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Abstract
HPC System BW
Systems from smartphones to supercomputers are increasingly het- Ratio

erogeneous, being composed of both CPUs and GPUs. To max-
imize cost and energy efficiency, these systems will increasingly
use globally-addressable heterogeneous memory systems, making
choices about memory page placement critical to performance.
In this work we show that current page placement policies are
not sufficient to maximize GPU performance in these heteroge-
neous memory systems. We propose two new page placement poli-
cies that improve GPU performance: one application agnostic and
one using application profile information. Our application agnos-
tic policy, bandwidth-aware (BW-AWARE) placement, maximizes
GPU throughput by balancing page placement across the memo-
ries based on the aggregate memory bandwidth available in a sys-
tem. Our simulation-based results show that BW-AWARE place-
ment outperforms the existing Linux INTERLEAVE and LOCAL
policies by 35% and 18% on average for GPU compute workloads.
We build upon BW-AWARE placement by developing a compiler-
based profiling mechanism that provides programmers with infor-
mation about GPU application data structure access patterns. Com-
bining this information with simple program-annotated hints about
memory placement, our hint-based page placement approach per-
forms within 90% of oracular page placement on average, largely
mitigating the need for costly dynamic page tracking and migra-
tion.

Categories and Subject Descriptors D.4.2 [Operating Systems):
Storage management—Main memory

Keywords Bandwidth, Page placement, Linux, Program annota-
tion

1. Introduction

GPUs are now ubiquitous in systems ranging from mobile phones
to datacenters like Amazon’s elastic compute cloud (EC2) and HPC
installations like Oak Ridge National Laboratory’s Titan supercom-
puter. In all of these systems, GPUs are increasingly being used
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Figure 1: BW-Ratio of high-bandwidth vs high-capacity memories
for likely future HPC, desktop, and mobile systems

for processing beyond traditional computer graphics, including im-
age processing, computer vision, machine learning, physical dy-
namics in games, and modeling high energy particle interactions.
Regardless of the class of system being considered, GPU/CPU ar-
chitectures are evolving towards general-purpose cache coherent
non-uniform memory access (CC-NUMA) designs with both CPUs
and GPUs being able to access a unified globally-addressable mem-
ory [18]. While some of these systems may share a single homoge-
neous pool of memory, an increasing number of systems use het-
erogeneous memory technologies. Specifically, cost and/or energy
concerns are driving memory system architects to provide a pool
of high-bandwidth memory as well as a higher-capacity pool of
lower-cost and/or lower-power memory.

Figure |I| shows several processor and memory topology op-
tions that are likely to be common over the next several years.
While traditional systems are likely to continue using commodity
DDR3 and soon DDR4, many future GPUs and mobile systems
are moving to also include higher bandwidth, but capacity limited,
on-package memories such as High Bandwidth Memory (HBM)
or Wide-102 (WIO2). Regardless the type of machine, both mem-
ories will be globally accessible to maximize aggregate capacity
and performance, making all systems non-uniform memory access
(NUMA) due to variations in latency, bandwidth, and connection
topology. Depending on the memories paired the bandwidth ratio
between the bandwidth-optimized (BO) and capacity or cost opti-
mized (CO) memory pools may be as low as 2x or as high as 8§ x.

To date, GPU-attached bandwidth optimized (BO) memory has
been allocated and managed primarily as the result of explicit,
programmer-directed function calls. As heterogeneous GPU/CPU



systems move to a transparent unified memory system, the OS and
runtime systems will become increasingly responsible for memory
management functions such as page placement, just as they are in
CPU-only NUMA systems today. In CC-NUMA systems, the no-
tion of local versus remote memory latency is exposed to the oper-
ating system via the Advanced Configuration and Power Interface
(ACPI). The latency differences between local and remote mem-
ory account for the additional latency incurred due to accessing
remote memory across the system interconnect. In these systems,
latency information, alone, is adequate, as CPUs are generally more
performance sensitive to memory system latency, rather than other
memory characteristics.

In contrast, massively parallel GPUs and their highly-threaded
programming models have been designed to gracefully handle long
memory latencies, instead demanding high bandwidth. Unfortu-
nately, differences in bandwidth capabilities, read versus write per-
formance, and access energy are not exposed to software; making it
difficult for the operating system, runtime, or programmer to make
good decisions about memory placement in these GPU-equipped
systems. This work explores the effect on GPU performance of
exposing memory system bandwidth information to the operating
system/runtime and user applications to improve the quality of dy-
namic page placement decisions. Contributions of this work in-
clude:

1. We show that existing CPU-oriented page placement policies
are not only sub-optimal for placement in GPU-based systems,
but simply do not have the appropriate information available
to make informed decisions when optimizing for bandwidth-
asymmetric memory. Exposing additional bandwidth informa-
tion to the OS, as is done for latency today, will be required for
optimized decision making.

2. Perhaps counter-intuitively we show that, placing all pages in
the bandwidth optimized memory is not the best performing
page placement policy for GPU workloads. We propose and
simulate a new bandwidth-aware (BW-AWARE) page place-
ment policy that can outperform Linux’s current bandwidth-
optimized INTERLEAVE placement by 35% and the default la-
tency optimized LOCAL allocation policy by as much as 18%,
when the application footprint fits within bandwidth-optimized
memory capacity.

3. For memory capacity constrained systems (i.e. bandwidth-
optimized memory capacity is insufficient for the workload
footprint), we demonstrate that using simple application an-
notations to inform the OS/runtime of hot versus cold data
structures can outperform the current Linux INTERLEAVE and
LOCAL page placement policies. Our annotation based policy
combined with bandwidth information can outperform these
page placement policies by 19% and 12% respectively, and get
within 90% of oracle page placement performance.

2. Motivation and Background
2.1 Heterogeneous CC-NUMA Systems

Systems using heterogeneous CPU and GPU computing resources
have been widely used for several years. Until recently, the GPU
has been managed as a separate accelerator, requiring explicit
memory management by the programmer to transfer data to
and from the GPU’s address space and (typically) the GPU’s
locally-attached memory. To increase programmer productivity and
broaden the classes of workloads that the GPU can execute, recent
systems have introduced automatic memory management enabling
the CPU and GPU to access a unified address space and transpar-
ently migrate data at a page-level granularity [36]. The next step
in this evolution is making the GPU a cache-coherent peer to the
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Figure 2: GPU performance sensitivity to bandwidth and latency
changes.

CPU in the memory system, which is the stated goal of a number
of commercial vendors [[18]].

While some heterogeneous CPU/GPU systems share a single
unified physical memory [12], discrete GPUs are already using spe-
cialized DRAM optimized to meet their high bandwidth demands.
To highlight the sensitivity of GPU performance to memory char-
acteristics, Figures [2a] and [2b] show the performance variation as
memory bandwidth and latency vary for a variety of GPU com-
pute benchmarks from the Rodinia [10] and Parboil [44] suites, as
well as a number of recent HPC [8} 117,135} 146] workloads. Most of
these GPU workloads are sensitive to changes in bandwidth, while
showing much more modest sensitivity to varying the latency;
only sgemm stands out as highly latency sensitive among these 33
workloads. Some application kernels are neither bandwidth nor la-
tency sensitive and do not see significant performance variation as
modifications are made to the memory subsystem. While GPU-
equipped systems generally require bandwidth-optimized memo-
ries to achieve peak performance, these memory technologies have
significant cost, capacity, and/or energy disadvantages over alterna-
tive DRAM technologies.

The most common bandwidth-optimized (BO) memory tech-
nology today is GDDRS5 [[19]. Providing a per-pin data rate of up
to 7Gbps, this memory technology is widely used with discrete
GPUs used in HPC, workstation, and desktop systems. Due to the
high data rates, GDDRS systems require significant energy per ac-
cess and are unable to support high-capacity multi-rank systems.
In contrast, the roadmap for the next several years of cost/capacity-
optimized (CO) DRAM (DDR4 and LPDDR4) provides a per-pin
data rate that reaches only 3.2 Gbps. However, these CO DRAM
technologies provide similar latency at a fraction of the cost and
lower energy per access compared to the BO GDDRS memories.



Looking forward, systems requiring more bandwidth and/or re-
duced energy per access are moving to die-stacked DRAM tech-
nologies [24, 26]. These bandwidth-optimized stacked memories
are significantly more energy-efficient than off-package memory
technologies like GDDRS5, DDR4, and LPDDR4. Unfortunately,
the number of DRAM die that can be economically stacked in a
single package is limited, necessitating systems to also provide a
pool of off-package capacity-optimized DRAM.

This disaggregation of memory into on-package and off-package
pools is one factor motivating the need to revisit page placement
within the context of GPU performance. Future GPU/CPU systems
are likely to take this disaggregation further and move capacity-
optimized memory not just off the GPU package, but across a high
speed interconnect where it is physically attached to the CPU rather
than the GPU, or possibly further [30]. In a CC-NUMA system, the
physical location of this capacity-optimized memory only changes
the latency and bandwidth properties of this memory pool — it is
functionally equivalent regardless of being CPU or GPU locally
attached. A robust page placement policy for GPUs will abstract
the on-package, off-package, and remote memory properties into
performance and power characteristics based on which it can make
optimized decisions.

2.2 Current OS NUMA Page Placement

In modern symmetric multiprocessor (SMP) systems, each socket
typically consists of several cores within a chip multi-processor
(CMP) that share last-level caches and on-chip memory con-
trollers [22]]. The number of memory channels connected to a pro-
cessor socket is often limited by the available pin count. To increase
the available memory bandwidth and capacity in a system, individ-
ual sockets can be connected via a cache coherent interconnect fab-
ric such as Intel’s Quick Path [21], AMD’s HyperTransport [20],
or NVIDIA’s NVLink [38]. A single socket, the processors within
it, and the physically attached memory comprise what an operat-
ing system sees as a local NUMA zone. Each socket is a separate
NUMA zone. While a processor within any given zone can access
the DRAM within any other zone, there is additional latency to ser-
vice this memory request compared to a locally serviced memory
request because the request must be routed first to its own memory
controller, across the socket interconnect, and through the remote
memory controller.

Operating systems such as Linux have recognized that, unless
necessary, it is typically better for applications to service memory
requests from their own NUMA zone to minimize memory latency.
To get the best performance out of these NUMA systems, Linux
learns system topology information from the Advanced Configura-
tion and Power Interface (ACPI) System Resource Affinity Table
(SRAT) and memory latency information from the ACPI System
Locality Information Table (SLIT). After discovering this informa-
tion, Linux provides two basic page placement policies that can be
specified by applications to indicate where they prefer their phys-
ical memory pages to be placed when using standard malloc and
mmap calls to allocate memory.

LOCAL: The default policy inherited by user processes is LO-
CAL in which physical page allocations will be from memory
within the local NUMA zone of the executing process, unless oth-
erwise specified or due to capacity limitations. This typically re-
sults in allocations from memory physically attached to the CPU
on which the process is running, thus minimizing memory access
latency.

INTERLEAVE: The second available allocation policy, which
processes must specifically inform the OS they would like to use,
is INTERLEAVE. This policy allocates pages round-robin across all
(or a subset) of the NUMA zones within the SMP system to balance
bandwidth across the memory pools. The downside of this policy

is that the additional bandwidth comes at the expense of increased
memory latency. Today, the OS has no knowledge about the relative
bandwidth of memories in these different NUMA zones because
SMP systems have traditionally had bandwidth-symmetric memory
systems.

In addition to these OS placement policies, Linux provides a
library interface called libNUMA for applications to request mem-
ory allocations from specific NUMA zones. This facility provides
low-level control over memory placement but requires careful pro-
gramming because applications running on different systems will
often have different NUMA-zone layouts. Additional difficulties
arise because there is no performance feedback mechanism avail-
able to programmers when making memory placement decisions,
nor are they aware of which processor(s) their application will be
running on while writing their application.

With the advent of heterogeneous memory systems, the assump-
tions that operating system NUMA zones will be symmetric in
bandwidth, latency, and power characteristics break down. The ad-
dition of heterogeneous GPU and CPU computing resources fur-
ther stresses the page placement policies since processes may not
necessarily be migrated to help mitigate performance imbalance,
as certain phases of computation are now pinned to the type of pro-
cessor executing the program. As a result, data placement policies
combined with bandwidth-asymmetric memories can have signifi-
cant impact on GPU, and possibly CPU, performance.

2.3 Related Work

With the introduction of symmetric multiprocessors, significant
work has examined optimal placement of processes and memory
in CC-NUMA systems [6} [7, 23| 29) 48| 50]. While much of
this early work focused on placing processes and data in close
proximity to each other, more recent work has recognized that
sharing patterns, interconnect congestion, and even queuing delay
within the memory controller are important metrics to consider
when designing page and process placement policies [2, 15, [11} {13}
2711451153]. Nearly all of these works focus on improving traditional
CPU throughput where reduced memory latency is the primary
driver of memory system performance. Recent work from Gerofi
et al. [16] examines TLB replacement policies for the Xeon Phi
co-processor with a focus on highly parallel applications with large
data footprints.

Using non-DRAM technologies or mixed DRAM technologies
for main memory systems to improve power consumption on tradi-
tional CPUs has also been explored by several groups [4} 9} 28} 134,
40H42]). Much of this work has focused on overcoming the perfor-
mance peculiarities that future non-volatile memory (NVM) tech-
nologies may have compared to existing DRAM designs. In ad-
dition to mixed technology off-package memories, upcoming on-
package memories provide opportunities for latency reduction by
increasing the number of banks available to the application [[14]
and may one day be configurable to balance bandwidth application
needs with power consumption [S1]. An alternative to treating het-
erogeneous memory systems as a flat memory space is to use one
technology as a cache for the other [25| 32]. While this approach
has the advantage of being transparent to the programmer, OS, and
runtime systems, few implementations [43] take advantage of the
additive bandwidth available when using heterogeneous memory.

In the GPU space, Zhao et al. [52] have explored the affect of
hybrid DRAM-NVM systems on GPU compute workloads, making
the observation that modern GPU designs are very good at hiding
variable memory system latency. Wang et al. [49] explore a mixed
NVM-DRAM system that uses compiler analysis to identify near-
optimal data placement across kernel invocations for their hetero-
geneous memory system. While their system does not significantly
improve performance, it offers improved power efficiency through



use of NVM memory and shows that software based page place-
ment, rather than hardware caching, can be a viable alternative to
managing heterogeneous memory for use with GPUs.

3. BW-AWARE Page Placement

Using all available memory bandwidth is a key driver to maximiz-
ing performance for many GPU workloads. To exploit this obser-
vation, we propose a new OS page placement algorithm which ac-
counts for the bandwidth differential between different bandwidth-
optimized and capacity-optimized memories when making page
placement decisions. This section discusses the need, implementa-
tion, and results for a bandwidth-aware (BW-AWARE) page place-
ment policy for systems where the application footprint fits within
BO memory, the common case for GPU workloads today. Later
in Section 5} we discuss an extension to BW-AWARE placement
for systems where memory placement decisions are constrained by
the capacity of the bandwidth-optimized memory. Both HPC sys-
tems trying to maximize in-memory problem footprint and mobile
systems which are capacity limited by cost and physical part di-
mensions may soon encounter these capacity constraints with het-
erogeneous memories.

3.1 Bandwidth Maximized Page Placement

The goal of bandwidth-aware page placement is to enable a GPU
to effectively use the total combined bandwidth of all the memory
in the system. Because GPUs are able to hide high memory la-
tency without stalling their pipelines, all memories in a system can
be used to service GPU requests, even when those memories are
off-package or require one or more hops through a system inter-
connect to access. To exploit bandwidth-heterogeneous memories,
our BW-AWARE policy places physical memory pages in the ratio
of aggregate bandwidths of the memories in the system without re-
quiring any knowledge of page access frequency. Below we derive
that this placement policy is optimal for maximizing bandwidth.

Consider a system with bandwidth-optimized and capacity-
optimized memories with bandwidths bp and bc respectively,
where unrestricted capacity of both memories are available. Let
fB represent fraction of data placed in the BO memory and 1 — fp
in the CO memory. Let us assume there are total of N memory
accesses uniformly spread among different pages. Then the total
amount of time spent by the BO memory to serve N * fp mem-
ory accesses is N * fp/bp and that by the CO memory to serve
N(1 — fg) memory accesses is N(1 — fg)/bc. Since requests
to these two memories are serviced in parallel, the total time T to
serve the memory requests is:

T = max(N * fg/bs, N(1 — fg)/bc)

To maximize performance, T must be minimized. Since, Nx fg /bp
and N(1 — fp)/bc are linear in f, and N * fp/bp is increasing
function while N(1 — fg)/bc is decreasing, the minimum of T
occurs when both are equal:
Topt = N*fB/bB = N(l - fB)/bO
Therefore,
fBopt = br/(bs + bC)

Because we have assumed that all pages are accessed uni-
formly, the optimal page placement ratio is the same as the band-
width service ratio between the bandwidth-optimized and capacity-
optimized memory pools. From this derivation we make two addi-
tional observations. First, BW-AWARE placement will generalize
to an optimal policy where there are more than two technologies by
placing pages in the bandwidth ratio of all memory pools. Second,
a practical implementation of a BW-AWARE policy must be aware
of the bandwidth provided by the various memory pools available

Simulator GPGPU-Sim 3.x

GPU Arch NVIDIA GTX-480 Fermi-like

GPU Cores 15 SMs @ 1.4Ghz

L1 Caches 16kB/SM

L2 Caches Memory Side 128kB/DRAM Channel
L2 MSHRs 128 Entries/L2 Slice

Memory system
8-channels, 200GB/sec aggregate
4-channels, 80GB/sec aggregate
RCD=RP=12,RC=40,CL=WR=12
100 GPU core cycles

GPU-Local GDDRS5
GPU-Remote DDR4
DRAM Timings
GPU-CPU
Interconnect Latency

Table 1: Simulation environment and system configuration for
mixed memory GPU/CPU system.

within a system. Hence there is a need for a new System Band-
width Information Table (SBIT), much like there is already a ACPI
System Locality Information Table (SLIT) which exposes memory
latency information to the operating system today. We will re-visit
the assumption of uniform page access later in Section[4.1}

3.2 Experimental Results

While it would be ideal to evaluate our page placement policy on
a real CC-NUMA GPU/CPU system with a heterogeneous mem-
ory system, such systems are not available today. Mobile systems
containing both ARM CPU cores and NVIDIA GPU cores exist
today in products such as the NVIDIA Shield Portable, but use a
single LPDDR3 memory system. Desktop and HPC systems today
have heterogeneous memory attached to CPUs and discrete GPUs
but these processors are not connected through a cache coherent
interconnect. They require explicit user management of memory if
any data is to be copied from the host CPU memory to the GPU
memory or vice versa over the PCle interconnect. Pages can not be
directly placed into GPU memory on allocation by the operating
system. Without a suitable real system to experiment on, we turned
to simulation to evaluate our page placement improvements.

3.2.1 Methodology

To evaluate BW-AWARE page placement, we simulated a hetero-
geneous memory system attached to a GPU comprised of both
bandwidth-optimized GDDR and cost/capacity-optimized DDR
where the GDDR memory is attached directly to the GPU. No con-
temporary GPU system is available which supports cache-coherent
access to heterogeneous memories. Commonly available PCle-
attached GPUs are constrained by interconnect bandwidth and lack
of cache-coherence; while cache-coherent GPU systems, such as
AMD’s Kaveri, do not ship with heterogeneous memory.

Our simulation environment is based on GPGPU-Sim [3] which
has been validated against NVIDIA’s Fermi class GPUs and is re-
ported to match hardware performance with up to 98.3% accu-
racy [1]. We modified GPGPU-Sim to support a heterogeneous
GDDRS5-DDR4 memory system with the simulation parameters
listed in Table [I] We model a baseline system with 200GB/s of
GPU-attached memory bandwidth and 80GB/s of CPU-attached
memory bandwidth, providing a bandwidth ratio of 2.5 x. We made
several changes to the baseline GTX-480 model to bring our config-
uration in-line with the resources available in more modern GPUs,
including a larger number of MSHRs and higher clock frequency.
With a focus on memory system performance, we evaluate GPU
workloads which are sensitive to memory bandwidth or latency
from three benchmark suites: Rodinia [[L0]], Parboil [44] and recent
HPC [8} [177, 135} 46] workloads; those which are compute-bound
see little change in performance due to changes made to the mem-
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Figure 3: GPU workload performance with different page place-
ment policies. zC-yB policy represents = : y data transfer ratio
from CO and BO memory respectively.

ory system. For the remainder of the paper we show results for 19
benchmarks, 17 of which are sensitive to memory bandwidth while
also providing comd and sgemm results to represent applications
which are memory insensitive and latency sensitive respectively.

As noted in Section[2.] attaching the capacity-optimized mem-
ory directly to the GPU is functionally equivalent to remote CPU
attached memory, but with different latency parameters. To simu-
late an additional interconnect hop to remote CPU-attached mem-
ory, we model a fixed, pessimistic, additional 100 cycle latency
to access the DDR4 memory from the GPU. This overhead is de-
rived from the single additional interconnect hop latency found in
SMP CPU-only designs such as the Intel XEON [22]. Our hetero-
geneous memory model contains the same number of MSHRs per
memory channel as the baseline memory configuration. The num-
ber of MSHRs in the baseline configuration is sufficient to effec-
tively hide the additional interconnect latency to the DDR mem-
ory in Figure 2B Should MSHR quantity become an issue when
supporting two level memories, previous work has shown that sev-
eral techniques can efficiently increase MSHRs with only modest
cost [331147].

Implementing a BW-AWARE placement policy requires adding
another mode (MPOL_BWAWARE) to the set_mempolicy() system
call in Linux. When a process uses this mode, the Linux kernel
will allocate pages from the two memory zones in the ratio of their
bandwidths. These bandwidth ratios may be obtained from future
ACPI resources or dynamically determined by the GPU runtime at
execution time.

3.2.2 BW-AWARE Performance

We define our BW-AWARE page placement policy xC-y B, where
z and y denote the percentage of pages placed in a given memory
technology, C' stands for capacity-optimized memory and B stands
for bandwidth-optimized memory. By definition z 4+ y = 100. For
our baseline system with 200GB/sec bandwidth-optimized memory
and 80GB/sec of capacity-optimized memory the aggregate system
bandwidth is 280GB/sec. In this notation, our BW-AWARE policy
will then be x = 80/280 = 28% and y = 200/280 = 72%,
represented as 28C-72B. However, for simplicity we will round
this to 30C-70B for use as the placement policy. For processes
running on the GPU, the LOCAL policy would be represented
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Figure 4: Performance of BW-AWARE placement as application
footprint exceeds available high-bandwidth memory capacity.

as 0C-100B; 50C-50B corresponds to the bandwidth spreading
Linux INTERLEAVE policy.

To achieve the target 30C-70B bandwidth ratio, we imple-
mented BW-AWARE placement as follows. On any new physi-
cal page allocation, a random number in the range [0, 99] is gen-
erated. If this number is > 30, the page is allocated from the
bandwidth-optimized memory; otherwise it is allocated in the
capacity-optimized memory. A LOCAL allocation policy can avoid
the comparison if it detects either B or C has the value zero. While
this implementation does not exactly follow the BW-AWARE
placement ratio due to the use of random numbers, in practice
this simple policy converges quickly towards the BW-AWARE ra-
tio. This approach also requires no history of previous placements
nor makes any assumptions about the frequency of access to pages,
minimizing the overhead for making placement decisions which
are on the software fast-path for memory allocation.

Figure [3] shows the application performance as we vary the
ratio of pages placed in each type of memory from 100% BO to
100% CO. For all bandwidth-sensitive applications, the maximum
performance is achieved when using the correct BW-AWARE 30C-
70B placement ratio. We find that, on average, a BW-AWARE
policy performs 18% better than the Linux LOCAL policy and 35%
better than the Linux INTERLEAVE policy. However, for latency
sensitive applications, such as sgemm, the BW-AWARE policy may
perform worse than a LOCAL placement policy due to an increased
number of accesses to higher latency remote CO memory. The
BW-AWARE placement policy suffers a worse case performance
degradation of 12% over the LOCAL placement policy in this
scenario.

Because the current Linux INTERLEAVE policy is identical to
BW-AWARE for a bandwidth-symmetric DRAM 50C-50B mem-
ory technology pairing, we believe a BW-AWARE placement pol-
icy could simply replace the current Linux INTERLEAVE policy
without having significant negative side affects on existing CPU or
GPU workloads. Because maximizing bandwidth is more impor-
tant than minimizing latency for GPU applications, BW-AWARE
placement may be a good candidate to become the default place-
ment policy for GPU-based applications.

3.2.3 Effective Improvement in Problem Sizing

Figure E| shows the application throughput as we reduce the ca-
pacity of our bandwidth-optimized memory pool as a fraction of
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the total application footprint. BW-AWARE placement is able to
achieve near peak performance even when only 70% of the appli-
cation footprint fits within the BO memory because BW-AWARE
placement places only 70% of pages in BO memory, with the other
30% is placed in the less expensive capacity-optimized memory.
Thus, GPU programmers who today tune their application footprint
to fit entirely in the GPU-attached BO memory could gain an ex-
tra 30% effective memory capacity by exploiting the CPU-attached
CO memory with a BW-AWARE placement policy. However, as the
bandwidth-optimized memory capacity drops to less than 70% of
application footprint, performance begins to fall off. This effect is
due to the ratio of bandwidth service from the two memory pools no
longer matching the optimal ratio of 30C-70B, with more data be-
ing serviced from the capacity optimized ratio than is ideal. Appli-
cations which are insensitive to memory bandwidth (shown as hav-
ing little change in Figure[3), tend to maintain their performance at
reduced capacity points (shown as having little change in Figure[d),
because the average bandwidth reduction does not strongly affect
their performance. Conversely, those applications with strong BW-
performance scaling tend to see larger performance reduction as the
average bandwidth available is reduced, due to capacity constraints
forcing a disproportionate number of memory accesses to the lower
bandwidth CO memory. The performance at 70% memory capac-
ity does not exactly match 100% of ideal because the actual ratio
of bandwidth in our system is 28C-72B not 30C-70B.

3.2.4 Sensitivity to NUMA BW-Ratios

Heterogeneous memory systems are likely to come in a variety
of configurations. For example, future mobile products may pair
energy efficient and bandwidth-optimized Wide-102 memory with
cost-efficient and higher capacity LPDDR4 memory. Using the mo-
bile bandwidths shown in Figure m this configuration provides
an additional 31% in memory bandwidth to the GPU versus us-
ing the bandwidth-optimized memory alone. Similarly, HPC sys-
tems may contain GPUs with as many as 4 on-package bandwidth-
optimized HBM stacks and high speed serial interfaces to bulk ca-
pacity cost/capacity-optimized DDR memory expanders providing
just 8% additional memory bandwidth. While we have explored
BW-AWARE placement in a desktop-like use case, BW-AWARE
page placement can apply to all of these configurations.

Figure [5] shows the average performance of BW-AWARE, IN-
TERLEAVE, and LOCAL placement policies as we vary the ad-
ditional bandwidth available from the capacity-optimized memory
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Figure 6: Data bandwidth cumulative distribution function with
pages sorted from hot (most memory accesses) to cold (least mem-
Ory accesses).

from 0GB/s—200GB/s. As the bandwidth available from capacity-
optimized memory increases, the LOCAL policy fails to take ad-
vantage of it by neglecting to allocate any pages in the capacity-
optimized memory. The Linux INTERLEAVE policy, due to its
fixed round-robin allocation, loses performance in many cases be-
cause it oversubscribes the capacity-optimized memory, resulting
in less total bandwidth available to the application. On the other
hand, BW-AWARE placement is able to exploit the bandwidth
from the capacity-optimized memory regardless the amount of ad-
ditional bandwidth available. Because BW-AWARE placement per-
forms identically to INTERLEAVE for symmetric memory and
outperforms it in all heterogeneous cases, we believe that BW-
AWARE placement is a more robust default policy than INTER-
LEAVE when considering bandwidth-sensitive GPU workloads.

4. Understanding Application Memory Use

Section [3] showed that optimal BW-AWARE placement requires
the majority of the application footprint to fit in the bandwidth-
optimized memory to match the bandwidth service ratios of the
memory pools. However, as shown in Figure[T] systems may have
bandwidth-optimized memories that comprise less than 10% the to-
tal memory capacity, particularly those using on-package memories
which are constrained by physical dimensions. If the application
footprint grows beyond the bandwidth-optimized capacity needed
for BW-AWARE placement, the operating system has no choice
but to steer remaining page allocations into the capacity-optimized
memory. Unfortunately, additional pages placed in the CO mem-
ory will skew the ratio of data transferred from each memory pool
away from the optimal BW-AWARE ratio.

For example, in our simulated system if the bandwidth-optimized
memory can hold just 10% of the total application memory foot-
print, then a BW-AWARE placement would end up placing 10%
pages in the BO memory; the remaining 90% pages must be spilled
exclusively to the capacity-optimized memory. This ratio of 90C-
10B is nearly the inverse of the performance-optimized ratio of
30C-70B. To improve upon this capacity-induced placement prob-
lem, we recognize that not all pages have uniform access frequency,
and we can selectively place hot pages in the BO memory and cold



pages in the CO memory. In this work we define page hotness as
the number of accesses to that page that are served from DRAM.

4.1 Visualizing Page Access Distribution

Figure [6] shows the cumulative distribution function (CDF) for
memory bandwidth as a fraction of the total memory footprint for
each of our workloads. The CDF was generated by counting ac-
cesses to each 4kB page, after being filtered by on-chip caches, and
then sorting the pages from greatest to least number of accesses.
Applications that have the same number of accesses to all pages
have a linear CDF, whereas applications in which some pages are
accessed more than others have a non-linear CDF skewed towards
the left of the graph. For example, we see that for applications
like bfs and xsbench, over 60% of the memory bandwidth stems
from within only 10% of the application’s allocated pages. Skew-
ing the placement of these hot pages towards bandwidth-optimized
memory will improve the performance of GPU workloads which
are capacity constrained by increasing the traffic to the bandwidth-
optimized memory. However, for applications which have linear
CDFs, there is little headroom for improved page placement over
BW-AWARE placement.

Figure [6] also shows that some workloads have sharp inflection
points within the CDF, indicating that distinct ranges of physical
addresses appear to be clustered as hot or cold. To determine if
these inflection points could be correlated to specific memory al-
locations within the application, we plotted the virtual addresses
that correspond to application pages in the CDF, and then reverse-
mapped those address ranges to memory allocations for program-
level data structures, with the results shown in Figure[7] The x-axis
shows the fraction of pages allocated by the application, where
pages are sorted from greatest to least number of accesses. The
primary y-axis (shown figure left) represents the CDF of mem-
ory bandwidth among the pages allocated by the application (also
shown in Figure[6). Each point on the secondary scatter plot (shown
figure right) shows the virtual address of the corresponding page
on the x-axis. The points (pages) are colored according to different
data structures they were allocated from in the program source.

We analyze three example applications, bfs, mummergpu, and
needle which show different memory access patterns. For bfs, we
can see three data structures: d_graph_visited,
d_updating graph mask, and d_cost consume =~ 80% of the
total application bandwidth while accounting for ~ 20% of the
memory footprint. However for mummergpu, the memory hotness
does not seem to be strongly correlated to any specific application
data structures. Several sub-structures have similar degrees of hot-
ness and some virtual address ranges (10,000-19,000 and 29,000-
37,000) are allocated but never never accessed. In needle, which
has a fairly linear CDF, the degree of memory hotness actually
varies within the same data structure. While we examined all appli-
cations with this analysis, we summarize our two key observations.

Individual pages can and often do have different degrees of hot-
ness. Application agnostic page placement policies, including BW-
AWARE placement, may leave performance on the table compared
to a placement policy that is aware of page frequency distribution.
Understanding the relative hotness of pages is critical to further op-
timizing page placement. If an application does not have a skewed
CDF, then additional effort to characterize and exploit hotness dif-
ferential will only introduce overhead without any possible benefit.

Workloads with skewed cumulative distribution functions often
have sharp distinctions in page access frequency that map well
to different application data structures. Rather than attempting to
detect and segregate individual physical pages which may be hot or
cold, application structure and memory allocation policy will likely
provide good information about pages which will have similar
degrees of hotness.
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4.2 Oracle Page Placement

With knowledge that page accesses are highly differentiated for
some applications, we implemented an oracle page placement pol-
icy to determine how much more application performance could
be achieved compared to BW-AWARE placement in capacity con-
strained situations. Using perfect knowledge of page access fre-
quency, an oracle page placement policy will allocate the hottest
pages possible into the bandwidth-optimized memory until the tar-
get bandwidth ratio is satisfied, or the capacity of this memory is
exhausted. We implemented this policy using two phase simulation.
First, we obtained perfect knowledge of page access frequency.
Then in a second simulation pass, we used this information to al-
locate pages to achieve the best possible data transfer ratio under a
10% capacity constraint where only 10% of the application mem-
ory footprint fits within the bandwidth-optimized memory.

Figure [8] compares the performance of the oracle and BW-
AWARE placement policies in both the unconstrained and 10%
capacity constrained configuration. Figure [§] confirms that BW-
AWARE placement is near-optimal when applications are not ca-
pacity limited. This is because both BW-AWARE and oracle place-
ment are both able to achieve the ideal bandwidth distribution,
though the oracle policy is able to do this with a smaller mem-
ory footprint by placing fewer, hotter, pages in the BO memory.
Under capacity constraints, however, the oracle policy can nearly
double the performance of the BW-AWARE policy for applica-
tions with highly skewed CDFs and it outperforms BW-AWARE
placement in all cases. This because the random page selection of
BW-AWARE placement is not able to capture enough hot pages for
placement in BO memory, before running out of BO memory ca-
pacity, to achieve the ideal bandwidth distribution. On average the
oracle policy is able to achieve nearly 60% the application through-
put of a system for which there is no capacity constraint. This ad-
ditional performance, achievable through application awareness of
memory access properties, motivates the need for further improve-
ments in memory placement policy.

5. Application Aware Page Placement

Figure [7] visually depicts what may be obvious to performance-
conscious programmers: certain data structures are accessed more
frequently than others. For these programmers, the unbiased nature
of BW-AWARE page placement is not desirable because all data
structures are treated equally. This section describes compiler tool-

flow and runtime modifications that enable programmers to intel-
ligently steer specific allocations towards bandwidth- or capacity-
optimized memories and achieve near-oracle page placement per-
formance.

To correctly annotate a program to enable intelligent memory
placement decisions across a range of systems, we need two pieces
of information about a program: (1) the relative memory access
hotness of the data structures, and (2) the size of the data structures
allocated in the program. To understand the importance of these
two factors, let us consider the following scenario. In a program
there are two data structure allocations with hotness H1 and H2.
If the bandwidth-optimized memory capacity is large enough for
BW-AWARE placement to be used without running into capacity
constraints, then BW-AWARE page placement should be used irre-
spective of the hotness of the data structures. To make this decision
we must know the application runtime memory footprint. However,
if the application is capacity-constrained, then ideally the memory
allocation from the hotter data structure should be preferentially
placed in the BO memory. In this case, we need to know both the
relative hotness and the size of the data structures to optimally place

pages.

5.1 Profiling Data Structure Accesses in GPU Programs

While expert programmers may have deep understanding of their
application characteristics, as machines become more complex and
programs rely more on GPU accelerated libraries, programmers
will have a harder time maintaining this intuition about program
behavior. To augment programmer intuition about memory access
behavior, we developed a new GPU profiler to provide information
about program memory access behavior.

In this work we augmented nvcc and ptxas, NVIDIA’s pro-
duction compiler tools for applications written in CUDA
(NVIDIAS explicitly parallel programming model), to support data
structure access profiling. When profiling is enabled, our com-
piler’s code generator emits memory instrumentation code for all
loads and stores that enables tracking of the relative access counts
to virtually addressed data structures within the program. As with
the GNU profiler gprof [13], the developer enables a special com-
piler flag that instruments an application to perform profiling. The
developer then runs the instrumented application on a set of “rep-
resentative” workloads, which aggregates and dumps a profile of
the application.

When implementing this GPU memory profiling tool, one of the
biggest challenges is that nvcc essentially generates two binaries:
a host-side program, and a device-side program (that runs on the
GPU). The profiler’s instrumentation must track the execution of
both binaries. On the host side, the profiler inserts code to track
all instances and variants of cudaMalloc. The instrumentation
associates the source code location of the cudaMalloc with the
runtime virtual address range returned by it. The host side code is
also instrumented to copy this mapping of line numbers and address
ranges to the GPU before each kernel launch. The GPU-side code
is instrumented by inserting code before each memory operation to
check if the address falls within any of the ranges specified in the
map.

For each address that falls within a valid range, a counter asso-
ciated with the range is incremented, using atomic operations be-
cause the instrumentation code is highly multi-threaded. At ker-
nel completion, this updated map is returned to the host which
launched the kernel to aggregate the statistics about virtual mem-
ory location usage. Our profiler generates informative data struc-
ture mapping plots, like those shown in Figure[7] which application
programmers can use to guide their understanding of the relative
access frequencies of their data structures, one of the two required



pieces of information to perform intelligent near-optimal placement
within an application.

5.2 Memory Placement APIs for GPUs

With a tool that provides programmers a profile of data structure
hotness, they are armed with the information required to make page
placement annotations within their application, but they are lack-
ing a mechanism to make use of this information. To enable mem-
ory placement hints (which are not a functional requirement) for
where data should be placed in a mixed BO-CO memory system,
we also provide an alternate method for allocating memory. We
introduce an additional argument to the cudaMalloc memory allo-
cation functions that specifies in which domain the memory should
be allocated (BO or CO) or to use BW-AWARE placement (BW).
For example:
cudaMalloc(void **devPtr, size_t size, enum hint)

This hint is not machine specific and simply indicates if the
CUDA memory allocator should make a best effort attempt to place
memory within a BO or CO optimized memory using the underly-
ing OS libNUMA functionality or fall back to the bandwidth-aware
allocator. By providing an abstract hint, the CUDA runtime, rather
than the programmer, becomes responsible for identifying and clas-
sifying the machine topology of memories as bandwidth or capac-
ity optimized. While we have assumed bandwidth information is
available in our proposed system bandwidth information table, pro-
grammatic discovery of memory zone bandwidth is also possible as
a fall back mechanism [31]]. In our implementation, memory hints
are honored unless the memory pool is filled to capacity, in which
case the allocator will fall back to the alternate domain. If no place-
ment hint is provided, the CUDA runtime will fall back to using
the application agnostic BW-AWARE placement for unannotated
memory allocations. When a hint is supplied, the cudaMalloc rou-
tine uses the mbind system call in Linux to perform placement of
the data structure in the corresponding memory.

5.3 Program Annotation For Data Placement

Our toolkit now includes a tool for memory profile generation and
a mechanism to specify abstract memory placement hints. While
programmers may choose to use this information directly, optimiz-
ing for specific machines, making these hints performance portable
across a range of machines is harder as proper placement depends
on application footprint as well as the memory capacities of the
machine. For performance portability, the hotness and allocation
size information must be annotated in the program before any heap
allocations occur. We enable annotation of this information as two
arrays of values that are linearly correlated with the order of the
memory allocations in the program. For example Figure 0] shows
the process of hoisting the size allocations manually into the size
array and hotness into the hotness array.

We provide a new runtime function GetAllocation that then
uses these two pieces of information, along with the discovered
machine bandwidth topology, to compute and provide a memory
placement hint to each allocation. GetAllocation determines ap-
propriate memory placement hints by computing the ideal (BO or
CO) memory location by first calculating the cumulative footprint
of all data structures and then calculating the total number of iden-
tified data structures from [1:N] that will fit within the bandwidth-
optimized memory before it exhausts the BO capacity.

It is not critical that programmers provide annotations for all
memory allocations, only large or performance critical ones. For
applications that make heavy use of libraries or dynamic decisions
about runtime allocations, it may not be possible to provide good
hinting decisions because determining the size of data structures al-
located within libraries calls is difficult, if not impossible, in many

// n:input parameter

cudaMalloc (devPtrl , nxsizeof(int));
cudaMalloc (devPtr2 , nxn);
cudaMalloc (devPtr3, 1000);

(a) Original code dependent allocations

// n: input parameter
// sizel[i]: Size of data structures
// hotness[i]: Hotness of data structures

size[0] = nxsizeof (int);
size[1] = nxn;
size [2] =

1000;
hotness [0] = 2;
hotness [1] 3;
hotness [2] 1;

// hint[i]: Computed data structure placement hints
hint[] = GetAllocation(size[], hotness[]);
cudaMalloc (devPtrl , size[0], hint[0]);

cudaMalloc (devPtr2 , size[l], hint[1]);

cudaMalloc (devPtr3, size[2], hint[2]);

(b) Final code

Figure 9: Annotated pseudo-code to do page placement at runtime
taking into account relative hotness of data structures and data
structure sizes

cases.. While this process may seem impractical to a traditional
high level language programmer, examining a broad range of GPU
compute workloads has shown that in almost all GPU-optimized
programs, the memory allocation calls are already hoisted to the
beginning of the GPU compute kernel. The CUDA C Best Practices
Guide advises the programmer to minimize memory allocation and
de-allocation in order to achieve the best performance [37].

5.4 Experimental Results

Figure |10 shows the results of using our feedback-based optimiza-
tion compiler workflow and annotating our workloads using our
new page placement interfaces. We found that on our capacity-
limited machine, annotation-based placement outperforms the
Linux INTERLEAVE policy performance by 19% and naive BW-
AWARE 30C-70B placement by 14% on average. Combining pro-
gram annotated placement hints and our runtime placement en-
gine achieves 90% of oracular page placement on average. In all
cases our program-annotated page placement algorithm outper-
forms BW-AWARE placement, making it a viable candidate for op-
timization beyond BW-AWARE placement if programmers choose
to optimize for heterogeneous memory system properties.

One of the drawbacks to profile-driven optimization is that data
dependent runtime characteristics may cause different behaviors
than were seen during the profiling phase. While GPU applica-
tions in production will be run without code modification, the data
set and parameters of the workload typically vary in both size and
value from run-to-run. Figure|l 1|shows the sensitivity of our work-
load performance to data input set changes, where placement was
trained on the first data-set but compared to the oracle placement
for each individual dataset. We show results for the four example
applications which saw the highest improvement of oracle place-
ment over BW-AWARE. For bfs, we varied the number of nodes
and average degree of the graph. For xsbench, we changed three
parameters: number of nuclides, number of lookups, and number
of gridpoints in the data set. For minife, we varied the dimensions
of the finite element problem by changing the input matrix. Finally,
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Figure 10: Profile-driven annotated page placement performance
relative to INTERLEAVE, BW-AWARE and oracular policies un-
der at 10% capacity constraint.

for mummergpu, we changed the number of queries and length of
queries across different input data sets.

Using the profiled information from only the training set, we
observe that annotated placement performs 29% better than the
baseline Linux INTERLEAVE policy, performs 16% better than
our own BW-AWARE 30C-70B placement, and achieves 80% of
the oracle placement performance. This result indicates that for
GPU compute applications, feedback-driven optimization for page
placement is not overly sensitive to application dataset or parameter
variation, although pessimistic cases can surely be constructed.

5.5 Discussion

The places where annotation-based placement falls short primar-
ily come from three sources. First, our application profiling relies
on spatial locality of virtual addresses to determine page hotness.
We have shown that this spatial locality holds true for many GPU
applications, but this is not guaranteed to always be the case. Al-
locations within libraries or larger memory ranges the program-
mer chooses to logically sub-allocate within the program will not
exhibit this property. The second shortcoming of our annotation-
based approach is for applications which show high variance within
a single data structure. For example, when using a hashtable where
the application primarily accesses a small, dynamically determined
portion of the total key-space, our static hotness profiling will fail
to distinguish the hot and cold regions of this structure. Finally, al-
though our runtime system abstracts the programming challenges
of writing performance portable code for heterogeneous machines,
it is still complex and puts a large onus on the programmer. Future
work will be to learn from our current implementation and identify
mechanisms to reduce the complexity we expose to the program-
mer while still making near-ideal page placement decisions.

In this work we have focused on page placement for applica-
tions assuming a static placement of pages throughout the applica-
tion runtime. We recognize that temporal phasing in applications
may allow further performance improvement but have chosen to
focus on initial page placement rather than page migration for two
reasons. First, software-based page migration is a very expensive
operation. Our measurements on the Linux 3.16-rc4 kernel indicate
that it is not possible to migrate pages between NUMA memory
zones at a rate faster than several GB/s and with several microsec-
onds of latency between invalidation and first re-use. While GPUs
can cover several hundred nanoseconds of memory latency, mi-
crosecond latencies encountered during migration will induce high
overhead stalls within the compute pipeline. Second, online page
migration occurs only after some initial placement decisions have

25
# BW-AWARE ™ Program Annotation 7% Oracle

%
4
.
0
/
.
/
/
.
/
/
.
.
%
o

N N

A\

Throughput
Relative to Linux Interleave

D
N

& S
data-set-3 M\\\\\\\\\\\\\\\\\\\

training-set
data-set-1 &
data-set-2
data-set-3
training-set &
data-set-1 e
data-set-2
data-set-3
training-set
data-set-1
data-set-2 &8
data-set-1
data-set-2
data-set-3

-
[
@
Qo

£

£
©
4
=1

o
=
@
3
=]
=
@
x
7]
o
@
>
a
>

mummergpu

Figure 11: Annotated page placement effectiveness versus data sets
variation after training phase under at 10% capacity constraint.

been made. Focusing on online page migration before finding an
optimized initial placement policy is putting the cart before of the
horse. With improved default page placement for GPU workloads,
the need for dynamic page migration is reduced. Further work is
needed to determine if there is significant value to justify the ex-
pense of online profiling and page-migration for GPUs beyond im-
proved initial page allocation.

6. Conclusions

Current OS page placement policies are optimized for both homo-
geneous memory and latency sensitive systems. We propose a new
BW-AWARE page placement policy that uses memory system in-
formation about heterogeneous memory system characteristics to
place data appropriately, achieving 35% performance improvement
on average over existing policies without requiring any application
awareness. In future CC-NUMA systems, BW-AWARE placement
improves the performance optimal capacity by better using all sys-
tem resources. But some applications may wish to size their prob-
lems based on total capacity rather than performance. In such cases,
we provide insight into how to optimize data placement by using
the CDF of the application in combination with application annota-
tions enabling intelligent runtime controlled page placement deci-
sions. We propose a profile-driven application annotation scheme
that enables improved placement without requiring any runtime
page migration. While only the beginning of a fully automated
optimization system for memory placement, we believe that the
performance gap between the current best OS INTERLEAVE pol-
icy and the annotated performance (min 1%, avg 20%, max 2x) is
enough that further work in this area is warranted as mobile, desk-
top, and HPC memory systems all move towards mixed CPU-GPU
CC-NUMA heterogeneous memory systems.
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