
IEEE COMPUTER ARCHITECTURE LETTERS 1

Toggle-Aware Bandwidth Compression for GPUs
Gennady Pekhimenko† Evgeny Bolotin� Mike O’Connor�#

Onur Mutlu† Todd C. Mowry† Stephen W. Keckler�#
†Carnegie Mellon University �NVIDIA #UT-Austin

Abstract—Hardware bandwidth compression can be an efficient way to achieve better system performance and energy efficiency for modern
bandwidth intensive applications. Prior works studied the potential designs to exploit data redundancy through data compression to improve
both the capacity (e.g., caches and main memory) and bandwidth utilization of the interconnects. These works addressed two common
shortcomings of compression: (i) compression/decompression overhead in terms of latency, energy and area, and (ii) complexity to support
variable size. In this work, we make a new observation that there is an additional important problem related to bandwidth compression that
must be addressed in the context of the communication energy efficiency: a substantial growth in the number of bit toggles (communication
channel switchings from 0 to 1 or from 1 to 0) when transferring compressed data: we show 2.2× average increase in bit toggles with some
compression algorithms across 54 mobile applications). This change in bit toggles number leads to growth in dynamic energy consumed by
on-chip/off-chip buses due to more frequent charging and discharging of the wires. We characterize the problem and propose two
mechanisms to address this new challenge: Energy Control and Metadata Consolidation. We provide a detailed analysis and evaluation of a
large spectrum of GPU applications that justify both the usefulness of data compression for bandwidth compression in many real applications,
as well as the existence of the bit toggle problem for bandwidth compression. The proposed toggle-aware compression solutions can keep
most of the bandwidth reduction benefits of bandwidth compression while leading to only minor increase in bit toggles, in contrast to the large
increase when using baseline compression.

1 INTRODUCTION AND BACKGROUND

Modern data-intensive computing forces system designers to de-
liver good system performance under multiple constraints: shrinking
power and energy envelopes (power wall [7]), increasing memory
latency (memory latency wall [27]), and scarce and expensive band-
width resources (bandwidth wall [20]). While many different tech-
niques have been proposed to address these issues, these techniques
often offer a trade-off – improving one constraint at the cost of
another. Ideally, system architects would like to improve one or
more of these system parameters, e.g., on-chip/off-chip bandwidth
consumption, while simultaneously avoiding negative effects on other
key parameters, such as overall system cost, energy, and latency
characteristics. One potential way of addressing some of the described
constraints is to employ dedicated hardware-based data compression
mechanisms [28], [2], [8], [18], [4], specifically across various data
links in the system. Compression exploits the high data redundancy
observed in many modern applications [18], [21], [4]. It can be
used to improve both the capacity (e.g., caches, DRAM, non-volatile
memories [28], [2], [8], [18], [4], [17], [23]) and bandwidth utilization
(e.g., on-chip and off-chip interconnects [9], [22], [17], [23]). Several
recent works [22], [17], [23], [3], [25] focus on bandwidth compres-
sion approaches to decrease memory traffic by transmitting data in a
compressed form for both CPUs [17], [25], [3] and GPUs [22], [16],
which results in better system performance and energy consumption.
Bandwidth compression proves to be particularly effective in GPUs
because GPUs are often bottlenecked on memory bandwidth [15],
[14], [29]. GPU applications also exhibit high degrees of data redun-
dancy [22], [16], enabling good compression ratios to be exploited.

1.1 Why Data Compression Can Be Energy-inefficient
While the benefits of data compression are clear, there are also

two commonly-known overheads of data compression: (1) compres-
sion/decompression overhead [2], [18] in terms of latency, energy and
area and (2) complexity/cost to support variable data sizes [13], [21],
[17], [23]. Both problems have solutions to make data compression
practical: e.g., Base-Delta-Immediate compression [18] describes a
very low-latency, low-energy hardware-based compression algorithm,
and Decoupled Compressed Cache design [21] proposes an efficient
way to manage data recompaction and fragmentation in compressed
caches.

In this work, we make the new observation that there is yet
another important problem with data compression that needs to be
addressed in the context of communication channels: a potential
significant increase in the activity factor [26], [5], [6] or the number

of charges/discharges on the physical wires (i.e., bit toggles), when
transferring compressed data versus when transferring it in uncom-
pressed form. A larger total number of bit toggles causes increased
dynamic energy consumed by on-chip/off-chip channels due to more
frequent switching on the channel wires. We identify two reasons
for this increase in bit toggles: (i) higher per-bit entropy of the data
after compression (the same amount of information is now stored in
fewer bits, hence, the “randomness” of a single bit grows), and (ii)
the variable-size nature of compression that can negatively affect the
word/flit data alignment in the data structures. Thus, in contrast to
the common wisdom that bandwidth compression saves energy (when
effective), our key observation offers an interesting tradeoff: energy
savings due to higher available bandwidth versus energy loss due to
higher transfer energy for compressed data. This observation and the
corresponding tradeoff are the key contributions of this work.

To understand how applicable general-purpose data compression
is for real applications, and also how severe the problem we identify
is, we analyze a large (221 total) group of discrete and mobile graphics
application traces from a major GPU vendor with six previously
proposed compression algorithms. Our analysis shows that even
though off-chip bandwidth compression is able to achieve a significant
compression ratio (e.g., more than 47% average increase in effective
bandwidth with C-Pack [8] for mobile GPU applications), it can also
greatly increase the total number of bit toggles (e.g., 2.2× average
increase with C-Pack across 54 mobile GPU applications). This effect,
in turn, can significantly increase the energy dissipated in the on-
chip/off-chip interconnects which constitute a significant portion of
the memory subsystem energy.1

1.2 Our Approach: Toggle-Aware Bandwidth Compression
In this work, we develop and analyze two mechanisms that make

bandwidth compression more energy-efficient by limiting the overall
growth in bit toggles in cases where it significantly increases after
compression. We propose a new Energy Control (EC) mechanism that
monitors the benefits and overheads of data compression, and decides
whether it is better to send data in a compressed or uncompressed
format, based achieved compression ratio and a relative change in
bit toggles. The key insight behind EC is that the decision can be
made locally (e.g., for every cache line) based on a model derived
from the commonly used Energy ×Delay and Energy ×Delay2

metrics. In this model, Energy is directly proportional to the number
of bit toggles, and Delay is inversely proportional to the compression

1For example, up to 80% energy of the LLC caches is H-tree capacitance interconnects [6].

IEEE COMPUTER ARCHITECTURE LETTERS 2

ratio. In addition to EC, we propose and develop a new Metadata
Consolidation optimization for existing data compression algorithms.
It reduces the negative effects of inserting the per-word metadata into
the cache line data after compression with many existing compression
algorithms [2], [8].

Our toggle-aware mechanisms are generic and applicable to dif-
ferent compression algorithms (e.g., Frequent Pattern Compression
(FPC) [2] and Base-Delta-Immediate (BDI) [18] compression), to
different communication channels (e.g., on-chip and off-chip busses),
and potentially to different architectures (e.g., both GPUs and CPUs).
In addition, we demonstrate that our proposed mechanisms are largely
orthogonal to different encoding schemes also used to minimize the
number of bit toggles (e.g., Data Bus Inversion [24]), and hence can
be efficiently used together with them to enhance energy-efficient on-
chip/off-chip bus designs.

2 MOTIVATION AND ANALYSIS

In this work we examine six compression algorithms and assess
their compression efficiency and applicability for bandwidth compres-
sion in GPU compute applications, taking into account bit toggles.
The six algorithms are: (i) FPC (Frequent Pattern Compression) [2];
(ii) BDI (Base-Delta-Immediate Compression) [18]; (iii) BDI+FPC
(combining FPC and BDI) [16]; (iv) LZSS (Lempel-Ziv compres-
sion) [30], [1]; (v) Fibonacci (graphics-specific compression algo-
rithm) [19]; and (vi) C-Pack compression algorithm [8]. Moreover,
to make our conclusions more practically applicable, we analyze real
GPU applications with actual data sets provided by a major GPU
vendor.

Figure 1 shows the potential of these six compression algorithms
in terms of effective bandwidth reduction, averaged across all appli-
cations. These results exclude simple data patterns (e.g., zero cache
lines) that are already handled by modern GPUs efficiently, and
assume practical boundaries on bandwidth compression ratios (e.g.,
the highest possible compression ratio is 4.0, because the minimal flit
size is 32 bytes and the packet size is 128 bytes).

0.9
1

1.1
1.2
1.3
1.4
1.5
1.6

FP
C

BD
I

BD
I+
FP
C

LZ
SS

Fi
bo

na
cc
i

C
Pa

ck FP
C

BD
I

BD
I+
FP
C

LZ
SS

Fi
bo

na
cc
i

C
Pa

ck

Discrete Mobile

Co
m
pr
es
sio

n
Ra

tio

Figure 1. Effective bandwidth compression ratios for various GPU ap-
plications (higher bars are better).

First, for the 167 discrete GPU applications, all algorithms pro-
vide substantial reduction in bandwidth consumption (25%–44% on
average for different compression algorithms). Especially interesting
is that simple compression algorithms show very competitive results
with the more complex GPU-oriented Fibonacci compression algo-
rithm and the software-based Lempel-Ziv algorithm [30]. Second, for
the 54 mobile GPU applications, the benefits of compression are even
more pronounced (reaching up to 57% on average with the Fibonacci
algorithm). Overall, we conclude that existing compression algorithms
(including simple general-purpose ones) can be effective in providing
high on-chip/off-chip bandwidth compression for both discrete and
mobile GPU compute applications.

Unfortunately, compression benefits come with additional costs.
Two aspects of the overheads of compression are well-known: (i)
additional data processing due to compression/decompression, and
(ii) some hardware changes to transfer variable-length cache lines.
While these two problems are significant, multiple compression algo-
rithms [2], [28], [18], [10] were proposed to minimize the overheads
of data compression/decompression. Several designs [23], [22], [16]

were proposed to integrate bandwidth compression into existing
memory hierarchies. In this work, we make an additional important
observation: there is yet another challenge with data compression that
needs to be addressed – the increase in the total number of bit toggles
as a result of compression.

On-chip data communication energy is directly proportional [26],
[5], [6] to the number of bit toggles on the communication channel
due to charging and discharging the channel wire capacitance. Data
compression may increase or decrease the overall bit toggling on
the communication channel for a given datum, and as a result the
overall energy that is consumed for moving/storing this datum can
also change. To understand whether there is any significant change in
the bit toggling, we measure the total number of bit toggles with and
without compression. Figure 2 shows the results of this experiment
for discrete and mobile GPU applications for the six compression
algorithms, normalized to the number observed in the uncompressed
baseline. The total number of bit toggles already includes the effect of
compression due to the decrease in the total number of bits sent when
data is compressed.

0.8
1

1.2
1.4
1.6
1.8
2

2.2

FP
C

BD
I

BD
I+
FP
C

LZ
SS

Fi
bo

na
cc
i

C
Pa

ck FP
C

BD
I

BD
I+
FP
C

LZ
SS

Fi
bo

na
cc
i

C
Pa

ck

Discrete Mobile

N
or
m
al
ize

d
To
gg
le
#

Figure 2. Toggle number increase for different applications.
We make two observations from this figure. First, we observe a

steady increase in the total number of toggles across all compression
algorithms. The average growth is lower for discrete applications,
mostly because many of the applications include floating-point data
that are less amenable to compression and have already high toggle
rates (31% on average across discrete applications), but it is still quite
significant on average, within 12%–20%, depending on the algorithm.
Second, for mobile applications (right half of Figure 2), the growth
is more dramatic, exceeding 1.8× for all but one algorithm. The FPC
algorithm is not effective in compressing mobile applications from
our pool, hence does not greatly affect bit toggles. In both cases, this
increase in number of bit toggles can potentially lead to significant
growth in the dynamic energy consumed by the communication
channels.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 10
1

10
6

11
1

11
6

12
1

12
6

13
1

13
6

14
1

14
6

15
1

15
6

16
1

Va
lu
e
of

m
et
ric

Bit Toggles Compression Ratio

Figure 3. Normalized number of bit toggles vs. compression ratio (FPC
compression algorithm) for each of the discrete GPU applications.

In addition, we study the possible correlation between the ef-
fectiveness of a compression algorithm and the resultant growth in
the number of bit toggles. Figure 3 summarizes the results on a per
application basis for the FPC compression algorithm, for all discrete
applications. We observe similar behavior for other compression
algorithms. For each workload, we plot both its compression ratio
and the normalized number of toggles after compression. Figure 3
shows a correlation between the increase in the number of toggles and

IEEE COMPUTER ARCHITECTURE LETTERS 3

the compression ratio. We observe that the number of toggles usually
correlates with compressibility. This observation strongly suggests
that successful compression can potentially lead to an increase in
the number of toggles, which in turn would lead to an increase in
the dynamic energy dissipated by on-chip/off-chip communication
channels.

To understand this phenomenon, we examined several example
cache lines where bit toggle count increases significantly after com-
pression. Figures 4 and 5 show one of these cache lines with and
without compression, assuming 8-byte flits.

0x00003A00 0x8001D000 0x00003A01 0x8001D008 ...

4 bytes
128 byte Uncompressed Cache Line

4 bytes

8 byte flit

0x00003A00 0x8001D000

0x00003A01 0x8001D008

XOR

Flit 0

Flit 1

=
0000...00100...00100... # Toggles = 2

Figure 4. Number of bit toggles without compression.

0x5 0x3A00 0x7 0x8001D000

128 byte FPC compressed Cache Line

8 byte flit

5 3A00 7 80001D000 5 1D

XOR

Flit 0

Flit 1

=
001001111...110100011000 # Toggles = 31

0x5 0x3A01 0x7 0x8001D008 0x5 ...

1 01 7 80001D008 5 3A02 1

Metadata

Figure 5. Number of bit toggles after compression with FPC.
Without compression, an example cache line that consists of 8-

byte data elements (4-byte indices and 4-byte pointers) has a very
low number of toggles (2 toggles per 8-byte flit). This low number
of bit toggles is due to favorable alignment of the original data with
width of a flit (i.e., transfer granularity in the on-chip interconnect).
In contrast, Figure 5 shows the FPC algorithm where the toggle count
increases significantly (e.g., 31 toggles for a pair of 8-byte flits in
this example). This happens due to two major reasons. First, because
compression removes zero bits for narrow index values, the higher
per-bit entropy leads to higher “randomness” of the data and thus a
larger number of toggles. Second, the originally good alignment of the
data is negatively affected both at the byte granularity (narrow values
replaced with shorter 2-byte versions) and bit granularity (due to 3-
bit metadata storage, e.g., 101 = 0x5 metadata is used to indicated
narrow values for the FPC compression algorithm).

3 TOGGLE-AWARE ENERGY EFFICIENT COMPRESSION

3.1 Energy vs. Performance Tradeoff
Data compression can reduce energy consumption and improve

performance by reducing communication bandwidth demands and
alleviating potential bandwidth bottlenecks. At the same time, data
compression can potentially lead to a significantly higher energy con-
sumption due to an increased number of bit toggles. To properly evalu-
ate this tradeoff, metrics like Energy×Delay and Energy×Delay2

are commonly used [11]. We estimate these metrics to perform com-
pression related performance/energy tradeoffs using a simple model.2
We define the Energy of a single data transfer to be proportional
to the number of toggles associated with its transfer. Similarly, the
Delay is defined to be inversely proportional to performance, which
we assume is proportional to the bandwidth reduction (or compression
ratio). Based on the observations above, we have developed two

2We are currently working on verifying our estimations by implementing our techniques
in the open-sourced GPGPU simulator called GPGPU-Sim [12].

techniques to enable toggle-aware bandwidth compression to reduce
the negative effects of increased bit toggles.

3.2 Energy Control (EC)
We propose a generic Energy Control (EC) mechanism that can be

applied along with any current (or future) compression algorithm.3 It
aims to achieve high compression while minimizing the overall toggle
energy. As shown in Figure 6, the Energy Control mechanism uses a
generic decision function that considers (i) the number of bit toggles
for transmitting the original datum (T0), (ii) the number of bit toggles
for transmitting it in compressed form (T1), and (iii) compression
ratio (CR) to decide whether to transmit the data in a compressed or
uncompressed form. We can calculate the toggle count very energy
efficiently (4pJ per 128-byte cache line and 32-byte flits based on
our initial results in Verilog). Using this approach, it is possible to
achieve a desirable tradeoff between overall bandwidth reduction and
increase/decrease in communication energy. The decision function
that compares the compression-ratio (A) and toggle-ratio (B) can
be linear (A × B > 1, based on Energy × Delay heuristic),
or quadratic (A × B2 > 1, based on Energy × Delay2). The
decision function can also use any other sensible decision metric,
assuming application bandwidth requirements, power limitations, and
available voltage/frequency scaling options, and other system power
management opportunities.

Compress

Count
Toggles

T0 T1

Se
le
ct

EC
Decision

CR

$Line

Comp.
 $Line

$Line

Figure 6. Energy Control decision mechanism.

3.3 Metadata Consolidation
Thus far, we only considered traditional energy-oblivious com-

pression algorithms that are not optimized to minimize the number of
toggles. However, it is possible to extend existing algorithms (e.g. FPC
and C-Pack) such that the increase in bit toggles would be smaller.
We propose Metadata Consolidation (MC) where the metadata that is
usually stored at a per word-granularity, is consolidated into a single
contiguous metadata block. We can locate this block either before or
after the actual data. The tradeoff is between the toggle count and
the increase in decompression latency since the decompression needs
to know the metadata. The major benefit of such an approach is that
there is no misalignment at the bit granularity after this optimization is
applied. In cases where a cache line has a majority of similar patterns,
a significant portion of the toggle overhead can be avoided.

Figure 7 shows one example cache line compressed with FPC
algorithm with and without the MC optimization. In this example we
assume 4-byte flits. Without the MC, the bit toggle count between first
two flits is 18 (due to per-word metadata insertion), while with MC
the corresponding bit toggle count is only 2. This example shows the
potential of MC in decreasing the bit toggle count.

4 EVALUATION

4.1 Methodology
We analyze 221 memory traces from compute (167) and graphics

(54) application traces. We collect the information about the bit toggle
count that reflects energy consumption and compression ratio that
serves as a proxy for bandwidth consumption. Different encoding
techniques (e.g., DBI [24] or DESC [6]) can be applied to decrease
the baseline bit toggle count of the data transfers. In our experiments,
we found that the benefits of these techniques are largely orthogonal

3In this work, we assume that only bandwidth is compressed, while on-chip caches still
store data in the uncompressed form.

IEEE COMPUTER ARCHITECTURE LETTERS 4

0x5 0x3A00 0x5 0x3A01

128 byte FPC compressed Cache Line

4 byte Flit 0

Toggles = 18

0x5 0x3A02 0x5 0x3A03 0x5 0x3A04 0x5 0x3A05...

4 byte Flit 1

0x3A00 0x3A01 0x3A02 0x3A03 … 0x5 0x5 ... 0x5 0x5

4 byte Flit 0 4 byte Flit 1 Consolidated
Metadata

5 3A00 5 E8

XOR

Flit 0

Flit 101 5 3A02 5 3

Toggles = 2

3A00 3A01

XOR

Flit 0

Flit 13A02 3A03

Figure 7. Number of bit toggles after compression with FPC and Meta-
data Consolidation.
to whether or not data compression is applied. In our evaluation we
use DBI as a part of the baseline for transferring both compressed and
uncompressed data.

4.2 Effect of EC on Toggles and Compression Ratio
We analyze the effectiveness of the proposed EC optimization by

examining how it affects both the number of toggles (Figure 8) and the
compression ratio (Figure 9). In both figures, results are normalized
to the baseline design with no compression (the numbers on top of the
bars are the relative change between these bars). We also use an EC
mechanism with the decision function based on the Energy×Delay2

metric using our simple model from Section 3.2.

0.8
1

1.2
1.4
1.6
1.8
2

2.2
2.4

FP
C

BD
I

BD
I+
FP
C

LZ
SS

Fi
bo

na
cc
i

C
Pa

ck FP
C

BD
I

BD
I+
FP
C

LZ
SS

Fi
bo

na
cc
i

C
Pa

ck

Discrete Mobile

N
or
m
al
ize

d
To
gg
le
#

Base EC

8.7%12.6% 8.6% 12.2% 15.9% 5.8% 8.2%

51.4% 51.6%

32.6%
42.0%

47.4%

Figure 8. Effect of Energy Control on the number of toggles.

0.9
1

1.1
1.2
1.3
1.4
1.5
1.6
1.7

FP
C

BD
I

BD
I+
FP
C

LZ
SS

Fi
bo

na
cc
i

C
Pa

ck FP
C

BD
I

BD
I+
FP
C

LZ
SS

Fi
bo

na
cc
i

C
Pa

ck

Discrete Mobile

Co
m
pr
es
sio

n
Ra

tio Base EC

1.6%
2.4%

1.3%

0.3%

9.8% 9.8%

5.4% 9.8%
10.7%

0.7%
1.0% 0.9%

Figure 9. Effective bandwidth increase for different applications.

EC can effectively reduce the overhead in the number of toggles
for both discrete and mobile GPU applications (Figure 8). For discrete
GPUs, the toggle reduction varies from 6% to 16% on average, and
is able to eliminate the toggle growth due to compression almost
completely in the case of the Fibonacci compression algorithm. For
mobile GPUs, the reduction is as high as 51% on average for the
BDI+FPC compression algorithm (more than 32× reduction in extra
bit toggles), with only a modest reduction4 in compression ratio. For
example, in discrete GPUs, the reduction in compression ratio for
the BDI+FPC algorithm is only 0.7% on average (Figure 9). For
mobile GPUs, the reduction in compression ratio is more noticeable
(e.g., 9.8% on average for Fibonacci), but this is still a very attractive

4Compression ratio reduces because EC decides to transfer some compressible lines in
the uncompressed form.

tradeoff since the 2.2× growth in the number of toggles is practically
eliminated. We conclude that EC offers a new and effective way to
control the energy efficiency of data compression by applying it only
when it provides a high compression ratio with only a small increase
in the number of toggles.

4.3 Effect of Metadata Consolidation
Metadata Consolidation (MC) is able to reduce the bit-level

misalignment for several compression algorithms (e.g., FPC and C-
Pack). The additional toggle reduction (on top of EC) was 3.2%/2.9%
for FPC/C-Pack compression algorithms correspondingly. We also
observe that even though MC can hide some negative effects of bit-
level misalignment after compression, it is not effective in the cases
where data compression compresses data values within the cache line
to different sizes. These variable sizes frequently lead to misalignment
at the byte granularity. While it is possible to insert some amount
of padding into the compressed line to minimize the misalignment
effects, this would go against the primary goal of compression to
minimize the data size after compression. We leave the investigation
of this potential tradeoff to future work.

5 CONCLUSION

In this paper, we observe that data compression, while very
effective in improving bandwidth efficiency in GPUs, can greatly
increase the number of bit toggles in the on-chip/off-chip intercon-
nect. Based on this new observation, we develop two techniques
to reduce the number of toggles while preserving most of the
bandwidth reduction benefits of compression. The proposed toggle-
aware bandwidth compression solutions are able to retain most of
the bandwidth reduction advantages, while leading to a controlled
increase in energy consumption. We conclude that toggle-awareness
is an important consideration in bandwidth compression mechanisms
for modern GPUs.

REFERENCES

[1] B. Abali et al. Memory Expansion Technology (MXT): Software Support and
Performance. IBM J.R.D., 2001.

[2] A. R. Alameldeen and D. A. Wood. Adaptive Cache Compression for High-
Performance Processors. In ISCA-31, 2004.

[3] A. R. Alameldeen and D. A. Wood. Interactions Between Compression and Prefetch-
ing in Chip Multiprocessors. In HPCA’07, 2007.

[4] A. Arelakis and P. Stenstrom. SC2: A Statistical Compression Cache Scheme. In
ISCA, 2014.

[5] B. M. Beckmann and D. A. Wood. TLC: Transmission line caches. In MICRO, 2003.
[6] M. N. Bojnordi and E. Ipek. DESC: Energy-efficient Data Exchange Using Synchro-

nized Counters. In MICRO, 2013.
[7] P. Bose. Power Wall. In Encyclopedia of Parallel Computing. 2011.
[8] X. Chen et al. C-pack: A high-performance microprocessor cache compression

algorithm. IEEE Transactions on VLSI Systems, 18(8):1196 –1208, Aug. 2010.
[9] R. Das et al. Performance and power optimization through data compression in

Network-on-Chip architectures. In HPCA, 2008.
[10] J. Dusser et al. Zero-content Augmented Caches. In ICS, 2009.
[11] R. Gonzalez and M. Horowitz. Energy Dissipation in General Purpose Microproces-

sors. IEEE Journal of Solid-State Circuits, 31(9):1277–1284, Sep 1996.
[12] GPGPU-Sim v3.2.1. GPGPU-Sim Manual.
[13] E. G. Hallnor and S. K. Reinhardt. A Unified Compressed Memory Hierarchy. In

HPCA-11, 2005.
[14] A. Jog et al. Orchestrated Scheduling and Prefetching for GPGPUs. In ISCA, 2013.
[15] V. Narasiman et al. Improving GPU Performance via Large Warps and Two-level

Warp Scheduling. In MICRO-44, 2011.
[16] G. Pekhimenko and et al. Linearly Compressed Pages: A Main Memory Compression

Framework with Low Complexity and Low Latency. In SAFARI Technical Report No.
2012-002, 2012.

[17] G. Pekhimenko et al. Linearly Compressed Pages: A Low Complexity, Low Latency
Main Memory Compression Framework. In MICRO-46, 2013.

[18] G. Pekhimenko et al. Base-Delta-Immediate Compression: Practical Data Compres-
sion for On-Chip Caches. In PACT, 2012.

[19] J. Pool et al. Lossless Compression of Variable-precision Floating-point Buffers on
GPUs. In Proceedings of the Symposium on Interactive 3D Graphics and Games,
I3D ’12, 2012.

[20] B. M. Rogers et al. Scaling the Bandwidth Wall: Challenges in and Avenues for CMP
Scaling. In ISCA, 2009.

[21] S. Sardashti and D. A. Wood. Decoupled Compressed Cache: Exploiting Spatial
Locality for Energy-optimized Compressed Caching. In MICRO-46, 2013.

[22] V. Sathish et al. Lossless and Lossy Memory I/O Link Compression for Improving
Performance of GPGPU Workloads. In PACT, 2012.

[23] A. Shafiee et al. MemZip: Exploring Unconventional Benefits from Memory Com-
pression. In HPCA-20, 2014.

[24] M. Stan and W. Burleson. Bus-invert Coding for Low-power I/O. IEEE Transactions
on VLSI Systems, 3(1):49–58, March 1995.

[25] M. Thuresson et al. Memory-Link Compression Schemes: A Value Locality Perspec-
tive. IEEE Trans. Comput., 57(7), July 2008.

[26] A. Udipi et al. Non-uniform power access in large caches with low-swing wires. In
HiPC, 2009.

[27] W. A. Wulf and S. A. McKee. Hitting the Memory Wall: Implications of the Obvious.
SIGARCH Comput. Archit. News, 1995.

[28] J. Yang et al. Frequent Value Compression in Data Caches. In MICRO-33, 2000.
[29] G. L. Yuan et al. Complexity effective memory access scheduling for many-core

accelerator architectures. In MICRO, 2009.
[30] J. Ziv and A. Lempel. A Universal Algorithm for Sequential Data Compression.

IEEE Transactions on Information Theory, 1977.

