
Permission to make digital or hard copies of part or all of this work for personal or 
classroom use is granted without fee provided that copies are not made or distributed 
for commercial advantage and that copies bear this notice and the full citation on the 
first page. Copyrights for third-party components of this work must be honored. For all 
other uses, contact the Owner/Author. 
Copyright is held by the owner/author(s). 
SIGGRAPH 2015 Talks, August 09 – 13, 2015, Los Angeles, CA. 
ACM 978-1-4503-3636-9/15/08. 
http://dx.doi.org/10.1145/2775280.2792515 

 

Accumulative Anti-Aliasing

Eric Enderton Eric Lum Christian Rouet Oleg Kuznetsov

NVIDIA

(a) (b) (c)

Figure 1: An ACAA frame, with close-ups comparing (a) Single-sampled image. (b) 8x ACAA image. (c) 8x MSAA image. ACAA renders
opaque surfaces nearly identically to MSAA but uses half the framebuffer memory. Scene courtesy of Kishonti Informatics.

Abstract

Accumulative anti-aliasing (ACAA) is a simple modification of
forward-rendered multi-sample anti-aliasing (MSAA). It produces
the same image quality but consumes half as much multi-sample
framebuffer memory, and reduces both render time and off-chip
bandwidth by 20% to 30%. ACAA stores multiple depth samples,
computed by a depth-only pre-pass, but stores only one color sam-
ple per pixel, which is used to accumulate final color as the sum
of shaded fragment colors weighted by visibility. ACAA makes
higher sample rates practical, improving image quality.

1 Algorithm and Results

Many anti-aliasing schemes track color and coverage information
for multiple visible fragments per pixel, resolving this data to a final
color after all scene geometry has been processed. We observe that
if visibility is computed and stored in an earlier pass, then color
storage can be reduced to one color accumulator per pixel. Each
pixel’s final color is summed on the fly: As each visible fragment
is shaded, its contribution is weighted by the stored visibility.

The ubiquitous example is multi-sample anti-aliasing (MSAA),
which stores both depth and color at each of several samples within
a pixel. While modern hardware graphics pipelines support MSAA
with up to 8 samples per pixel, the memory and performance penal-
ties are generally considered prohibitive for consumer applications
such as computer games, and even 4 samples is considered a high-
end setting. For forward-rendered game engines, we propose ac-
cumulative anti-aliasing (ACAA), which computes multi-sampled
color using one color per pixel. First, multi-sampled depth infor-
mation is rendered during a z pre-pass; this pass is already a typi-
cal game engine optimization, to avoid overshading. Second, dur-
ing the shading pass, each visible fragment is tested against that

z-buffer. The resulting post-z coverage indicates the weight of the
fragment’s color in the accumulated pixel color.

The result is improved performance. Memory savings are half or
more the size of the MSAA framebuffer, which can be quite sub-
stantial: at 4K resolution, an 8x MSAA framebuffer consumes 759
MB, while 8x ACAA requires only 316 MB. ACAA is particularly
efficient on recent GPUs that include hardware support for both
post-z coverage and target-independent rasterization (TIR). Here,
ACAA boosts performance significantly, recovering 50% of the
added frame time of MSAA rendering vs single-sampled rendering,
a savings of 20-30% of total render time in our tests. We also mea-
sured total bytes read and written to the framebuffer by the GPU
during one frame. ACAA recovers 50% of the MSAA penalty here
as well, which was 30% of total bandwidth used. This is significant
because GPU performance is limited by total power dissipation, and
off-chip memory access is one of the highest-power operations.

2 Limitations and Extensions

Without adequate bit precision, intermediate sums of colors can
introduce numerical errors. More significantly, if two fragments
have numerically coincident z values at a sample, the sample may
be double counted. We describe two efficient solutions, one using
stencil tests and one using saturated alpha blending.

It is not clear how to anti-alias transparent surfaces with ACAA,
as it does not readily distinguish between fragments that abut and
fragments that overlap. The water effects in Figure 1 are rendered
single-sampled. ACAA does not work well for deferred rendering,
as it would merge shader inputs rather than shader outputs.

For mobile GPUs that use tiled rendering to combat MSAA penal-
ties, ACAA lets larger tiles fit in memory, improving efficiency.

ACAA extends naturally to higher image quality. Better, wider fil-
ters can be implemented by allowing each fragment to contribute to
a neighborhood of pixels. High sample rates can be achieved with-
out extra memory, either with hardware support, or by accumulating
multiple ACAA passes with custom sampling patterns.



Accumulative Anti-Aliasing

Eric Enderton Eric Lum Christian Rouet Oleg Kuznetsov

NVIDIA

Appendix: Source Code

Source code for the basic ACAA algorithm is publicly avail-
able as part of NVIDIA’s GameWorks SDK. The code
sample is named BlendedAA, and is described here:
http://docs.nvidia.com/gameworks/index.html#
gameworkslibrary/graphicssamples/opengl_
samples/blendedaasample.htm.

To download, click on ”OpenGL Graphics and Compute
Samples” here: http://developer.nvidia.com/
gameworksdownload.

http://docs.nvidia.com/gameworks/index.html#gameworkslibrary/graphicssamples/opengl_samples/blendedaasample.htm
http://docs.nvidia.com/gameworks/index.html#gameworkslibrary/graphicssamples/opengl_samples/blendedaasample.htm
http://docs.nvidia.com/gameworks/index.html#gameworkslibrary/graphicssamples/opengl_samples/blendedaasample.htm
http://developer.nvidia.com/gameworksdownload
http://developer.nvidia.com/gameworksdownload

	acaa_abstract
	source

