating
a page after N references reduces the number of accesses that
can be serviced from the GPU local memory, decreasing the
potential impact of page migration. Once a page crosses the
threshold for migration, we place it in an unbounded FIFO
queue for migration, and allow the CUDA software runtime to
migrate the pages by polling this FIFO and migrating pages
as described in the previous sub-section.

To isolate the effect of choosing a threshold value from
TLB shootdown costs, we optimistically assume a TLB shoot-
down and refill overhead of 0 cycles for the results shown
in Figure 4. This figure shows application performance when
migrating pages only after they have been touched N times,
represented as threshold-N in the figure. The baseline per-
formance of 1.0 reflects application performance if the GPU
only accesses the CPU’s DDR via hardware cache coherence
and no page migrations to GDDR occur. Although we an-
ticipated using a moderately high threshold (64–128) would
generate the best performance (by achieving some level of
differentiation between hot and cold data), the results in the
figure indicate that, for the majority of the benchmarks, using
the lowest threshold typically generates the best performance.
Nevertheless, behavior and sensitivity to the threshold varies
significantly across applications.

For the majority of our workloads, the best performance
comes at a low migration threshold with performance de-
grading as the threshold increases. The peak performance is
well above that achievable with only cache-coherent access to
DDR memory, but it rarely exceeds the the performance of the
legacy memcpy programming practice. The bfs benchmark is
a notable outlier, with higher migration thresholds improving
performance by successfully differentiating hot and cold pages
as candidates for migration. However, performance variation
due to optimal threshold selection is much smaller than the
substantial performance gain of using any migration policy.
Minife is the second substantial outlier, with a low migration
threshold decreasing performance below that of using CPU-
only memory, while migration with higher thresholds provides

Fig. 4: Performance of applications across varying migration
thresholds, where threshold-N is the number of touches a given
page must receive before being migrated from CPU-local to
GPU-local memory.

only modest gains over cache-coherent access to DDR. Further
analysis revealed that, for this workload, migration often
occurs after the application has already performed the bulk of
its accesses to a given page. In this situation, page migration
merely introduces a bandwidth tax on the memory subsystem
with little possibility for performance gain.

To implement a threshold-based migration system in prac-
tice requires tracking the number of times a given physical
page has been touched. Such counting potentially requires
tracking all possible physical memory locations that the GPU
may access and storing this side-band information either in
on-chip SRAMs at the L2, memory controller, or within the
DRAM itself. Additional coordination of this information may
be required between the structures chosen to track this page-
touch information. Conversely, a first touch policy (threshold-
1) requires no tracking information and can be trivially
implemented by migrating a page the first time the GPU
translates an address for the page. Considering the performance
differential seen across thresholds, we believe the overhead
of implementing the necessary hardware counters to track all
pages within a system to differentiate their access counts is
not worth the improvement over a vastly simpler first-touch
migration policy.

In Figure 4 we showed the performance improvement
achievable when modeling the bandwidth cost of the page mi-
gration while ignoring the cost of the TLB shootdown, which
will stall the entire GPU. At low migration thresholds, the
total number of pages migrated is largest and thus application
performance is most sensitive to the overhead of the TLB
shootdown and refill. Figure 5 shows the sensitivity of applica-
tion slowdown to the assumed cost of GPU TLB shootdowns
for a range of client-side costs similar to those investigated by
Villavieja et al. [29]. While the TLB invalidation cost in current
GPUs is much higher, due to complex host CPU interactions,
it is likely that TLB invalidation cost will drop substantially
in the near future (due to IOMMU innovation) to a range
competitive with contemporary CPUs (i.e., 100 clock cycles).



Fig. 5: Performance overhead of GPU execution stall due to
TLB shootdowns when using a first touch migration policy
(threshold-1).

Because the GPU comprises many concurrently executing
pipelines, the performance overhead of a TLB shootdown,
which may require flushing all compute pipelines, is high; it
may stalls thousands of execution lanes rather than a single
CPU core. Figure 5 shows that moving from an idealized
threshold of zero, to a realistic cost of one hundred reduces
average performance by 16%. In some cases this overhead can
negate the entire performance improvement achieved through
page migration. To maximize the performance under page
migration, our migration mechanism must optimize the trade-
off between stalling the GPU on TLB shootdowns versus
the improved memory efficiency of migrating pages to the
GPU. One way to reduce this cost is to simply perform fewer
page migrations, which can be achieved by increasing the
migration threshold above the migrate-on-first-touch policy.
Unfortunately, a higher migration threshold also decreases
the potential benefits of migration. Instead, we will describe
mechanisms that can reduce the number of required TLB
invalidations simply through intelligent page selection while
maintaining the first-touch migration threshold.

IV. RANGE EXPANDING MIGRATION CANDIDATES

In the prior section, we demonstrated that aggressively
migrating pages generally improves application performance
by increasing the fraction of touches to a page serviced
by higher-bandwidth (GPU-attached) GDDR versus (CPU-
attached) DDR memory. This aggressive migration comes with
high overheads in terms of TLB shootdowns and costly GPU
pipeline stalls. One reason the legacy application directed
memcpy approach works well is that it performs both ag-
gressive up-front data transfer to GDDR and does not require
TLB shootdowns and stalls. Unfortunately, this requirement
for application-directed transfer is not well suited to unified
globally addressable memory with dynamic allocation-based
programming models. In this section, we discuss a prefetching
technique that can help regain the performance benefits of
bulk memory copying between private memories, without the
associated programming restrictions.

Ideally, a page migration system prefetches pages into
GDDR after they are allocated and populated in DDR, but

before they are needed on the GPU. Studying the results of the
threshold-based migration experiments, we observe that pages
often are migrated too late to have enough post-migration
accesses to justify the cost of the migration. One way to
improve the timeliness of migrations is via a prefetching
scheme we call range expansion. Range expansion builds
on the baseline single-page migration mechanism discussed
previously. To implement basic range expansion, when the
CUDA runtime is provided a virtual address to be migrated,
the runtime also schedules an additional N pages in its (virtual
address) neighborhood for migration. Pages are inserted into
the migration queue in the order of furthest, from the triggered
address, to the nearest, to provide the maximum prefetching
affect based on spatial locality. We then vary this range
expansion amount N from 0–128 and discuss the results in
Section IV-B.

The motivation for migrating (virtually) contiguous pages
can be seen in Figure 6. The figure shows virtual page
addresses that are touched by the GPU for three applications
in our benchmark set. The X-axis shows the fraction of the
application footprint when sampled, after on-chip caches, at
4KB page granularity and sorted from most to fewest accesses.
The primary Y-axis (shown figure left) shows the cumulative
distribution function of memory bandwidth among the pages
allocated by the application. Each point on the secondary
scatter plot (shown figure right) shows the virtual address of
the corresponding page on the x-axis. This data reveals that hot
and cold pages are strongly clustered within the virtual address
space. However, the physical addresses of these pages will be
non-contiguous due to address interleaving performed by the
memory controller. This clustering is key to range expansion
because it suggests that if a page is identified for migration,
then other neighboring pages in the virtual address space are
likely to have a similar number of total touches. To exploit
this property, range expansion migrates neighboring virtual
addresses of a migration candidate even if they have not yet
been accessed on the GPU. By migrating these pages before
they are touched on the GPU, range expansion effectively
prefetches pages to the higher bandwidth memory on the GPU,
improving the timeliness and effectiveness of page migrations.

In the case that range expansion includes virtual addresses
that are not valid, the software runtime simply allows the
move_pages system call to fail. This scheme eliminates the
need for additional runtime checking or data structure overhead
beyond what is already done within the operating system as
part of page table tracking. In some cases, a range expansion
may extend beyond one logical data structure into another that
is laid out contiguously in the virtual address space. While
migrating these pages may be sub-optimal from a performance
standpoint, there is no correctness issue with migrating these
pages to GDDR. For HPC-style workloads with large, coarse-
grained memory allocations, this problem happens rarely in
practice.

A. Avoiding TLB Shootdowns With Range Expansion

Figure 5 shows that TLB invalidations introduce significant
overheads to DDR-to-GDDR migrations. Today, operating
systems maintain a list of all processors that have referenced
a page so that, upon modification of the page table, TLB
shootdowns are only sent to those processor cores (or IOMMU



(a) bfs

(b) xsbench

(c) needle

Fig. 6: Cumulative distribution of memory bandwidth versus
application footprint. Secondary axis shows virtual page ad-
dress of pages touched when sorted by access frequency.

units in the future) that may have a cached translation for
this page. While this sharers list may contain false positives,
because the mapping entry within a particular sharer may have
since been evicted from their TLB, it guarantees that if no
request has been made for the page table entry, that core will
not receive a TLB shootdown request.

In our previous threshold-based experiments, pages are
migrated after the GPU has touched them. This policy has
the unfortunate side-effect that all page migrations will result
in a TLB shootdown on the GPU. By using range expansion
to identify candidates for migration that the GPU is likely
to touch but has not yet touched, no TLB shootdown is
required (as long as the page is in fact migrated before the
first GPU touch). As a result, range expansion provides the
dual benefits of prefetching and reducing the number of costly
TLB shootdowns.

B. Results

To evaluate the benefits of range expansion, we examine
the effect that range expansion has when building on our
prior threshold-based migration policies. We considered sev-
eral thresholds from 1–128 accesses because, while the lowest
threshold appears to have performed best in the absence of
range expansion, it could be that using a higher threshold, thus
identifying only the hottest pages, combined with aggressive
range expansion would result in improved performance. We
model a fixed TLB shootdown overhead of 100 cycles when
performing these experiments, matching the baseline assump-
tions in the preceding section.

Figure 7 shows application performance as a stacked bar
chart on top of the the baseline threshold-based page migration
policy for various range expansion values. For the different
range expansion values, a single migration trigger is expanded
to the surrounding 16, 64, or 128 virtually addressed pages that
fall within a single allocation (i.e., were allocated in the same
call to malloc). The pages identified via range expansion are
added to the page migration list in order of furthest, to nearest
pages from the triggered virtual address. Pages that are farther
from the (already accessed) trigger page are less likely to have
been touched by the GPU yet and hence are least likely to be
cached in the GPU’s TLB. These pages therefore do not require
expensive TLB shootdowns and pipeline stalls.

We see that range expansion allows us to outperform not
only CC-NUMA access to DDR, but —in many cases— per-
formance exceeds that of the legacy GDDR+memcpy imple-
mentation. These results indicate that aggressive prefetching,
based on first touch access information, provides a balanced
method of using both DDR and GDDR memory bandwidth. To
understand the improvement from the reduction in TLB shoot-
downs, we report the fraction of page migrations that required
no TLB shootdown in Table II (second column). Compared to
threshold-based migrations without range expansion, where all
migrations incur a TLB shootdown, range expansion eliminates
33.5% of TLB shootdowns on average and as many as 89% for
some applications, drastically reducing the performance impact
of these shootdowns.

Figure 7 shows, for bfs and xsbench, that range ex-
pansion provides minimal benefit at thresholds > 1. In these
benchmarks, the first touches to contiguous pages are clustered



Fig. 7: Effect of range expansion on workload performance when used in conjunction with threshold based migration.

in time, because the algorithms are designed to use blocked
access to the key data structures to enhance locality. Thus, the
prefetching effect of range expansion is only visible when a
page is migrated upon first touch to a neighboring page, by
the second access to a page, all its neighbors have already
been accessed at least once and there will be no savings from
avoiding TLB shootdowns. On the other hand, in benchmarks
such as needle, there is low temporal correlation among
touches to neighboring pages. Even if a migration candidate is
touched 64 or 128 times, some of its neighboring pages may
not have been touched, and thus the prefetching effect of range
expansion provides up to 42% performance improvement even
at higher thresholds.

In the case of backprop, we can see that higher thresh-
olds perform poorly compared to threshold 1. Thresholds
above 64 are simply too high; most pages are not accessed
this frequently and thus few pages are migrated, resulting in
poor GDDR bandwidth utilization. Range expansion prefetches

Benchmark Execution % Migrations Exececution
Overhead of Without Runtime

TLB Shootdowns Shootdown Saved
backprop 29.1% 26% 7.6%
bfs 6.7% 12% 0.8%
cns 2.4% 20% 0.5%
comd 2.02% 89% 1.8%
kmeans 4.01% 79% 3.17%
minife 3.6% 36% 1.3%
mummer 21.15% 13% 2.75%
needle 24.9% 55% 13.7%
pathfinder 25.9% 10% 2.6%
srad v1 0.5% 27% 0.14%
xsbench 2.1% 1% 0.02%
Average 11.13% 33.5% 3.72%

TABLE II: Effectiveness of range prefetching at avoiding
TLB shootdowns and runtime savings under a 100-cycle TLB
shootdown overhead.

these low-touch pages to GDDR as well, recouping the per-
formance losses of the higher threshold policies and making
them perform similar to a first touch migration policy. For
minife, previously discussed in subsection III-B, the effect
of prefetching via range expansion is to recoup some of
the performance loss due to needless migrations. However,
performance still falls short of the legacy memcpy approach,
which in effect, achieves perfect prefetching. Overuse of range
expansion hurts performance in some cases. Under the first
touch migration policy (threshold-1), using range expansion
16, 64, and 128, the worst-case performance degradations are
2%, 3%, and 2.5% respectively. While not visible in the graph
due to the stacked nature of Figure 7, they are included in the
geometric mean calculations.

Overall, we observe that even with range expansion, higher-
threshold policies do not significantly outperform the much
simpler first-touch policy. With threshold 1, the average per-
formance gain with range expansion of 128 is 1.85×. The best
absolute performance is observed when using a threshold of
64 combined with a range expansion value of 64, providing
1.95× speedup. We believe that this additional ≈5% speedup
over first touch migration with aggressive range expansion
is not worth the implementation complexity of tracking and
differentiating all pages in the system. In the next section,
we discuss how to recoup some of this performance for
benchmarks such as bfs and xsbench, which benefit most
from using a higher threshold.

V. BANDWIDTH BALANCING

In Section III, we showed that using a static threshold-
based page migration policy alone could not ideally balance
migrating enough pages to maximize GDDR bandwidth uti-
lization while selectively moving only the hottest data. In
Section IV, we showed that informed page prefetching using
a low threshold and range expansion to exploit locality within
an application’s virtual address space matches or exceeds the
performance of a simple threshold-based policy. Combining
low threshold migration with aggressive prefetching drastically



reduces the number of TLB shootdowns at the GPU, reducing
the performance overheads of page migration. These policies
implemented together, however, will continue migrating pages
indefinitely from their initial locations within DDR memory
towards the GPU-attached GDDR memory.

As shown in Figure 4, however, rather than migrating
all pages into the GPU memory, optimal memory bandwidth
utilization is achieved by migrating enough pages to GDDR
to maximize its bandwidth while simultaneously exploiting
the additional CPU DDR bandwidth via the hardware cache
coherence mechanism. To prevent migrating too many pages to
GDDR and over-shooting the optimal bandwidth target (70%
of traffic to GDDR and 30% to DDR for our system configu-
ration), we implement a migration rate control mechanism for
bandwidth balancing. Bandwidth balancing, put simply, allows
aggressive migration while the bandwidth ratio of GDDR
to total memory bandwidth use is low, and rate limits (or
eliminates) migration as this ratio approaches the system’s
optimal ratio. We implement a simple bandwidth balancing
policy based on a sampled moving average of the application’s
bandwidth needs to each memory type. We assume that the
ideal bandwidth ratio in the system can be known either via
runtime discovery of the system bandwidth capabilities (using
an application like stream [43]) or through ACPI bandwidth
information tables, much like memory latency information can
be discovered today.

Given the bandwidth capability of each interface, we can
calculate the ideal fractional ratio, GDDR/(DDR+GDDR),
of traffic that should target GDDR using the methodology de-
fined by Agarwal et al. [44]. For the configuration described in
Table I, this fraction is 71.4%. We currently ignore command
overhead variance between the memory interfaces and assume
that it is either the same for technologies in use or that the
optimal bandwidth ratio discovered or presented by ACPI will
have taken that into account. Using this target, our software
page migration samples a bandwidth accumulator present for
all memory channels every 10,000 GPU cycles and calculates
the average bandwidth utilization of the GDDR and DDR in
the system. If this utilization is below the ideal threshold minus
5% we continue migrating pages at full-rate. If the measured
ratio approaches within 5% of the target we reduce the rate
of page migrations by 1/2. If the measured ratio exceeds the
target, we suspend further migrations.

A. Results

For three example applications, Figure 8 shows the band-
width utilization of the GDDR versus total bandwidth of
the application sampled over time in 1% increments. The
TH series provides a view of how migration using single
page migration with a static threshold of one (first touch)
performs, while TH + RE shows the static threshold with
the range expansion solution described in Section IV, and
TH + RE + BWB shows this policy with the addition of
our bandwidth balancing algorithm. The oracle policy shows
that if pages were optimally placed a priori before execution
there would be some, but not more than 0.1% variance in the
GDDR bandwidth utilization of these applications. It is also
clear that bandwidth balancing prevents grossly overshooting
the targeted bandwidth ratio, as would happen when using
thresholds and range expansion alone.

(a) bfs

(b) xsbench

(c) needle

Fig. 8: Fraction of total bandwidth serviced by GDDR during
application runtime when when using thresholding alone (TH),
then adding range expansion (TH+RE) and bandwidth aware
migration (TH+RE+BWB).



Fig. 9: Application performance when using thresholding alone (TH), thresholding with range expansion (TH+RE), and
thresholding combined with range expansion and bandwidth aware migration (TH+RE+BWB).

We investigated various sampling periods shorter and
longer than 10,000 cycles, but found that a moderately short
window did not cause unwanted migration throttling during
the initial migration phase but facilitated a quick adjustment
of the migration policy once the target bandwidth balance was
reached. If an application’s bandwidth utilization subsequently
dropped below the target, the short window again enabled
rapid reaction to re-enable migration. While there is certainly
room for further refinement (e.g., enabling reverse migration
when the DDR memory becomes underutilized), our combined
solution of threshold-based migration, prefetching via range
expansion, and bandwidth balancing is able to capture the
majority of the performance available by balancing page
migration with CC-NUMA access. Figure 9 shows the results
for our implemented solution across our benchmark suite. We
see that, on average, we are able to not just improve upon
CPU-only DDR by 1.95×, but also exceed the legacy up-front
memcpy-based memory transfer paradigm by 6%, and achieve
28% of oracular page placement.

Fig. 10: Distribution of memory bandwidth into demand data
bandwidth and migration bandwidth

With our proposed migration policy in place, we seek to
understand how it affects the overall bandwidth utilization.
Figure 10 shows the fraction of total application bandwidth
consumed, divided into four categories. The first, DDR De-
mand is the actual program bandwidth utilization that occurred
via CC-NUMA access to the DDR. The second and third,
DDR Migration and GDDR Migration, are the additional
bandwidth overheads on both the DDR and GDDR that would
not have occurred without page migration. This bandwidth
is symmetric because for every read from DDR there is a
corresponding write to the GDDR. Finally, GDDR Demand is
the application bandwidth serviced from the GDDR. The two
additional lines, DDR Oracle and GDDR Oracle, represent the
ideal fractional bandwidth that could be serviced from each of
our two memories.

We observe that applications which have the lowest GDDR
Demand bandwidth see the least absolute performance im-
provement from page migration. For applications like minife
and pathfinder the GDDR Migration bandwidth also
dominates the GDDR Demand bandwidth utilized by the
application. This supports our conclusion in subsection III-B
that migrations may be occurring too late and our mechanisms
are not prefetching the data necessary to make best use of
GDDR bandwidth via page migration. For applications that
do perform well with page migration, those that perform best
tend to have a small amount of GDDR Migration bandwidth
when compared to GDDR Demand bandwidth. For these ap-
plications, initial aggressive page migration quickly arrives at
the optimal bandwidth balance where our bandwidth balancing
policy then curtails further page migration, delivering good
GDDR Demand bandwidth without large migration bandwidth
overhead.

VI. CONCLUSIONS

In this work, we have examined a pressing problem that
the GPU industry is facing on how to best handle memory
placement for upcoming cache coherent GPU-CPU systems.
While the problem of page placement in heterogeneous mem-
ories has been examined extensively in the context of CPU-
only systems, the integration of GPUs and CPUs provides



several unique challenges. First, GPUs are extremely sensitive
to memory bandwidth, whereas traditional memory placement
decisions for CPU-only systems have tried to optimize latency
as their first-order concern. Second, while traditional SMP
workloads have the option to migrate the executing compu-
tation between identical CPUs, mixed GPU-CPU workloads
do not generally have that option since the workloads (and
programming models) typically dictate the type of core on
which to run. This leaves data migration as the only option for
co-locating data and processing resources. Finally, to support
increasingly general purpose programming models, where the
data the GPU shares a common address space with the CPU
and is not necessarily known before the GPU kernel launch,
programmer-specified up-front data migration is unlikely to be
a viable solution in the future.

We have presented a solution to a limited-scope data
placement problem for upcoming GPU-CPU systems to enable
intelligent migration of data into high bandwidth GPU-attached
memory. We identify that demand-based migration alone is un-
likely to be a viable solution due to both application variability
and the need for aggressive prefetching of pages the GPU is
likely to touch, but has not touched yet. The use of range
expansion based on virtual address space locality, rather than
physical page counters, provides a simple method for exposing
application locality while eliminating the need for hardware
counters. Developing a system with minimal hardware support
is important in the context of upcoming GPU-CPU systems,
where multiple vendors may be supplying components in such
a system and relying on specific hardware support on either the
GPU or CPU to achieve performant page migration may not
be feasible. Our migration solution is able to outperform CC-
NUMA access alone by 1.95×, legacy application memcpy
data transfer by 6%, and come within 28% of oracular page
placement.

These memory migration policies optimize the perfor-
mance of GPU workloads with little regard for CPU per-
formance. We have shown that intelligent use of the high
bandwidth memory on the GPU can account for as much as
a 5-fold performance increase over traditional DDR memory
systems. While this is appropriate for applications where
GPU performance dominates Amdahl’s optimization space,
applications with greater data sharing between the CPU and
GPU are likely to evolve. Understanding what these sharing
patterns look like and balancing the needs of a latency-sensitive
CPU versus a bandwidth-hungry GPU is an open problem.
Additionally, with memory capacities growing ever larger and
huge pages becoming more commonly used, evaluating the
trade-off between reducing TLB shootdowns and longer page
copy times will be necessary to maintain the high memory
bandwidth critical for good GPU performance.

ACKNOWLEDGMENT

The authors would like to thank the numerous anonymous
reviewers for their valuable feedback. This work was supported
by US Department of Energy and NSF Grant CCF-0845157.

REFERENCES

[1] NVIDIA Corporation, “Compute Unified Device Architecture,” http
s://developer.nvidia.com/cuda-zone, 2014, [Online; accessed 31-July-
2014].

[2] AMD Corporation, “What is Heterogeneous System Architec-
ture (HSA)?” http://developer.amd.com/resources/heterogeneous-comp
uting/what-is-heterogeneous-system-architecture-hsa/, 2014, ”[Online;
accessed 28-May-2014]”.

[3] NVIDIA Corporation, “NVIDIA Launches World’s First High-Speed
GPU Interconnect, Helping Pave the Way to Exascale Computing,”
http://nvidianews.nvidia.com/News/NVIDIA-Launches-World-s-First
-High-Speed-GPU-Interconnect-Helping-Pave-the-Way-to-Exascale-
Computin-ad6.aspx, 2014, [Online; accessed 28-May-2014].

[4] HyperTransport Consortium, “HyperTransport 3.1 Specification,” http:
//www.hypertransport.org/docs/twgdocs/HTC20051222-0046-0035.pdf,
2010, [Online; accessed 7-July-2014].

[5] INTEL Corporation, “An Introduction to the Intel QuickPath Intercon-
nect,” http://www.intel.com/content/www/us/en/io/quickpath-technolog
y/quick-path-interconnect-introduction-paper.html, 2009, [Online; ac-
cessed 7-July-2014].

[6] E. Kultursay, M. Kandemir, A. Sivasubramaniam, and O. Mutlu, “Eval-
uating STT-RAM as an Energy-efficient Main Memory Alternative,”
in International Symposium on Performance Analysis of Systems and
Software (ISPASS), April 2013, pp. 256–267.

[7] S. Phadke and S. Narayanasamy, “MLP-Aware Heterogeneous Memory
System,” in Design, Automation & Test in Europe (DATE), March 2011,
pp. 1–6.

[8] J. Mogul, E. Argollo, M. Shah, and P. Faraboschi, “Operating System
Support for NVM+DRAM Hybrid Main Memory,” in Workshop on Hot
Topics in Operating Systems (HotOS), May 2009, pp. 14–18.

[9] R. A. Bheda, J. A. Poovey, J. G. Beu, and T. M. Conte, “Energy
Efficient Phase Change Memory Based Main Memory for Future High
Performance Systems,” in International Green Computing Conference
(IGCC), July 2011, pp. 1–8.

[10] L. Ramos, E. Gorbatov, and R. Bianchini, “Page Placement in Hybrid
Memory Systems,” in International Conference on Supercomputing
(ICS), June 2011, pp. 85–99.

[11] K. Wilson and B. Aglietti, “Dynamic Page Placement to Improve
Locality in CC-NUMA Multiprocessors for TPC-C,” in Supercomputing
(SC), November 2001, pp. 33–35.

[12] W. Bolosky, R. Fitzgerald, and M. Scott, “Simple but Effective Tech-
niques for NUMA Memory Management,” in Symposium on Operating
Systems Principles (SOSP), December 1989, pp. 19–31.

[13] T. Brecht, “On the Importance of Parallel Application Placement in
NUMA Multiprocessors,” in Symposium on Experiences with Dis-
tributed and Multiprocessor Systems (SEDMS), September 1993, pp.
1–18.

[14] R. LaRowe, Jr., C. Ellis, and M. Holliday, “Evaluation of NUMA
Memory Management Through Modeling and Measurements,” IEEE
Transactions on Parallel Distribibuted Systems, vol. 3, no. 6, pp. 686–
701, November 1992.

[15] B. Verghese, S. Devine, A. Gupta, and M. Rosenblum, “Operating
System Support for Improving Data Locality on CC-NUMA Compute
Servers,” in International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), September
1996, pp. 279–289.

[16] R. Iyer, H. Wang, and L. Bhuyan, “Design and Analysis of Static Mem-
ory Management Policies for CC-NUMA Multiprocessors,” Journal of
Systems Architecture, vol. 48, no. 1, pp. 59–80, September 2002.

[17] J. Corbet, “AutoNUMA: the other approach to NUMA scheduling,”
http://lwn.net/Articles/488709/, 2012, [Online; accessed 29-May-2014].

[18] M. Dashti, A. Fedorova, J. Funston, F. Gaud, R. Lachaize, B. Lepers,
V. Quema, and M. Roth, “Traffic Management: A Holistic Approach to
Memory Placement on NUMA Systems,” in International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), March 2013, pp. 381–394.

[19] D. Tam, R. Azimi, and M. Stumm, “Thread Clustering: Sharing-
aware Scheduling on SMP-CMP-SMT Multiprocessors,” in European
Conference on Computer Systems (EuroSys), March 2007, pp. 47–58.

[20] S. Zhuravlev, S. Blagodurov, and A. Fedorova, “Addressing Shared
Resource Contention in Multicore Processors via Scheduling,” in
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), March 2010, pp. 129–
142.

https://developer.nvidia.com/cuda-zone
https://developer.nvidia.com/cuda-zone
http://developer.amd.com/resources/heterogeneous-computing/what-is-heterogeneous-system-architecture-hsa/
http://developer.amd.com/resources/heterogeneous-computing/what-is-heterogeneous-system-architecture-hsa/
http://nvidianews.nvidia.com/News/NVIDIA-Launches-World-s-First- High-Speed-GPU-Interconnect-Helping-Pave-the-Way-to-Exascale-Computin-ad6.aspx
http://nvidianews.nvidia.com/News/NVIDIA-Launches-World-s-First- High-Speed-GPU-Interconnect-Helping-Pave-the-Way-to-Exascale-Computin-ad6.aspx
http://nvidianews.nvidia.com/News/NVIDIA-Launches-World-s-First- High-Speed-GPU-Interconnect-Helping-Pave-the-Way-to-Exascale-Computin-ad6.aspx
http://www.hypertransport.org/docs/twgdocs/HTC20051222-0046-0035.pdf
http://www.hypertransport.org/docs/twgdocs/HTC20051222-0046-0035.pdf
http://www.intel.com/content/www/us/en/io/quickpath-technology/quick-path-interconnect-introduction-paper.html
http://www.intel.com/content/www/us/en/io/quickpath-technology/quick-path-interconnect-introduction-paper.html
http://lwn.net/Articles/488709/


[21] R. Knauerhase, P. Brett, B. Hohlt, T. Li, and S. Hahn, “Using OS
Observations to Improve Performance in Multicore Systems,” IEEE
Micro, vol. 28, no. 3, pp. 54–66, May 2008.

[22] S. Blagodurov, S. Zhuravlev, M. Dashti, and A. Fedorova, “A Case
for NUMA-aware Contention Management on Multicore Systems,” in
USENIX Annual Technical Conference (USENIXATC), June 2011, pp.
1–15.

[23] M. Awasthi, D. Nellans, K. Sudan, R. Balasubramonian, and A. Davis,
“Handling the Problems and Opportunities Posed by Multiple On-
Chip Memory Controllers,” in International Conference on Parallel
Architectures and Compilation Techniques (PACT), September 2010,
pp. 319–330.

[24] J. Zhao, G. Sun, G. Loh, and Y. Xie, “Optimizing GPU energy efficiency
with 3D die-stacking graphics memory and reconfigurable memory
interface,” ACM Transactions on Architecture and Code Optimization,
vol. 10, no. 4, pp. 24:1–24:25, December 2013.

[25] B. Wang, B. Wu, D. Li, X. Shen, W. Yu, Y. Jiao, and J. Vet-
ter, “Exploring Hybrid Memory for GPU Energy Efficiency Through
Software-hardware Co-design,” in International Conference on Parallel
Architectures and Compilation Techniques (PACT), September 2013, pp.
93–103.

[26] X. Jiang, N. Madan, L. Zhao, M. Upton, R. Iyer, S. Makineni,
D. Newell, Y. Solihin, and R. Balasubramonian, “CHOP: Integrating
DRAM Caches for CMP Server Platforms,” IEEE Micro, vol. 31, no. 1,
pp. 99–108, March 2011.

[27] J. Meza, J. Chang, H. Yoon, O. Mutlu, and P. Ranganathan, “Enabling
Efficient and Scalable Hybrid Memories Using Fine-Granularity DRAM
Cache Management,” IEEE Computer Architecture Letters, vol. 11,
no. 2, pp. 61–64, July 2012.

[28] B. Pichai, L. Hsu, and A. Bhattacharjee, “Architectural Support for Ad-
dress Translation on GPUs: Designing Memory Management Units for
CPU/GPUs with Unified Address Spaces,” in International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), March 2014, pp. 743–758.

[29] C. Villavieja, V. Karakostas, L. Vilanova, Y. Etsion, A. Ramirez,
A. Mendelson, N. Navarro, A. Cristal, and O. S. Unsal, “DiDi: Mit-
igating the Performance Impact of TLB Shootdowns Using a Shared
TLB Directory,” in International Conference on Parallel Architectures
and Compilation Techniques (PACT), October 2011, pp. 240–249.

[30] J. Power, M. Hill, and D. Wood, “Supporting x86-64 Address Trans-
lation for 100s of GPU Lanes,” in International Symposium on High-
Performance Computer Architecture (HPCA), February 2014, pp. 568–
578.

[31] M. Swanson, L. Stoller, and J. Carter, “Increasing TLB Reach using
Superpages Backed by Shadow Memory,” in International Symposium
on Computer Architecture (ISCA), June 1998, pp. 204–213.

[32] B. Pham, A. Bhattacharjee, Y. Eckert, and G. Loh, “Increasing TLB
Reach by Exploiting Clustering in Page Translations,” in International

Symposium on High-Performance Computer Architecture (HPCA),
February 2014, pp. 558–567.

[33] A. Basu, J. Gandhi, J. Chang, M. D. Hill, and M. M. Swift, “Efficient
Virtual Memory for Big Memory Servers,” in International Symposium
on Computer Architecture (ISCA), June 2013, pp. 237–248.

[34] B. Gerofi, A.Shimada, A. Hori, T. Masamichi, and Y. Ishikawa, “CMCP:
A Novel Page Replacement Policy for System Level Hierarchical
Memory Management on Many-cores,” in International Symposium on
High-performance Parallel and Distributed Computing (HPDC), June
2014, pp. 73–84.

[35] C. McCurdy, A. Cox, and J. Vetter, “Investigating the TLB Behavior
of High-end Scientific Applications on Commodity Microprocessors,”
in International Symposium on Performance Analysis of Systems and
Software (ISPASS), April 2008, pp. 95–104.

[36] INTEL Corporation, “Intel Xeon Processor E7-4870,”
http://ark.intel.com/products/75260/Intel-Xeon-Processor-E7-8893-
v2-37 5M-Cache-3 40-GHz, 2014, [Online; accessed 28-May-2014].

[37] A. Bakhoda, G. L. Yuan, W. W. L. Fung, H. Wong, and T. M. Aamodt,
“Analyzing CUDA Workloads Using a Detailed GPU Simulator,” in
International Symposium on Performance Analysis of Systems and
Software (ISPASS), April 2009, pp. 163–174.

[38] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee,
and K. Skadron, “Rodinia: A Benchmark Suite for Heterogeneous
Computing,” in International Symposium on Workload Characterization
(IISWC), October 2009, pp. 44–54.

[39] J. Mohd-Yusof and N. Sakharnykh, “Optimizing CoMD: A Molecular
Dynamics Proxy Application Study,” in GPU Technology Conference
(GTC), March 2014.

[40] C. Chan, D. Unat, M. Lijewski, W. Zhang, J. Bell, and J. Shalf,
“Software Design Space Exploration for Exascale Combustion Co-
design,” in International Supercomputing Conference (ISC), June 2013,
pp. 196–212.

[41] M. Heroux, D. Doerfler, J. Crozier, H. Edwards, A. Williams, M. Rajan,
E. Keiter, H. Thornquist, and R. Numrich, “Improving Performance
via Mini-applications,” Sandia National Laboratories SAND2009-5574,
Tech. Rep., 2009.

[42] J. Tramm, A. Siegel, T. Islam, and M. Schulz, “XSBench - The Devel-
opment and Verification of a Performance Abstraction for Monte Carlo
Reactor Analysis,” The Role of Reactor Physics toward a Sustainable
Future (PHYSOR), September 2014.

[43] “STREAM - Sustainable Memory Bandwidth in High Performance
Computers,” http://www.cs.virginia.edu/stream/.

[44] N. Agarwal, D. Nellans, M. Stephenson, M. O’Connor, and S. Keckler,
“Page Placement Strategies for GPUs within Heterogeneous Memory
Systems,” in International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), March
2015.

http://ark.intel.com/products/75260/Intel-Xeon-Processor-E7-8893-v2-37_5M-Cache-3_40-GHz
http://ark.intel.com/products/75260/Intel-Xeon-Processor-E7-8893-v2-37_5M-Cache-3_40-GHz

	Introduction
	Motivation and Background
	Cache Coherent GPUs
	Related Work

	Balancing Page Migration and Cache-Coherent Access
	Methodology
	Results

	Range Expanding Migration Candidates
	Avoiding TLB Shootdowns With Range Expansion
	Results

	Bandwidth Balancing
	Results

	Conclusions
	References

