
An Adaptive Acceleration Structure for Screen-space Ray Tracing
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Figure 1: We perform fast screen-space ray tracing through single- and multi-layered depth representations. Because we efficiently obtain
valid hits from occluded geometry, our approach can address many problems of traditional screen-space methods. Examples: (a) Reference
view color+depth buffers for the first (top) and second layer (bottom). (b) Large camera motion produces extensive disocclusions (top,
red), which are difficult to inpaint by forward warping (bottom). (c) Our compressed depth representation lowers the required ray-AABB
intersection count (top, black corresponds to 0 and white to 9 intersections) and allows for an efficient reprojection with only two depth+color
layers (bottom). (d) Our ray-tracing approach generalizes well to other real-time applications, including depth-of-field rendering (top) and
light-field rendering (bottom).

Abstract

We propose an efficient acceleration structure for real-time screen-
space ray tracing. The hybrid data structure represents the scene ge-
ometry by combining a bounding volume hierarchy with local pla-
nar approximations. This enables fast empty space skipping while
tracing and yields exact intersection points for the planar approx-
imation. In combination with an occlusion-aware ray traversal our
algorithm is capable to quickly trace even multiple depth layers.
Compared to prior work, our technique improves the accuracy of
the results, is more general, and allows for advanced image trans-
formations, as all pixels can cast rays to arbitrary directions. We
demonstrate real-time performance for several applications, includ-
ing depth-of-field rendering, stereo warping, and screen-space ray
traced reflections.

CR Categories: I.3.6 [Computer Graphics]: Methodology and
Techniques—Graphics data structures and data types; I.3.7 [Com-
puter Graphics]: Three-Dimensional Graphics and Realism—
Raytracing;
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1 Introduction

Many real-time rendering techniques operate in screen-space in or-
der to be computationally efficient. This includes techniques for

approximating realistic lighting, such as screen-space ambient oc-
clusion [Mittring 2007], soft shadows [Guennebaud et al. 2006],
global illumination effects [Ritschel et al. 2009; Mara et al. 2014],
and camera effects such as depth-of-field (DoF) [Lee et al. 2009].
These screen-space techniques trade precision and quality for per-
formance. They approximate algorithms that traditionally work by
ray tracing 3D geometry.

In fact, some of those algorithms use screen-space ray tracing, or
rather ray marching [Sousa et al. 2011]. Ray marching is attractive
as no additional data structure needs to be built, but tracing rays for
long distance becomes prohibitively expensive quickly. So preci-
sion is often sacrificed for performance by restricting the number of
samples along the ray to reduce texture lookups, which can miss ge-
ometry – even when combined with a final binary-search refinement
step. Classic ray marching methods, like DDA, are prone to over
and under-sampling, unless perspective is accounted for [McGuire
and Mara 2014]. Most screen-space ray tracing methods use only a
single depth layer, as a naïve extension to multiple layers is costly
[Mara et al. 2013].

In this paper, we address many of these shortcomings of screen-
space ray tracing. Namely, we implement an efficient and scal-
able screen-space ray tracing algorithm that employs a dynami-
cally created acceleration data structure, which enables efficient
empty space skipping. If desired, our algorithm can trade off ac-
curacy for speed and can efficiently handle multi-layered screen-
space representations to yield higher quality. The construction of
the acceleration structure is extremely fast and can easily be done
on a per-frame basis allowing us to also handle dynamic content.
Our method’s efficiency makes it not only useful for screen-space
effects such as depth-of-field, but also for reprojection tasks even
into many views, as required for light field displays, that previ-
ously mapped very poorly to GPUs. We demonstrate our method in
several classic applications (stereo warping, temporal upsampling,
depth-of-field rendering, multi-view synthesis, and glossy as well
as specular reflections). Our contributions are:



• A novel data structure that stores the depth buffer in a
compressed format—a mixture of AABB and planar approx-
mations—that enables early ray traversal termination and leads
to an improved performance. The approximation can be further
tuned for specific applications (e.g., depth-of-field) providing a
significant performance boost.

• A new algorithm for screen-space ray tracing that is particularly
well suited for GPUs. In contrast to state-of-the-art methods (e.g.,
ray marching [McGuire and Mara 2014]) the ray traversal does
not rely on a predefined or maximal number of steps and results
in an accurate intersection point (assuming each pixel is planar).
Our efficient occlusion handling allows tracing multiple depth
layers of our acceleration structure without individually tracing
each ray against each layer.

• A real-time implementation of thin-lens-based depth-of-field
rendering. We extend previous work by introducing a secondary
sampling stage (possible thanks to our compressed scene repre-
sentation), which significantly reduces noise without sacrificing
the defocus blur quality.

• A reprojection application that enables arbitrary existing content
to be rendered on light-field displays with many views.

• Efficient multi-bounce specular and glossy reflections, utilizing
our adaptive data structure on a (multi-layer) cube map represen-
tation of the scene.

2 Related work

2.1 Screen-space ray tracing and applications

In 1986 Fujimoto et al. [1986] proposed the 3D-DDA line traver-
sal algorithm for quickly tracing rays through a regular grid or oc-
tree. It inspired the improved 3D-DDA line traversal algorithm by
Amanatides and Woo [1987], which serves as the basis for many
screen-space ray tracing methods [Sousa et al. 2011; Ganestam and
Doggett 2014; McGuire and Mara 2014].

The work by Sousa et al. [2011] was the state-of-the-art for many
years. It linearly ray marches a (reflection) ray in 3D, based on 3D-
DDA, for a bounded distance. Each 3D point is reprojected into
the frame buffer and classified as a hit if it lies behind the depth at
the projected pixel. It does not do any space skipping, which was
addressed by Ganestam et al. [2014], where an additional BVH is
created. Employing a linear 3D-DDA traversal might lead to missed
samples in screen-space. McGuire and Mara [2014] address this
with a perspective 3D-DDA, ensuring no screen-space samples are
skipped. In contrast, we build a screen-space acceleration structure
on the fly that allows us to efficiently trace rays without the need
for stepping along a line in small increments with 3D-DDA.

A wide range of applications and techniques use screen space ray
tracing to simulate effects like ambient occlusion, view interpola-
tion, or reflections. Most of those methods reuse shading informa-
tion across frames to speed up computation, since this information
(e.g., complex material evaluation) is expensive to recompute [Ne-
hab et al. 2007; Sitthi-amorn et al. 2008]. Herzog et al. [2010] com-
bined shading reuse and spatio-temporal upsampling with the focus
on reduction of shading cost. In contrast, our method focuses on a
general acceleration data structure that allows for fast reprojection.

Another typical screen-space application is depth-of-field. These
methods often employ approximations and application-specific al-
gorithms, such as approximate cone tracing [Lee et al. 2009], or
bounding the ray footprint [Lee et al. 2010]. While our technique
is more general, we show that we also achieve better performance
than these methods. Yu et al. [2010] suggested to warp a frame
buffer to create a full light field, which is then combined to create

depth-of-field effects. They use forward warping and simply splat
larger pixels into the target views to prevent holes. Our technique
can also be used to create a light field, but is much more efficient,
as the run-time is independent on the number of views generated.

2.2 Ray tracing data structures for GPUs

Many different data structures have been proposed for GPU-based
ray tracing applications. Bounding volume hierarchies (BVH) have
been used extensively on GPUs. Lauterbach et al. [2009] cre-
ate LBVHs by linearizing primitives along a space filling curve,
yielding near optimal hierarchies and good overall performance
for both construction and traversal. This was improved upon with
a hierarchical version [Pantaleoni and Luebke 2010] and work
queues [Garanzha et al. 2011]. Rasterized bounding volume hierar-
chies (RBVH) [Novák and Dachsbacher 2012], where leafs contain
height fields that are ray marched, allow for efficient but approxi-
mate ray casting. Similar to our method, it also allows one to trade
level of detail for computational efficiency. However, RBVH are not
geared towards screen-space ray tracing, as the construction of the
data structure is too slow. Very recently, fast parallel construction of
high-quality BVHs have been demonstrated on GPUs [Karras and
Aila 2013], yielding about 90% of the ray tracing performance of
offline methods. K-d trees can also be constructed on GPUs [Zhou
et al. 2008], even including the surface area heuristic (SAH) [Wu
et al. 2011]. However, construction is generally more costly than
for a BVH.

Voxelized scene representations have been used for various appli-
cations in real-time rendering. Efficient sparse voxel octrees [Laine
and Karras 2010] offer excellent ray casting performance, but can
require non-negligible construction time and memory. Voxelized
scene representations have been used extensively when high res-
olution and accuracy is less critical, for instance, in indirect illumi-
nation [Crassin et al. 2011].

Unlike these methods, our technique is geared specifically towards
ray tracing through layered 2.5D height fields, exploiting their
structure for considerable performance gains over standard ray trac-
ing acceleration structures.

2.3 Ray tracing of relief and height fields on GPUs

Many techniques have been proposed since the early 1980’s to ren-
der height fields, usually using ray tracing [Musgrave 1988; Co-
hen and Shaked 1993; Cohen-Or et al. 1996]. These methods gen-
erally differ in their choice of acceleration data structure. For in-
stance, the early work by Cohen and Shaked [1993] uses a quad-
tree and is the original inspiration for our method. Using ray trac-
ing to render height fields and reliefs has also become popular in
GPU-based real-time rendering. Tracing rays by uniformly step-
ping through the height field in conjunction with a binary search
is a common approach [Policarpo et al. 2005]; Newton iterations
is another [Wyman 2005]. While these methods are simple to im-
plement, they can lead to missed intersection points. This can be
fixed through the use of safety zones [Donnelly 2005; Baboud and
Decoret 2006], but at a higher computational cost and using pre-
computed data structures.

These methods only support a single layer, the work by Poli-
carpo and Oliveira [2006] adds the ability to render layered height
fieldsby packing four layers into a single texture in order to trace
through them simultaneously, speeding up rendering. For our use
cases, we argue that most of the time only the first layer is hit by a
ray, and the other layers are rarely needed. We therefore only trace
into deeper layers only if the first layer received no hit (for fewer
than 1% of pixels).
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Figure 2: A toy example of quad-tree construction. (a) We start the construction with two input depth layers (red/green) with per-pixel
normal vectors (visualized via plane rotation here). (b) Each 2× 2 set of adjacent and non-overlapping cells is analysed to generate a parent
that best describes them. Depending on the compression setting, slightly misaligned children are replaced by a (c) single parent plane which
then becomes a new leaf node (tree branch has been pruned) or a (d) AABB parent node that encompasses the children.

Tevs et al. [2008] accurately render height fields by creating a min-
max mipmap hierarchy over the depth map on the fly, which allows
ray tracing with empty space skipping. This improves the pyrami-
dal displacement mapping technique [Oh et al. 2006], sharing the
min-max mipmap acceleration data structure with previous work
[Kolb and Rezk-Salama 2005; Carr et al. 2006; Guennebaud et al.
2006]. While this data structure—it corresponds to a fully sub-
divided quad-tree—is attractive for height field rendering, it does
not directly support discontinuities and multiple layers. Traversal
requires looping to step into the correct hierarchy level, whereas
our method uses simple bit patterns to yield the correct level.

The min-max mipmaps [Tevs et al. 2008] have also been used to
render volumetric shadows [Chen et al. 2011], where epipolar recti-
fication of the shadow map ensures that a ray traverses along a row,
reducing ray traversal to a 1D-problem. Unfortunately, we cannot
use this insight, as the construction is slow and the structure is only
valid between a single reference view and one novel view, reducing
applicability.

Like many of the methods cited here, our method is related to lay-
ered depth images (LDIs) [Shade et al. 1998]. Just like LDIs, our
scene representation consists of possibly multiple layers of depth
plus color and we also support reprojection of the scene. However,
LDIs were geared exclusively toward scene reprojection, whereas
our method is more general enabling several different applications.
Furthermore, the original splatting-based LDI rendering technique
was not very GPU-friendly, and has been superseded by much of
the work cited in this section.

3 Data structure

In this section, we first introduce our data structure for representing
multiple layers of scene geometry, and how it is constructed in real
time. We then describe our approach for ray traversal in Sec. 4.

3.1 Compressed depth representation

We start by rendering the reference view into a set of color+depth
buffers [Shade et al. 1998], which serves as an over-complete rep-
resentation of the scene. This kind of rendering workload can be
implemented efficiently via depth peeling [Mara et al. 2013; Lee
et al. 2010; Policarpo and Oliveira 2006]. We decided to use a sim-
ple k-buffer algorithm, which turned out to be sufficient and fast
enough. Our method, however, is not bound to any particular ap-
proach and will work with any depth peeling method.

Next, for every layer from this 2.5D stack, we compute a quad-tree
ray traversal acceleration structure (see Fig. 2). Each node in the
quad-tree stores either a 3D axis-aligned bounding-box (AABB)
or, at leaf nodes, a 3D plane that represents the geometry. Note that
since the quad-tree is built from frame buffer image data, the screen-
space 3D AABBs actually correspond to frusta in world-space.

The proposed data structure is related to the min-max pyramids
[Guennebaud et al. 2006], in a sense that we use non-overlapping
(in screen-space) bounding-volume hierarchies (BVH) to accelerate
ray tracing through efficient empty space skipping (AABB misses).
However, in contrast to this previous work, our quad-tree can be
adaptively pruned, as the leaves represent the geometry by a single
plane. This has two important consequences for ray traversal. First,
since the plane nodes represent the underlying layer geometry, a
ray-plane intersection test simultaneously determines if the ray hits
both the node and the geometry. The bounds defined by such a plane
are tighter than by the enclosing AABB, which makes skipping
empty space during the traversal more efficient. This translates into
significant performance gains due to reduction in both GPU mem-
ory bandwidth pressure and thread divergence. Furthermore, as the
ray-plane intersection test results in an exact intersection point, we
do not need a “refinement” stage, such as binary search [Policarpo
and Oliveira 2006; Tevs et al. 2008], to remove artifacts. The second
feature of our data structure is that we can use it directly to approxi-
mate and compress the screen-space geometry by controlling when
and how a node’s geometry is replaced with a proxy-plane. This
allows us to trade off ray tracing precision for performance.

3.2 Bottom level generation

The quad-tree is built in a bottom-up fashion. The depth of the de-
composition could go to dlog2 max(width, height)e levels, but
our implementation caps it to 9 levels. Both construction and ray
tracing are done in a variant of NDC (Normalized Device Coordi-
nates) space, where all potential scene points (x, y, z) are inside
of a unit cube. The bottom level of the quad-tree is initialized di-
rectly from the depth buffer. Each pixel is represented as a tiny
plane with a normal vector ~N and plane origin Porigin. In practice,
we only store the Z coordinate of Porigin, as its 2D coordinates are
known from the node position in the quad-tree. In addition to ~N
and Porigin, we store a binary flag O, which indicates whether the
plane is close to a depth discontinuity. We use this information dur-
ing ray tracing to adaptively dilate the screen-space bounding-box
to mask tiny cracks between neighbors with different orientations.

Normal vectors can be obtained through deferred rendering (via a g-
buffer) or computed from depth data directly (see supplemental for
details and pseudo code). All our examples use the latter approach,
although g-buffer normals should produce slightly better quality.

3.3 Quad-tree generation and planar approximation

The remaining quad-tree levels are generated with our adaptive
pruning algorithm demonstrated in Fig. 2 (see supplemental for
pseudo code). The idea behind the algorithm is simple. For each
output node we consider its 2 × 2 children nodes, and if they can
be approximated well enough with a plane, we store the plane, oth-



Scene Triangle count
Average construction

time [ms]

SPONZA 227k 0.646 ± 0.042

LIVINGROOM 456k 0.636 ± 0.006

SANMIGUEL 6550k 0.657 ± 0.042

Table 1: Average quad-tree construction and compression time
changes with the output quad-tree node count and is almost invari-
ant to the scene complexity. See Sec. 5 for configuration details.
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03263

0 minz maxz

Figure 3: Quad-tree 64-bit node layout. Top corresponds to the
plane node (1x32-bit float + 2x16-bit float) and bottom (2x32-bit
float) to the AABB node.

erwise we define the node as a regular AABB and store its corre-
sponding min/max Z values.

Successfully approximating a subtree by a plane node requires ful-
filling three conditions: (1) all the children have to be plane nodes,
(2) the maximum angular difference between proxy-plane and child
plane normals has to be less than γnorm, and (3) the maximum dis-
tance from child plane corners to the proxy-plane has to be less
than γdist. Thresholds γnorm and γdist can be fixed, or modulated
adaptively to implement LOD-like functionality. If the children do
not meet these conditions, we output a parent node as AABB that
encompasses all of them.

An accurate planar approximation of children requires solving an
optimization problem with 4 unknowns ( ~Nproxy, Pproxy), which is
too slow for real-time applications. We simplify the problem by first
estimating normal ~Nproxy as the average of child normals, and then
finding the plane’s Z coordinate Pproxy that minimizes the distance
of child plane corners to the proxy plane with

argmin
Pproxy

3∑
i=0

3∑
j=0

(
Pproxy − pij · ~Nproxy

~v · ~Nproxy

)2

,

where ~v is the view direction we optimize for and pij is the j th

corner of i th child plane represented in the coordinate space of
the proxy-plane. By default we set ~v = (0, 0, 1) to maximize the
reconstruction quality of the quad-tree for the reference view. In
Table 1 we demonstrate the performance of the solver on the GPU.
The entire construction algorithm is very fast and does not depend
on the geometric complexity of the underlying scene.

3.4 Quad-tree node format

Each quad-tree node can store either an AABB or a 3D-plane. We
managed to reduce the node’s memory footprint by fitting both
structures in just 64 bits (see Fig. 3). Interpretation of the node data
is based on the value of the most significant bit of the first word,
which corresponds to the sign bit in single-precision floating-point
number representation. As both minz and Pproxy + O are always
known to be positive, we choose to flip the sign of Pproxy + O so
we can disambiguate whether the node stores a plane or AABB by
simply inspecting the sign bit. When encoding the plane, we store
two components of a normal vector in half-float precision and re-

cover the third one with ~Nz ←
√

1− ~N2
x − ~N2

y .

#1

#2 P5 P6 P7 P8

P3 P4

P2P1
P0

#1

#2

Figure 4: A toy ray-tracing example. Using the data structure from
Fig. 2d (right side shows XY-plane view) we cast two rays into the
scene. Ray #1 misses leaf P0 but then hits the AABB node encom-
passing leaves P1–P4. Based on the AABB intersection point we
derive the next intersection candidate (P1 leaf), which produces the
final hit point. Ray #2 initially misses top layer completely (no in-
tersection with P1–P4 AABB), but hits AABB encompassing P7–P8.
The final hit point is computed via intersection with P8.
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Figure 5: A 1D-view of ray traversal. Nodes representing planes
(P) and AABBs (V) are stored in a hierarchical data structure. Mov-
ing from node at position 011 to 010 is fast as both nodes share
most of the path from the root (red edges). In contrast, moving from
011 to 100 requires going all the way up to the root. Our algorithm
computes the position of the last common ancestor between two ar-
bitrary nodes at a given quad-tree level without the use of stack or
loops, making it particularly friendly to GPU implementations.

4 Ray traversal

The core of our ray tracing method is depicted in Fig. 4 (see supple-
mental for pseudo-code). At a high level, the algorithm performs a
classic quad-tree ray traversal [Cohen and Shaked 1993] with sev-
eral application-specific customizations. For now we describe our
method for a single layer and ignore disocclusions, which we detail
in the next section.

First, the node type determines the intersection procedure, and we
test either for an intersection with the plane or the AABB. Sec-
ond, to reduce branching and thread divergence, we developed a
method for efficient child selection in case of a node hit, and ef-
ficient successor selection in case of a node miss. Both functions
are numerically stable and resistant to singularities. In case of a
node hit, we compute the child position based on the parent node
quadrant in which the intersection point landed. In case of a node
miss, we generate the successor by evaluating which edge the ray
hit when leaving the parent node (see Ray #1 case in Fig. 4).

Finally, similar to Frisken and Perry [2002], we observe that quad-
tree node x- and y-coordinates Qx and Qy encode the traversal
stack up to the root node. By simply right bit-shifting Qx and Qy
by one, we can generate the parent coordinates of the current node.
This property allowed us to reduce the number of intersection tests
significantly. After finding the coordinates (Q∗

x and Q∗
y) for the

successor at the same quad-tree level (e.g., P2 is the successor of
P1 in Fig. 4), we could directly proceed to it, but this would pro-
vide inefficient fixed-step traversal similar to 2D DDA line-drawing



algorithms. After all, the direct successor or one of its ancestors
might be missed, so to maximize the benefit of empty space skip-
ping, we need to select the largest possible parent. This means that
an optimal strategy would involve (re-)starting the traversal from
the root, which is inefficient (see Fig. 5 for a 1D example); ideally
we would like to start from one level below the last common an-
cestor. Because the node position encodes the full traversal path,
we can compute this point via simple bit manipulation. Specifi-
cally, the number of levels we need to move up in the hierarchy
is defined by the index of the most significant bit at which the co-
ordinates of the current and successor nodes differ. This maps to
findMSB(Qx ⊕Q∗

x) (where ⊕ is bit-wise XOR) and can be ex-
tended to findMSB((Qx ⊕ Q∗

x)|(Qy ⊕ Q∗
y)) for 2D, see sup-

plemental material. The entire procedure maps very well to current
GPUs as all the instructions are hardware-accelerated. In fact, this
stack-less traversal is 25% faster than stack-based.

4.1 Disocclusion handling

Efficient handling of disocclusions in our 2.5D representation is a
non-trivial task. A naïve solution would trace the ray against each
quad-tree and pick the nearest hit among all hits. This, however,
is slow and does not scale well with increasing number of lay-
ers. Some methods [Policarpo and Oliveira 2006] save on the ray
traversal time by bundling multiple layers and casting rays through
all of them simultaneously. This works much better, but still seems
sub-optimal. Most screen-space applications, such as time-warping,
DoF rendering, and stereo-warping, have small reprojection re-
quirements, i.e., relatively few pixels end up being fetched from
background layers. Our approach efficiently deals with these sce-
narios by tracing rays individually and indicating not only a valid
hit event, but also if the ray has passed through the occlusion vol-
ume in the scene.

An occlusion volume describes the 3D space occluded by the data
in a depth layer (similar to a shadow volume). Since we do not
know what might be hidden in the occlusion volume of the fore-
ground layer, rays that hit it, i.e., rays that would pass between oc-
clusion boundaries, need intersection information from the back-
ground layer. This is because after reprojection, the background hit
might end up being in the front of the foreground hit. To handle
this, we test for intersections with the primitive (plane and AABB)
and its occlusion volume. We never explicitly create this occlusion
volume, but rather extrude a given node during intersection testing.

Knowing if the result of tracing the foreground is final, or whether
we still need to trace the background, allows us to tremendously
speed up the multi-layer tracing version of our algorithm. We have
measured the ray distribution across different layers in the DoF ren-
dering application, and even for large defocus blur, less than 1% of
rays end up in the background layer. Note that the decision-making
process is cascaded by nature. For example, adding a third layer
will only impact rays that have missed both previous layers or hit
an occlusion volume in the second layer. Hence the performance of
our method scales well with the number of layers. In fact, for typ-
ical scenes, adding more than 3 layers has a negligible impact on
ray tracing speed, and the overall system performance is limited by
initial depth peeling and quad-tree construction stages.

The occlusion volume logic is not useful for single-layer
depth+color case, where no information about occluded geometry
is available. Usually, the best thing one can do is to inpaint the re-
sulting hole with background data (see Fig. 6). For this particular
case, we modify the tracing algorithm to provide a fast inpainting
of disocclusions. Specifically, instead of traversing through the oc-
cluded part of space, we stop the traversal and return a valid hit
at the intersection point with the occlusion volume. To make sure

the point belongs to the background image data, we perform the in-
tersection test with a slightly dilated occlusion volume. This effec-
tively turns our algorithm into a fast height-field rendering method,
and despite the disocclusion information being hallucinated, as we
show in the next section, the method is still quite useful in the con-
text of screen-space ray tracing.

5 Results

We now evaluate the performance and quality of our method for
several screen-space applications. All experiments were conducted
on a PC running Windows 7 64-bit version and the NVIDIA driver
version 347.52. The system is equipped with an Intel Core i7-
3930K, 64GB of RAM, and an NVIDIA Geforce GTX 980 with
4GB of RAM. All images were rendered at 1600× 900 resolution,
unless specified otherwise. The test sequences vary in the amount
of camera motion and geometry complexity (see Table 1)—from
relatively simple SPONZA to detailed LIVINGROOM (see Fig. 1)
and SANMIGUEL scenes. The timings in this section exclude quad-
tree construction, which is about 0.6ms per frame, unless otherwise
noted; see Table 1 for detailed quad-tree construction timings.

5.1 View synthesis

We compare our approach to efficient implementations of three
classes of view synthesis methods: mesh-based forward warping,
height-field rendering and screen-space ray tracing.

The mesh-based warping methods represent the reference view as
a regular grid mesh and rely on fixed-functionality GPU hardware
to warp and rasterize it into a new view [Bowles et al. 2012; Didyk
et al. 2010]. These approaches generally trade mesh resolution for
performance. To have a fair comparison with our method, which
resolves details at sub-pixel resolution, we have set up a mesh with
one vertex per input image pixel. This simplifies the implementa-
tion as no mesh refining (snapping vertices to the nearest depth-
discontinuities) or reprojection point optimization is required.

In Tables 2 and 3 we evaluate the performance for spatial and tem-
poral reprojections. The performance of our approach is strongly
correlated with the complexity of per-layer quad-trees. For the
SPONZA scene, which has relatively simple geometry and produces
few disocclusions, we are faster than mesh-based warping, regard-
less of the number of layers used. However, with detailed geom-
etry that has large background/foreground depth differences, the
speed advantage of our solution decreases. This is demonstrated in
the SANMIGUEL sequence, where large camera motion produces
lots of disocclusions and occlusion volume hits, which forces our
method to shoot rays through the second layer for a significant por-
tion of the image. However, unlike mesh-based forward warping,
our method produces images with correctly resolved disocclusions
(Fig. 7) and allows for arbitrary per-pixel reprojections, which en-
ables single-pass light-field (Sec. 5.3) and DoF rendering (Sec. 5.2).

Another class of view-synthesis methods is height-field rendering
[Musgrave 1988; Policarpo and Oliveira 2006], which aims to effi-
ciently visualize an elevation map from an arbitrary point of view.
We have evaluated the performance of our approach with respect
to a recent GPU height-field rendering method [Tevs et al. 2008]
that uses ray marching in a min-max pyramid followed by a binary
search intersection refining step. Their ray traversal routine allows
for fast arbitrary per-pixel reprojections, but does not support trac-
ing through multiple depth layers and therefore fails to resolve dis-
occlusions correctly. This makes it equivalent to a single-layer ver-
sion of our approach. We have used the authors’ GLSL implemen-
tation and selected their fastest iterative version of the algorithm. To
improve the speed further we have disabled bilinear patch interpo-
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Figure 6: Comparing view synthesis approaches for large camera motion. (a) Reference view. (b) Mesh-based reprojection fills disocclusions
by stretching background triangles. (c) Height-field rendering methods [Tevs et al. 2008] produce less appealing results due to foreground
preference during inpainting. (d) Our method tracing through a single depth layer. Apart from the regular hits we get misses (red) and hits
of occlusion volume (blue). (e) In the fastest variant we fill both with the nearest background pixels. (f) Another variant performs tracing
through the second depth layer and recovers the majority of misses. This can be repeated on subsequent layers to yield a full reconstruction.

Method Scene
Average time [ms] Mrays

sTref Teye Ttotal

Mesh-based
SPONZA 0.59 1.47 3.56 N/A

warping
LIVINGROOM 0.76 1.37 3.53 N/A
SANMIGUEL 2.73 1.37 5.46 N/A

Height-field
SPONZA 0.59 3.5 7.7 405.75

tracing
LIVINGROOM 0.79 3.85 8.5 373.78
SANMIGUEL 2.75 4.33 11.4 332.41

DDA
SPONZA 0.523 6.06 12.71 237.56

single layer
LIVINGROOM 0.78 5.77 12.33 249.28
SANMIGUEL 2.75 6.01 14.78 239.48

DDA
SPONZA 1.13 8.26 17.65 174.06

two layers
LIVINGROOM 1.41 7.80 17.01 184.60
SANMIGUEL 5.51 8.22 21.93 175.05

Our
SPONZA 0.59 1.1 3.43 1309.69

single layer
LIVINGROOM 0.78 1.49 4.35 980.9
SANMIGUEL 2.74 1.7 6.78 846.56

Our
SPONZA 1.2 1.34 4.52 1076.22

two layers
LIVINGROOM 1.45 1.7 5.45 850.5
SANMIGUEL 5.52 2.02 10.24 709.8

Table 2: Performance comparison of our approach in stereo-
warping application. We render a central reference view (Tref) and
warp it to the left and right eye. Teye is the averaged time for a
warp to a single eye and Ttotal corresponds to the total stereo frame
render time.

lation. This normally produces pixel level staircase artifacts com-
mon to voxelization algorithms, but due to relatively small zoom-in
factors of our reprojection applications, we have not found this to
be an issue. Despite these optimizations, our approach is still 2.5×
faster on average (see Table 2 and 3). The performance improve-
ment comes from our compressed depth-representation and more
efficient traversal algorithm. Both reduce the overall intersection
count and number of nodes visited, which directly maps to reduced
texture fetch count and shorter run-times.

Finally, we compare against a recent screen-space GPU ray trac-
ing method that supports tracing through multiple depth layers
[McGuire and Mara 2014]. The traversal algorithm is based on
the idea of perspective-correct DDA line rasterization, which min-
imizes the number of duplicated intersection tests and texture
fetches. The method does not require pre-computation or any ancil-
lary data structure. However, due to ray marching nature and fixed
traversal step size, its performance tends to degrade proportionally
to the ray hit distance. To reduce the variance of the performance
the authors introduce an upper bound on per ray marching step
count. In our experiments we used a minimum value at which the
DDA method produced results that are artifact-free and equivalent
to ours. Specifically, we set the maximum step count to 200 and 500
for stereo-warping and temporal upsampling applications respec-
tively. For stereo-warping, where the reprojection is relatively small
and constant, our method is from 4× to 6× faster (Table 2). The
DDA method becomes more competitive for temporal-upsampling
(Table 3), which has different (rotation + translation) and varying
reprojection requirements. Moving away from the reference frame
increases the reprojection magnitude, which maps to longer epipo-

Method Scene
Average time [ms] Mrays

sTref Tsyn Tamt

Mesh-based
SPONZA 0.54 1.43 ± 0.07 1.2 N/A

warping
LIVINGROOM 0.78 1.4 ± 0.04 1.25 N/A
SANMIGUEL 2.75 2.23 ± 0.13 2.36 N/A

Height-field
SPONZA 0.54 2.33 ± 0.1 1.88 617.76

tracing
LIVINGROOM 0.79 2.2 ± 0.15 1.84 655.43
SANMIGUEL 2.76 3.07 ± 0.73 2.99 468.6

DDA
SPONZA 0.58 3.87 ± 3.67 3.05 371.70

single layer
LIVINGROOM 0.77 1.05 ± 0.4 0.98 1368.36
SANMIGUEL 2.71 3.11 ± 0.82 3.02 462.13

DDA
SPONZA 1.25 4.08 ± 3.80 3.37 352.5

two layers
LIVINGROOM 1.42 1.53 ± 0.99 1.5 940.56
SANMIGUEL 5.5 3.55 ± 0.92 4.03 404.95

Our
SPONZA 0.55 0.92 ± 0.24 0.83 1558.44

single layer
LIVINGROOM 0.78 0.89 ± 0.14 0.86 1608.93
SANMIGUEL 2.71 1.2 ± 0.29 1.57 1201.0

Our
SPONZA 1.15 1.13 ± 0.45 1.13 1269.84

two layers
LIVINGROOM 1.44 1.03 ± 0.73 1.13 1395.34
SANMIGUEL 5.55 2.18 ± 1.35 3.02 660.85

Table 3: Performance comparison of our approach for 15Hz to
60Hz conversion application. The mean reference frame rendering
time Tref together with new view synthesis time Tsyn is used to com-
pute amortized frame time Tamt for 60Hz rendering.

lar lines (rays) and results in high timings variance for SPONZA and
SANMIGUEL scenes. The variance for LIVINGROOM case remains
relatively small because of the slow camera motion that produces
small differences between adjacent reference frames.

5.2 Depth-of-field rendering

Screen-space ray tracing is often used to simulate complex lens ef-
fects. Cook et al. [1984] showed that rendering phenomena like
motion blur, depth-of-field (DoF), and shadow penumbras is feasi-
ble via lens sampling and proper ray distribution. We followed this
methodology, and implemented a naïve DoF algorithm that samples
the lens aperture [Shirley and Chiu 1997] and traces a fixed number
of rays per pixel according to the thin-lens model. The per-pixel ray
batches are then accumulated to form the final image.

As we show in Fig. 9, the knowledge of occluded regions in the
scene is critical for high-quality DoF simulation. This is especially
the case for defocus blur at large depth discontinuities, where rays
travel into occluded parts of the scene geometry. Our method ad-
dresses this by tracing through multiple layers. Performance-wise,
the DoF rendering workload represents the opposite scenario to
Sec. 5.1. Here, most of the rays are short, incoherent and few of
them end up in background layers. As shown in Table 4, our scheme
breaks the 2.16 billion Rays-Per-Second (RPS) barrier for a single-
layer rendering and 1.96 billion RPS for two layers. Interestingly,
the DoF workloads are also handled relatively well by the DDA
method [McGuire and Mara 2014]. Setting maximum ray march-
ing step count to 25 produces optimum performance with rendering
quality equivalent to ours. While our approach has a significant ad-
vantage in terms of RPS, the absolute FPS statistics suggest that



(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a) (b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)

Figure 7: Time-warping for large camera translation. (a) Mesh-
based forward warping produces visible background stretching ar-
tifacts. (b) We use information from the background layers, avoid-
ing these artifacts (see supplemental video for animated examples).

Method Npri/Nsec
Tref Tdof Mrays

s
FPS

[ms] [ms]

DDA 4/1 0.56 4.74 1215.18 188.4
single layer 8/1 0.54 8.15 1412.11 114.85

DDA 4/1 1.25 6.56 876.97 127.87
two layers 8/1 1.23 9.34 1233.4 94.60

Our
4/1 0.54 2.8 2055.67 251.13

single layer
8/1 0.54 5.32 2167.05 152.67
4/4 0.56 3.47 1657.07 214.5
8/4 0.54 6.63 1737.55 127.73

Our
4/1 1.22 3.21 1792.72 197.08

two layers
8/1 1.21 5.85 1967.21 129.71
4/4 1.24 3.84 1496.88 174.58
8/4 1.22 7.22 1594.46 109.51

Table 4: Impact of the aperture sampling configuration on perfor-
mance of depth-of-field rendering in SPONZA sequence. Each test
case is configured to cast Npri rays and accumulate them with Nsec

color samples per ray. Tref denotes the rendering time for the refer-
ence layer(s) and Tdof is the DoF image rendering time. Addition-
ally, we provide the ray tracing speed and the overall application
FPS (including quad-tree construction time).

this improvement is to some extent consumed by the acceleration
structure build overhead.

Unfortunately, random lens sampling with just a few rays produces
visible noise in the final image. To reduce the noise, we have im-
plemented a secondary sampling stage that exploits the character-
istics of our quad-tree data structure. Specifically, after hitting the
plane leaf-node, we generate additional rays in close proximity to
the primary ray (using the same random distribution), but instead of
tracing them through the scene, we assume their visibility and sim-
ply intersect them with the primary ray hit plane. Some intersection
points might land “in the air”, therefore we lower their color sam-
ple contribution to the final pixel estimate by weighting them by
e−(zi−zb)2/σ2

, where zi is the intersection z value and zb is the
depth buffer value at the intersection point. Fig. 8 shows the im-
pact this has on DoF rendering noise levels. The proposed sampling
strategy only approximates the physically-correct solution, but as
we show in Table 4, it allows us to significantly reduce the ray trac-
ing overhead without sacrificing the defocus blur quality.

5.3 Image retargeting for multi-view displays

Glasses-free 3DTVs, particularly those using parallax barriers [Ives
1903] or lenticular arrays [Lippmann 1908], require multiple views
of the same scene. Unfortunately, rendering and transmission of
dozens of views is expensive both in terms of computation and
bandwidth/storage requirements. One way to address this problem
is to send/compute only a small subset of all views, so called refer-

(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a) (b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)

(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c) (d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)

Figure 8: Depth-of-field rendering noise reduction through over-
sampling. (a) Integration of only 8rpp (rays per pixel) produces
noisy result. (b) 32rpp improves the quality, but is 3.9x more costly
to compute. (c) 4rpp combined with 7 additional samples per ray
produces in-between quality while being 25% faster than 8rpp
alone. (d) Finally, 8rpp combined with 3 extra samples per ray pro-
duces results as in (b) while being only 20% slower than (a).

ence views, and use these to synthesize missing in-between views.
Unlike existing 3DTVs, near-eye light-field displays [Lanman and
Luebke 2013] require rendering from hundreds to thousands of in-
dividual scene views. In the original paper, the authors describe two
rendering approaches for their display. The first one relies on GPU
ray tracing (with NVIDIA OptiX) to produce accurate elemental
image array for the display. The other one is a much simpler, where
frames from the left and right eye are placed on a virtual plane and
sampled to produce an image for micro-lens array. While efficient,
this approach significantly under-utilizes the capabilities of a near-
eye light-field display, as it cannot reproduce large disparities or
accommodation effects this way. Here we implement the first ap-
proach: specifically, given color+depth buffers for the left and right
eye, we generate a complete elemental image set with our ray trac-
ing approach (see Fig. 1d). This preserves the disparity range of the
original stereo content and also enables the eyes to accommodate.
Our results are visually indistinguishable from the OptiX solution,
and depending on the scene and ray tracer configuration, it takes
from 1.1ms to 3ms to reproject the image into an image array for a
single eye, about three times faster than OptiX.

5.4 Ray-traced reflections

Many ray tracing algorithms exist to create plausible glossy reflec-
tion. As mentioned earlier, screen-space ray tracing is commonly
used for this, e.g., the algorithm of Souza et al. [2011] or its more
accurate recent variants [Mara et al. 2013; McGuire and Mara 2014]
that can also handle multiple layers to solve disocclusions.

As reflections are likely to come from outside the current view-
port/screen-space, methods exist to enable this. Umenhoffer et
al. [2007] create a cube map at the center of a reflective object,
including the respective depth maps and possibly multiple layers.
Reflections are rendered by screen-space ray tracing in one or more
of the cube map faces. We take a similar approach, but speed up ray
tracing using our adaptive data structure for each cube map face.

To show the applicability of our proposed data structure and ray
traversal algorithm to non-screen-space effects, we use ray tracing
to generate specular (Fig. 11) and glossy reflections (Fig. 13) in-
cluding multiple bounces and self-reflections on non-planar reflec-
tive objects as described by Cook et al. [1984]. This can lead to
more incoherent ray tracing workloads, especially when applying
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Figure 9: Depth-of-field rendering using the thin-lens model. (a) With a single depth layer we cannot resolve defocus blur at large depth
discontinuities (e.g., the edge of the candle). (b) Our method produces correct image by tracing rays through two layers, (c) or by tracing
through only a single depth layer but hallucinating background through inpainting (see Sec. 4.1), which approximates (b) and is faster than
(a). (d) 5× difference between (b) and (c).

(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a) (b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b) (c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c) (d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)

Figure 10: Impact of quad-tree compression on stereo-warping. (a) AABB intersection count visualization for a close to lossless compression
of corresponding depth layers of the reference cyclopean view. (b) Aggressive compression of the quad-tree speeds up ray tracing by 12%.
(c,d) Despite the difference in approximation quality between (a) and (b), the resulting stereo image pairs are visually indistinguishable.

Method Np/Ns/Nb
Tcm Tref Trr FPS
[ms] [ms] [ms]

Our
1/8/1 2.38 0.34 1.974 197.31

single layer
3/8/1 2.39 0.41 6.96 98.68
3/4/3 2.33 0.366 10.25 75.03
3/8/3 2.35 0.388 12.38 64.64

Our
1/8/1 5.15 0.415 4.91 92.21

two layers
3/8/1 5.20 0.37 13.5 51.40
3/4/3 5.19 0.34 22.96 34.64
3/8/3 5.27 0.34 24.75 32.52

Table 5: Rendering performance of complex multi-bounce glossy
reflections. Both single- and two-layer based algorithm is config-
ured to cast Np primary rays, followed by Ns extra samples per
ray. Each primary ray is allowed to bounce Nb times. Tcm, Tref ,
and Trr denote the cube map, input frame, and reflection rendering
times respectively. Last column shows the average application FPS.

small reflection exponents to simulate rough surfaces.

We generate a cube map (6×1024×1024 pixels big) at the camera
location, and create our adaptive data structure for each face of the
cube map. Note that in theory we could support other environment
map representations, but only if they do not lead to curved rays.
In our implementation, we simply render the scene six times, once
to each cube map face. More efficient solutions, such as viewport
multi-casting exist, but this is not the focus of our work.

The primary intersection point is computed using rasterization, ren-
dering the reflective objects only. For each intersection point we
sample a new direction for the reflection vector by sampling the
normalized Blinn-Phong BRDF at this position. If we hit a reflec-
tive surface, we generate a new ray until the maximum number of
bounces is reached. At a diffuse surface we discontinue tracing.

The core ray traversal algorithm requires very few modifications
for supporting tracing in the cube map. We begin by determining
the frustum (cube face) the ray originates from. Then we trace the
ray in the corresponding acceleration structure. If no valid hit was
found, we transition to a new face based on which of the frustum
planes of the current view the ray hits. If the ray hits the far plane of
any view (ray is leaving the scene) we terminate the trace. We show
the performance of our ray tracing approach for various scenarios
in Fig. 11, 12 and Table 5.

Figure 11: Single depth+color layer ray-traced specular reflec-
tions (no self-reflections). Our per cube map face acceleration data
structure is static and build in the first frame in 5.277ms. It takes
1.518ms to render the scene view and 1.062ms to trace the reflec-
tions, resulting in 387 average FPS. The two layer version takes
2.55ms to trace, yielding 234 average FPS. Note that since our al-
gorithm effectively reprojects the cube map during tracing, we can
use the same cubemap to render correct reflections for both objects.

6 Discussion

Depth compression impact on performance and quality By
increasing γnorm and γdist the quad-tree construction algorithm
coarsens—with gradually increasing tolerance—smoothly-varying
geometry in the scene, which in the limit produces a scene filled up
with billboard-like objects. However, since we optimize the quad-
tree for the reference view, and all the screen-space applications we
demonstrate require relatively small parallax shift and ray direction
changes, even such a coarse geometry approximation can produce
correct results (see Fig. 10).

In our experiments we set γnorm = cos(3◦) and γdist = 10−5,
which provided a 5-10% performance gain (with respect to lossless
settings) without introducing any visible reprojection artifacts. The
compression thresholds can be further tuned to exploit the nature
of perspective projection—the hit precision requirements fall with
the distance to the object. We have implemented a distance-adaptive
compression by linearly increasing γnorm and γdist thresholds with



(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a) (b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)

Figure 12: A comparison with a standard cube-map-based reflec-
tions. (a) Cube map rendered at position of the object in the far back
produces incorrect reflections for the object in the front that is far
from its center of projection. (b) Our method can address this sce-
nario and produce correct reflection by reprojecting the data stored
in the acceleration structure.

Figure 13: Ray-traced rough reflection according to the Blinn-
Phong BRDF with up to three bounces. Here, the front object has a
specular coefficient of N = 1000, the object in the back is essen-
tially specular (N = 100000).

the node’s mean depth value, which resulted in, on average, a 10%
performance gain for view-synthesis applications and 15% for DoF
rendering. Fig. 14 and 15 include more detailed evaluation, where
we show the impact of γnorm, γdist and depth-adaptive quantiza-
tion on performance and quality of the stereo warping application.

Limitations While the single-layer (with background inpaint-
ing) variant of our method has good all-around characteristics, the
performance of multi-layer version decreases with the number of
ray misses and occlusion volume hits. This is because large dis-
occlusions generate long ray traversal paths, which slows down
the tracing process, making our method not as efficient for large-
displacement view synthesis.

In our current multi-layer traversal implementation, when moving
up close to geometry, some rays can pass through tiny cracks be-
tween unaligned plane nodes that should otherwise form a contin-
uous surface. This could be fixed by generating more precise input
normal vectors (use g-buffers instead of depth-based normal recon-
struction) or by combining several neighboring planes to implement
a more complex bi-linear patch intersection test.

Finally, we consider only opaque geometry and diffuse lighting
models. However, support of multi-sample rendering and deferred
shading is feasible and can be added as a straightforward extension.

7 Conclusions

We have presented a novel screen-space ray tracing method tai-
lored for single- and multi-layered depth representations. We have
demonstrated its performance and benefits in several screen-space
rendering applications. We achieve real-time performance by com-
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Figure 14: Impact of γnorm and γdist on the quality and perfor-
mance. (left) Frame render time in msec. (right) Frame PSNR in
dB. (red) Fixed γnorm = cos(3◦) while logarithmically decreasing
γdist = 10−5 to γdist = 10−1. (blue) Fixed γdist = 10−5 while
γnorm varies between [cos(3◦), cos(25◦)].
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Figure 15: Impact of depth-adaptive quantization on quality
and performance. The compression values γnorm and γdist vary
between [cos(3◦), cos(25◦)] and [10−5, 10−1] respectively. (left)
Frame render time in msec. (right) Frame PSNR in dB. Depth-
adaptive quantization disabled (red) and enabled (blue).

bining a compact and steerable traversal acceleration structure with
an efficient ray tracing algorithm, reaching the level of special-
ized state-of-the-art approaches for many applications. While our
method is not a replacement for general purpose ray tracing frame-
works, such as NVIDIA OptiX, it can be thought of as an efficient
alternative for problems requiring 2.5D ray tracing capabilities. In
the future, we would like to extend this work to support accelera-
tion of volumetric rendering effects and investigate the application
to approximate global illumination. We also plan to work on im-
proving the quad-tree compression algorithm, which currently only
considers geometric distortions. Accounting for underlying mate-
rial properties, such as texture contrast or specular highlights, could
further improve the performance and quality of our approach.
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