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Figure 1: Top-left: rendering a voxelized forest at decreasing levels of detail (left to right). Bottom-right: visualization of the voxel structure
at the matching resolutions. We use the SGGX microflake distribution to represent volumetric anisotropic materials. Our representation
supports downscaling and interpolation, resulting in smooth and antialiased renderings at multiple scales.

Abstract

We introduce the Symmetric GGX (SGGX) distribution to represent
spatially-varying properties of anisotropic microflake participating
media. Our key theoretical insight is to represent a microflake dis-
tribution by the projected area of the microflakes. We use the pro-
jected area to parameterize the shape of an ellipsoid, from which we
recover a distribution of normals. The representation based on the
projected area allows for robust linear interpolation and prefiltering,
and thanks to its geometric interpretation, we derive closed form
expressions for all operations used in the microflake framework.

We also incorporate microflakes with diffuse reflectance in our the-
oretical framework. This allows us to model the appearance of
rough diffuse materials in addition to rough specular materials. Fi-
nally, we use the idea of sampling the distribution of visible normals
to design a perfect importance sampling technique for our SGGX
microflake phase functions. It is analytic, deterministic, simple to
implement, and one order of magnitude faster than previous work.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Ray tracing;

Keywords: microflake theory, global illumination, light transport.

1 Introduction

The importance of rendering volumetric models has dramatically
increased in recent years. While geometry has been used as the
standard rendering primitive for decades, it is hard to represent ma-
terials like hair, fur, or fabric as surfaces. Instead, using volumetric
data to describe spatially varying microstructures has proven to be
a promising alternative [Zhao et al. 2011]. Furthermore, volumetric
representations are also well-suited for level-of-detail (LOD) tech-
niques that replace complex visual data (e.g. distant fine geometry)
with a more compact and efficient representation of its appearance.
This is an important and pressing challenge as the complexity of
scenes in production rendering has reached unprecedented heights.

A physically-based definition of volumetric scattering with arbi-
trary microstructures, the “microflake theory”, has recently been
introduced by Jakob et al. [2010]. Analogous to the microfacet
theory which has been formulated for surface materials (BRDFs),
this theoretical framework is used to describe volumetric scatter-
ing. It provides a phase function deduced from a given set of sta-
tistically distributed microflakes, and ensures physical correctness
by constraints for energy conservation and reciprocity. While this
new framework opened up new possibilities for rendering, it is cur-
rently limited by the existing microflake representations, which lack
closed form operators, e.g. for evaluating the phase function and
importance sampling.

In this paper we introduce a novel microflake distribution which re-
solves these shortcomings and thus increases the practical benefits
of the microflake framework in general.

Our SGGX distribution is the first that provides lightweight stor-
age of microstructure representation, linear parameter interpolation,
and analytical evaluation and importance sampling. SGGX param-
eters can be generated by converting from existing data in other
microflake models [Zhao et al. 2011] or created from polygonal
geometry, and can be filtered to obtain volumetric level-of-detail
representations.



In particular our contributions are:

• A novel microflake representation to represent isotropic and
anisotropic microstructures. Its parameters are simple to ini-
tialize, simple to convert from previous representations, and
can be robustly interpolated.

• An extension of the microflake framework to incorporate not
only specular but also diffuse microflakes.

• An analytic and deterministic importance sampling technique
for the resulting phase functions, which is one order of mag-
nitude faster than previous work.

We also explore how the SGGX distribution can be used in future
multi-scale rendering applications. Such frameworks require filter-
ing of both the microflake representation and the complex visibility
effects emerging at coarser levels of detail from the organization of
the finest details. We show that our method is able to accurately
prefilter the microflake representation and discuss the challenges
for future work.

2 Previous Work

Our approach connects volumetric filtering techniques to the
physically-based rendering framework of the microflake formula-
tion. The realization of our multi-scale framework is also inspired
by recent LOD techniques for surface details.

Microflake Framework Jakob et al. [2010] were the first to
introduce a physically-based radiative transfer framework for
anisotropic participating media. It is based on a volume scattering
model analogous to microfacet surface reflection models, but using
oriented non-spherical particles in a volume. They also derive the
constraints for reciprocity and energy conservation for the phase
function. This framework has been used to reproduce the appear-
ance of woven fabric designed at a micron-scale resolution [Zhao
et al. 2011; Zhao et al. 2012]. Schröder et al. [2011] proposed a dif-
ferent volumetric approach using virtual scattering events computed
from statistical distributions of fibers in woven materials. A recent
course [Schröder et al. 2012] provides a comprehensive overview
over reproducing the appearance of cloth. Note that the current
microflake framework does not incorporate transmission scatter-
ing effects, which are especially important for realistic hair ren-
dering [Marschner et al. 2003]. Hence, our model is also subject to
this limitation.

Complexity of Microflake Rendering Unfortunately, using
Monte Carlo path tracing requires hundreds of hours of computa-
tion time even for moderately complex scenes and resolution [Zhao
et al. 2012]. Zhao et al. [2013] propose to accelerate rendering by
precomputing and storing radiance transfer for repeated structures
that are present in many volumetric materials (e.g. fabrics). While
this technique provides significant speedup, its application is lim-
ited and it cannot be applied to generic non-repetitive assets.

Another strategy to accelerate rendering would be to design a multi-
scale representation that is able to adapt the resolution of the data
to the image resolution (or pixel footprint). Unfortunately, existing
representations [Jakob et al. 2010; Zhao et al. 2011] are not suit-
able in this case: the distributions of normals (used to represent a
collection of microflakes) lack a filtering operator, which in turn is
required to obtain the parameters of the distribution across different
scales. Another limitation is that they can represent fiber-like or
surface-like material, but not both at the same time. Interpolating
and filtering different materials is thus not possible. In contrast, our
framework can describe and operate on both in a unified manner.

Lastly, they also lack practicability as, for example, analytic impor-
tance sampling is not possible and requires a costly rejection based
algorithm. Furthermore, the projected area, which needs to be eval-
uated at each step during ray marching, is not computed analytically
nor efficiently. Creating multi-scale representations for these mod-
els has been considered an important challenge [Bala 2014]. In this
paper, we present a solution to the aforementioned problems related
to microflake representations.

The GGX Distribution The idea of representing a distribution of
normals (of microfacets or microflakes) using an ellipsoid shape
was first introduced by Trowbridge and Reitz [1975] in the physics
literature. Neyret derived an equivalent distribution to represent
volumetric materials [Neyret 1995; Neyret 1998]. He defined
the associated ellipsoid surface as the set of points P such that
PT QP = 1 (also called tensor ellipsoid), whereQ is a 3×3 sym-
metric positive definite matrix. Neyret proposed to interpolate and
filter the coefficients ofQ−1. Unfortunately these operations do not
preserve the roughness of the input distributions and often result in
obviously wrong results (see Fig. 10). Later, the same distribu-
tion was independently proposed by Walter et al. [2007] and named
GGX; it is nowadays widely used in microfacet BRDFs [Hill et al.
2014]. However, the GGX distribution uses only the upper part of
the ellipsoid according to a local frame and does not allow for fil-
tering or interpolation when the different input distributions are not
defined in the same frame.

Filterable Distribution of Normals The LEAN representa-
tion [Olano and Baker 2010; Dupuy et al. 2013] for normal or dis-
placement maps enables filtering and interpolation, and served as
inspiration for our work. The core idea of LEAN is to find a space
where the anisotropic distribution of microfacet normals can be suf-
ficiently well represented with a small set of parameters. LEAN
data can be interpolated linearly as it is represented as a symmetric
2 × 2 matrix, the covariance matrix of the distribution of slopes.
The key insight of our representation is that the “volumetric anal-
ogon” to this distribution is the projected area of the microflakes,
and that this again can be compactly represented with a symmetric
matrix.

3 Background: Microflake Theory

In this section we briefly summarize the practical aspects of the
microflake theory [Jakob et al. 2010]; Table 1 shows our nota-
tion. A microflake material is defined by a distribution of normals
(in accordance with previous work we use the abbreviation NDF
which stands for normal distribution function) and during render-
ing the model is used to compute the volumetric attenuation and
the phase function. The choice and the implementation of the inte-
grator (e.g. path tracing) is independent and out of the scope of this
paper; we refer the reader to [Pharr and Humphreys 2010].

projected area micro-phase function phase function
σ(ωi) p(ωm,ωi → ωo) fp(ωi → ωo)

Figure 2: Illustration of the notation used in microflake theory.



ωi,ωo incident and outgoing directions
ωm microflake normal

D(ωm) distribution of normals (NDF)
Dωi(ωm) distribution of visible normals (VNDF)

α direction-independent albedo of microflakes
p(ωm,ωi → ωo) phase function of one microflake
fp(ωi → ωo) phase function of all microflakes

ρ volumetric density
σ(ωi) microflake projected area
σt(ωi) volumetric attenuation coefficient
σs(ωi) volumetric scattering coefficient
S SGGX parameters (3× 3 matrix)

(− · −) dot product
〈−,−〉 clamped dot product

Table 1: The notation used in this paper. Note that all quantities
can be spatially-varying, which we omit for better readability.

3.1 Microflake Volumes

The Anisotropic RTE The light transport in an anisotropic par-
ticipating medium is described by the anisotropic Radiative Trans-
fer Equation (RTE) [Jakob et al. 2010]:

(ωi · ∇)L(ωi) + σt(ωi)L(ωi)

= σs(ωi)

∫
Ω

fp(ωi → ωo)L(ωo) dωo +Q(ωi). (1)

Note that we omit spatial parameters in the quantities arising in this
equation, which are further explained in Table 1.

Microflake Distribution The microflakes’ statistical orientation
is defined by the distribution of normals (NDF) D. Previous
work [Jakob et al. 2010; Zhao et al. 2011] used normalized NDFs,
i.e.

∫
Ω
D(ωm) dωm = 1. However, this normalization constraint

is not mandatory for the framework as we show in Section 4.2.

Microflake Projected Area The volumetric attenuation σt(ωi)
and scattering σs(ωi) coefficients are used by the integrator to sam-
ple distances within the volume, and to evaluate visibility. In a mi-
croflake volume we have:

σt(ωi) = ρ σ(ωi), (2)
σs(ωi) = αρσ(ωi), (3)

where ρ is the volume density, α is the direction-independent
albedo (as we assume that all microflakes at a point in the volume
have the same material), and σ(ωi) is the projected area of the mi-
croflakes in direction ωi:

σ(ωi) =

∫
Ω

〈ωi,ωm〉D(ωm) dωm. (4)

The evaluation of the projected area is important for our represen-
tation and further discussed in Section 4.

Microflake Reflectance The microflake phase function
fp(ωi → ωo) represents the interaction of light with a collection
of microflakes present in the volume. Each individual microflake
can be seen as a small two-sided surface-like patch with its own
BRDF. This BRDF, weighted with the cosine of the incident
direction, is the phase function of the microflake p(., .). Note that
we name p(., .) phase function, as it is a probability distribution
function (PDF) used for computing outgoing directions upon scat-
tering. To simplify notation in this paper, we assume that the phase

function p(., .) of a single microflake is either based on a purely
diffuse or purely specular BRDF with a direction-independent
albedo α. However, nothing prevents us from using a blend
of diffuse and specular microflakes and/or direction-dependent
albedos.

Microflake Phase Function The phase function for a collection
of microflakes is

fp(ωi→ωo)=
1

σ(ωi)

∫
Ω

p(ωm,ωi→ωo)〈ωi,ωm〉D(ωm)dωm.

(5)

The phase function is used to evaluate the light scattering at one
point in the medium as

L(ωi) = α

∫
Ω

fp(ωi → ωo)L(ωo) dωo. (6)

The implementation of a microflake material must provide two ad-
ditional functions: evaluation and sampling of fp(ωi → ωo). We
define these operators for the SGGX distribution in Section 5.

3.2 Microflake Constraints

A physically-based microflake material is both energy conserving
and reciprocal. Energy conservation requires a normalized phase
function, i.e. the distribution of outgoing directions ωo given an
incident direction ωi is a PDF:∫

Ω

fp(ωi → ωo) dωo = 1. (7)

The reciprocity constraint relates the projected area σ and the phase
function fp (with a direction-independent microflake albedo α):

σ(ωi) fp(ωi → ωo) = σ(ωo) fp(ωo → ωi). (8)

4 The SGGX Microflake Distribution

In this section we introduce our new representation for SGGX dis-
tributions and discuss the initialization of its parameters.

4.1 Preliminary Considerations

Our new representation of SGGX distributions is motivated by three
important observations.

1) Ellipsoidal NDF As shown in Fig. 3, the GGX distribution
is the distribution of normals (NDF) of an ellipsoid clamped to a
hemisphere. The SGGX distribution is simply the NDF of the el-
lipsoid over the entire domain (S stands for symmetric).

(a) GGX D(ωm),ωm ∈ Ω+ (b) SGGX D(ωm),ωm ∈ Ω

Figure 3: Ellipsoidal distributions. The SGGX distribution is a
symmetrized GGX, i.e. the distribution of normals of the surface
of a non-clamped ellipsoid. The color-coded spheres illustrate the
distributions of normals.



2) A distribution of normals does not need to be normalized
In Section 5 we show that a microflake phase function fp depends
on the distribution of visible microflakesDωi , which is always nor-
malized, even if D is not. Intuitively, scaling D by an arbitrary fac-
tor is equivalent to scaling the number, or the size, of microflakes
in a volume; both still represent a valid medium. Consequently, the
normalization of D and/or the evaluation of its norm are unneces-
sary for the derivation of a microflake model.

3) The projected area should be conserved The projected area
is an important aspect in both microfacet and microflake theory as it
is the normalization factor of the resulting BRDFs and phase func-
tions. Furthermore, in microflake theory, it affects the probability
of light-matter interaction and thus the opacity of the material. Any
filtering operation should conserve this quantity.

From these observations we conclude that representing a set of mi-
croflakes by its projected area, i.e. the sum over the projected areas
of all individual microflakes, instead of its distribution of normals,
is beneficial for operations such as interpolation or filtering. How-
ever, we have to be able to recover the NDF from the projected
area.

4.2 Novel Definition of the SGGX Distribution

We introduce the SGGX distribution that is defined by its projected
area, from which its NDF can be recovered.

Definition of the SGGX Distribution Based on Projected Area
Our SGGX distribution is best visualized in its eigenspace. We
define it as a 3× 3 symmetric positive definite matrix S such that

S = (ω1,ω2,ω3)

S11 0 0
0 S22 0
0 0 S33

 (ω1,ω2,ω3)T , (9)

where S11 = σ2(ω1), S22 = σ2(ω2) and S33 = σ2(ω3) are
positive eigenvalues that are equal to the squared projected areas of
the ellipsoid in the directions given by the orthonormal eigenvectors
(ω1, ω2 and ω3) as shown in Fig. 4. The eigenvectors are also the
principal axes of the ellipsoid.

Figure 4: Eigenvectors and eigenvalues of the matrix S. The pro-
jected areas (area of green surfaces) are the square roots of the
matrix eigenvalues.

Definition of the SGGX Distribution in the Canonical Basis
We can write the development of Eq. 9 to get the expression of

the SGGX matrix in the canonical basis

S =

Sxx Sxy Sxz
Sxy Syy Syz
Sxz Syz Szz

 , (10)

where the 6 coefficients Sxx, Syy, Szz, Sxy, Sxz and Syz are the
parameters that we use for computations, as we show in Section 4.4.

Projected Area Given S (Eq. 9) we can compute the projected
area as

σ(ωi) =

∫
Ω

〈ωi,ωm〉D(ωm) dωm =
√

ωTi S ωi. (11)

From this we can observe that interpolating the matrix S is equiv-
alent to interpolating the squared projected area σ(ωi)

2. This en-
sures a convex and thus robust interpolation of the projected area,
as we discuss in Section 4.4.

Distribution of Normals For an ellipsoid defined by S (Eq. 9),
we can also obtain the distribution of normals (see the supplemental
material for a derivation) as:

D(ωm) =
1

π
√
|S| (ωTm S−1 ωm)2

. (12)

The evaluation of D can be implemented efficiently, as S is a
3 × 3 symmetric positive definite matrix and is thus analyti-
cally invertible. Note that in general D is not normalized, i.e.∫

Ω
D(ωm) dωm 6= 1, and its norm has no closed-form expression.

However, this is not an issue for microflake models as we explained
before.

4.3 Initializing the SGGX Representation

General Approach The form of Eq. 9 enables us to easily ini-
tialize the SGGX matrix S as long as its principal directions ω1,
ω2, and ω3 and the respective projected areas σ(ω1), σ(ω2), and
σ(ω3) are available. We use this approach to initialize both surface-
and fiber-like materials, convert existing data to SGGX, and design
a parameter estimation procedure for arbitrary input distributions.

σ = 0.1 σ = 0.3 σ = 0.5 σ = 1.0

Figure 5: SGGX Initialization. Initializing a surface-like
SGGX distribution with roughness σ (top-row: normal distribution,
bottom-row: ellipsoids).

σ = 0.1 σ = 0.3 σ = 0.5 σ = 1.0

Figure 6: SGGX Initialization. Initializing a fiber-like SGGX dis-
tribution with roughness σ (top-row: normal distribution, bottom-
row: ellipsoids).



Surface-like Distributions A surface-like SGGX distribution is
defined by its normal direction ω3 and a roughness parameter σ ∈
[0, 1], which is the projected area onto orthogonal tangent directions
ω1 and ω2. The projected area onto ω3 is 1 by convention. The
eigenvalues are

σ2(ω1) = σ2, σ2(ω2) = σ2, σ2(ω3) = 1. (13)

By expanding Eq. 9 with ω3 = (x, y, z), we obtain

S =

x2 xy xz
xy y2 yz
xz yz z2

+σ2

y2 + z2 −xy −xz
−xy x2 + z2 −yz
−xz −yz x2 + y2

 . (14)

Note that the parameter σmatches the roughness parameter (usually
denoted α) of the hemispherical GGX distribution used in micro-
facet BRDFs [Walter et al. 2007]. The shape of the ellipsoid varies
from a disk (σ = 0), where D is a delta Dirac distribution, to a
sphere (σ = 1) with a uniform distribution of normals, as shown in
Fig. 5.

Fiber-like Distributions A fiber-like SGGX distribution is de-
fined by its tangent direction ω3 and a roughness parameter σ ∈
[0, 1], which is the projected area onto ω3. The projected area onto
orthogonal normal directions ω1 and ω2 is 1 by convention. The
eigenvalues are

σ2(ω1) = 1, σ2(ω2) = 1, σ2(ω3) = σ2. (15)

By expanding Eq. 9 with ω3 = (x, y, z), we obtain

S = σ2

x2 xy xz
xy y2 yz
xz yz z2

+

y2 + z2 −xy −xz
−xy x2 + z2 −yz
−xz −yz x2 + y2

 . (16)

The shape of the ellipsoid varies from a cylinder (σ = 0) to a sphere
(σ = 1), as shown in Fig. 6.

Converting Existing Distributions Zhao et al. [2011] represent
fiber-like materials with angular Gaussian distributions Dzhao pa-
rameterized by a tangent direction ω3 = (x, y, z) and a roughness
coefficient γ. We can easily convert such data to SGGX distribu-
tions. To this end, we first evaluate the projected areas of Dzhao

onto the tangent direction ω3 and onto the orthogonal directions
(ω1,ω2) ⊥ ω3 by using Eq. 4:

σ(ω3) =

∫
Ω

〈ω3,ωm〉Dzhao(ωm) dωm,

σ(ω1) = σ(ω2) =

∫
Ω

〈ω1,ωm〉Dzhao(ωm) dωm. (17)

We then obtain a SGGX distribution using Eq. 9. The results of two
conversions are shown in Fig. 7. Note that the SGGX distribution
has a sharper peak and a wider tail than the angular Gaussian dis-
tribution, which is a well-known property of the GGX distribution
[Walter et al. 2007].

[Zhao et al. 2011]
γ = 0.1

—

converted SGGX —
100 150

0

0.2

0.4

0.6

0 50

0.8

D

θ
[Zhao et al. 2011]

γ = 0.5
—

converted SGGX —
100 150

0

0.05

0.1

0.15

0 50

D

θ
Figure 7: SGGX conversion. We obtain a fast conversion from
the distribution of Zhao et al. to SGGX by computing the projected
areas in the principal directions.

Parameter Estimation from Arbitrary Distributions Note that,
in general, estimating the parameters of spherical distributions re-
quires costly non-linear optimization procedures with parameter
space exploration [Xu et al. 2013]. In contrast, our parameter esti-
mation procedure based on the geometric properties of SGGX dis-
tributions is efficient, deterministic, and simple to implement. The
goal of the parameter estimation procedure is to compute 3 eigen-
vectors (ω1,ω2,ω3) and 3 associated projected areas (σ1, σ2, σ3)
from an input spherical distribution D. We recall that a valid
microflake distribution D should be symmetric, i.e. D(ωm) =
D(−ωm).

First, we extract the eigenvectors. Because of the ellipsoidal sym-
metry, the eigenvectors of a SGGX distribution are the same than
the eigenvectors of its 3D covariance matrix 1

Σ =

E[x2] E[xy] E[xz]
E[xy] E[y2] E[yz]
E[xz] E[yz] E[z2]

 , (18)

where the expectations are the second-order moments of the coor-
dinates ωm = (x, y, z). For instance E[x2] =

∫
Ω
x2 D(ωm) dωm

and E[xy] =
∫

Ω
xyD(ωm) dωm. We compute the covariance ma-

trix Σ numerically and extract its eigenvectors (ω1,ω2,ω3). This
last operation is simple because the matrix is of size 3×3 and sym-
metric positive definite. Next, we obtain the associated eigenvalues
by computing the projected areas σ(ω1), σ(ω2), and σ(ω3) of the
distribution on these three directions, by using Eq. 4. Finally, we
combine the eigenvectors and the eigenvalues following Eq. 9. The
estimated SGGX distribution has exactly the same projected area as
the input data in these three directions but not necessarily in other
directions.

An important property of our parameter estimation procedure is that
by construction the estimation is exact if the input distribution is a
SGGX distribution (Fig. 8). Indeed, if the input can be represented
exactly with a SGGX distribution, i.e. with 3 eigenvectors and 3
eigenvalues, then the output of our prefiltering algorithm is exact, as
it retrieves these eigenvectors and eigenvalues. This property guar-
antees robust and accurate parametric estimation. As illustrated in
Fig. 9, our algorithm captures the scaling and the anisotropy of the
input distribution. In contrast, Neyret’s [1998] filtering procedure
fails in both respects.

1Note that the SGGX matrix and its covariance matrix have the same
eigenvectors but are not equal in general: S 6= Σ. They are equal only in
special cases, e.g. perfect spheres or perfect disk-like ellipsoids.



Input SGGX Parameter Estimation
(Section 4.3)

Linear Filtering
(Section 4.4)

→σ1 = 0.28
σ2 = 0.46
σ3 = 0.44

 =

0.28
0.46
0.44

 ≈

0.26
0.45
0.40


Figure 8: Parameter estimation validation. If the input distribu-
tion can be represented by a SGGX distribution, then our parame-
ter estimation procedure outputs exactly this SGGX distribution. In
contrast, linearly filtering the input data does not provide the best
parameter estimation but it remains a fair and simple approxima-
tion. The σ values are the projected areas onto the eigenvectors.

Input Parameter Estimation Linear Filtering
SGGX (4.3) Neyret SGGX (4.4)

1
N

∑
n=1..N

Q−1
n

1
N

∑
n=1..N

Sn

σx = 1.54
σy = 4.88
σz = 4.81

 1.55
4.84
4.85

  5.97
25.48
18.87

 1.73
4.89
4.81



σx = 2.13
σy = 1.25
σz = 4.03

 2.17
1.27
4.07

 2.53
2.35
4.18

 2.51
1.29
4.14


Figure 9: Parameter estimation from abitrary distributions. We
robustly estimate the parameters of various input distributions. The
σ values are the projected areas onto the canonical directions x, y
and z.

4.4 Memory Representation of the SGGX Parameters

Compact Storage Volumetric data can easily exceed the avail-
able memory. Thus, a compact representation for storage (and for
use during rendering) is desirable. Since the 6 coefficients of the
matrix S from Eq. 10 represent squared values, a linear quantiza-
tion would be wasteful. We found that the following transformation
yields a set of parameters which are well-suited for storing SGGX
parameters:

σx =
√
Sxx, σy =

√
Syy, σz =

√
Szz

rxy =
Sxy√
SxxSyy

, rxz =
Sxz√
SxxSzz

, ryz =
Syz√
SyySzz

. (19)

Note that the σ-values are linearly distributed in [0, 1], and the r-
parameters are distributed linearly in [−1, 1]. In our implemen-
tation, we store each parameter using 1 Byte. Thus, our SGGX
representation requires 6 Bytes per voxel.

Linear Interpolation The compact representation from Eq. 19
cannot be linearly interpolated because the resulting SGGX matrix
is not necessarily positive definite. However, the 6 parameters Sxx,

Syy , Szz , Sxy , Sxz and Syz from Eq. 10 can be linearly interpo-
lated. When fetching the values during rendering, we first recon-
struct the 6 parameters of S:

Sxx = σ2
x, Syy = σ2

y, Szz = σ2
z

Sxy = rxyσxσy, Sxz = rxzσxσz, Syz = ryzσyσz. (20)

With these we can safely interpolate: the convex combinations of
symmetric positive definite matrices is always a symmetric posi-
tive definite matrix. Thus, linearly interpolating the SGGX matri-
ces provides always a (mathematically) valid result. Furthermore,
in Section 4.2 we have shown that averaging the coefficients of
SGGX matrices is equivalent to averaging the squared projected
areas. The projected area of an interpolated distribution is a con-
vex combination of the inputs. This property ensures that the inter-
polated distribution is always well-defined, visually well-behaved,
and accurate. Fig. 10 visually compares our interpolation scheme
to Neyret’s. His method fails at interpolating fiber-like materials
because it does not preserve the projected area (the roughness of
the material). In this example, it blends fiber-like ellipsoids into
an almost flat surface-like ellipsoid, i.e. a highly specular surface-
like material. In contrast, our linear intepolation preserves the av-
erage projected area and the main directions. However, while our
interpolation scheme preserves the average appearance, it slightly
smoothens the results. Note that LEAN/LEADR [Olano and Baker
2010; Dupuy et al. 2013] interpolation schemes, which are based
on a similar idea, share this limitation.

Linear Prefiltering The ability to initialize a new SGGX distribu-
tion by blending multiple distributions is a key operation required
for downsampling volumetric data. To achieve this, we can esti-
mate the parameters of the blended distribution with the procedure
introduced in Section 4.3. However, in practice, we perform 3D
MIP mapping, i.e. we downsample the data by linearly filtering
the matrices S and building a LOD hierarchy. Note that in theory
linear filtering does not guarantee an optimal parameter estimation
as shown in Fig. 8. However, it is much simpler to implement and
reasonably accurate for practical purposes as shown in Fig. 9. More
comparisons are available in our supplemental material.
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Figure 10: Interpolation. We compare Neyret’s interpolation and
SGGX interpolation against a reference configuration.



5 The SGGX Phase Functions

In this section we develop microflake phase functions based on the
distribution of visible normals (Section 5.1). This concept was first
introduced in the context of microfacet BRDFs [Heitz 2014]. Based
on this we rederive the phase function for specular microflakes from
the result of Jakob et al. [2010] and also derive a new phase func-
tion for diffuse microflakes (Section 5.2). One advantage of Heitz’
construction is that it enables us to establish a link between the
distribution of visible normals and the phase function, which we
leverage to develop an efficient importance sampling technique for
SGGX phase functions (Section 5.3).

5.1 The Distribution of Visible Normals

The distribution of visible normals (VNDF) for a collection of mi-
croflakes is

Dωi(ωm) =
〈ωi,ωm〉D(ωm)∫

Ω
〈ωi,ωm〉D(ωm) dωm

=
〈ωi,ωm〉D(ωm)

σ(ωi)
,

(21)

where the projected area σ(ωi) is the normalization factor of the
distribution2 and ensures that it is normalized (i.e. it is a PDF):∫

Ω

Dωi(ωm) dωm = 1. (22)

Fig. 11 illustrates the NDF and the VNDF of a SGGX distribution.

Figure 11: The distribution of normals D (left), and the distribu-
tion of visible normals Dωi (right) of a SGGX distribution.

5.2 Construction of the Phase Functions

In this section, we derive the SGGX phase function starting
from the VNDF. When a ray with direction ωi intersects a mi-
croflake, the normal ωm of this microflake is chosen according to
the PDF Dωi(ωm). The individual microflake’s phase function
p(ωm,ωi → ωo) is the PDF used to determine the reflected di-
rection ωo of the ray (depending on the incident direction ωi and
ωm). We can rewrite Eq. 5 with the distribution of visible normals:

fp(ωi → ωo) =

∫
Ω

p(ωm,ωi → ωo)Dωi(ωm) dωm. (23)

Intuitively, the specular and diffuse SGGX phase functions, which
we derive next, describe how a specular, respectively diffuse, ellip-
soid would reflect the incident light (shown in Fig. 12).

2Note that this normalization factor plays the same role and is defined
under the same assumption as the Smith masking function in microfacet
BRDFs: it assumes that the visibility and the orientation of the normals are
independent [Heitz 2014].

(a) Specular f spec
p (ωi → ωo) (b) Diffuse f diff

p (ωi → ωo)

Figure 12: The SGGX phase functions fp(ωi → ωo) are given by
the distributions of rays reflected by the surface of the ellipsoid.

Specular Phase Function The SGGX phase function for specu-
lar microflakes is the distribution of reflection directions of an ellip-
soid with a specular surface (Fig. 12(a)). For specular microflakes
the micro-phase function is pspec(ωm,ωi → ωo) =

δωh
(ωm)

4 |ωi·ωh|
,

where ωh is the half-vector. Inserting it in Eq. 23 we obtain the
same result as Jakob et al. [2010]:

f spec
p (ωi → ωo) =

D(ωh)

4σ(ωi)
, (24)

which satisfies both energy conservation (Eq. 7) and reciprocity
(Eq. 8). f spec

p can be evaluated using the analytic form of D from
Eq. 12 and of σ from Eq. 11.

Diffuse Phase Function Similarly, the SGGX phase function
for diffuse microflakes is the distribution of directions reflected by
an ellipsoid with a Lambertian surface (Fig. 12(b)). In this case,
the microflakes’ micro-phase function is pdiff(ωm,ωi → ωo) =
1
π
〈ωo,ωm〉. Inserting it into Eq. 23 yields:

f diff
p (ωi → ωo) =

1

π

∫
Ω

〈ωo,ωm〉Dωi(ωm)dωm

=
1

πσ(ωi)

∫
Ω

〈ωo,ωm〉〈ωi,ωm〉D(ωm)dωm,

(25)

which also satisfies energy conservation and reciprocity. The eval-
uation of f diff

p is more involved than for specular microflakes. In
Section 5.4 we present a practical evaluation procedure.

5.3 Importance Sampling the Phase Function

Distribution of Visible Normals Heitz and d’Eon [2014] showed
that microfacet BRDF models can be efficiently importance sam-
pled by first sampling a normal from the distribution of visible
normals Dωi , and then sampling the micro-BRDF of the mate-
rial aligned with this normal. The same idea can be applied to
importance sampling microflake phase functions: if we impor-
tance sample the VNDF Dωi to generate a sample ωm, and then
sample an outgoing direction ωo with the micro-phase function
p(ωm,ωi → ωo), then ωo follows the PDF given by the dot prod-
uct of Dωi(ωm) and p(ωm,ωi → ωo). Note that this dot product
is the microflake phase function fp(ωm,ωi → ωo) (Eq. 23).

For microfacet BRDFs, this importance sampling technique is not
perfect as it does not account for the shadowing probability which
is then represented in the weight of the sample. However, for mi-
croflake phase functions there is no shadowing3 but only masking.

3Shadowing in microfacet BRDFs removes rays that would scatter mul-
tiple times on the microsurface, i.e. only single scattering is modelled. How-
ever, in microflake theory, further interactions of a ray with the material will
be accounted for when it scatters into the outgoing direction ωo, i.e. multi-
ple scattering is automatically computed by the integrator. This explains the
absence of shadowing and the unusual reciprocity constraint in Eq. 8.



Algorithm 1 Importance sampling the VNDF with SGGX
1: function SAMPLEVNDF(ωi, S, U1, U2)
2: compute an orthonormal basis (ωk,ωj ,ωi) around ωi
3: project S in this basis

Skji =

Skk Skj SkiSkj Sjj Sji
Ski Sji Sii

 =

ωTk Sωk ωTk Sωj ωTk Sωi
ωTk Sωj ωTj Sωj ωTj Sωi
ωTk Sωi ωTj Sωi ωTi Sωi



4: compute vectors Mk =


√

|Skji|
SjjSii−S2

ji

0
0

,

Mj = 1√
Sii


−SkiSji−SkjSii√

SjjSii−S2
ji√

SjjSii − S2
ji

0

, Mi = 1√
Sii

SkiSji
Sii


5: generate random 3D point (u, v, w) on the visible sphere

u =
√
U1 cos(2π U2)

v =
√
U1 sin(2π U2)

w =
√

1− u2 − v2

6: compute normal and rotate to world space
ωkjim =

uMk+vMj+wMi

||uMk+vMj+wMi||

ωm = (ωk ωj ωi)ω
kji
m

7: return ωm
8: end function

Consequently, this importance sampling technique is perfect and
the weight of the samples is always 1.

The crucial step of the importance sampling is the sampling of the
distribution of visible normals, which we describe next.

Importance Sampling with the SGGX Distribution As we will
see, the fact that the SGGX distribution is based on an ellipsoid to
represent the distribution of normals will enable us to efficiently im-
portance sample the resulting phase functions. The sampling of the
VNDF is detailed in Algorithm 1 and the final steps of our sampling
algorithm are illustrated in Fig. 13.

Sampling the VNDF First, we compute an orthonormal basis
(ωk,ωj ,ωi) aligned with the incident direction ωi and rotate the
SGGX matrix S in this basis yielding a new SGGX matrix Skji.
By using a Cholesky decomposition we can transform 3D points on
a unit-sphere to points on the ellipsoid; the normal of these points
can be computed as ωkjim =

uMk+vMj+wMi

||uMk+vMj+wMi||
, where the vectors

Mk, Mj , and Mi are computed from the Cholesky decomposition.
To account for visibility, we generate the point (u, v, w) on the vis-
ible hemisphere. We achieve this by using two random numbers to
sample a 2D point (u, v) on the unit disk and we project it onto the
sphere to obtain its third coordinate w. Finally, we rotate the nor-
mal ωkjim back to world space. More details about this derivation
and our implementation are provided in the supplemental material.

Importance Sampling the Specular Phase Function To sam-
ple f spec

p , we generate a sample ωm fromDωi and reflect ωi at ωm
to generate the outgoing direction ωo = −ωi + 2ωm 〈ωi,ωm〉
(Fig. 13a).

Importance Sampling the Diffuse Phase Function To sample
f diff
p , we generate a sample ωm from Dωi and sample a diffuse

reflected direction ωo in the hemisphere given by ωm (Fig. 13b).

(a) Specular reflection
An outgoing direction ωo
in the phase function
f spec
p (ωi → ωo)

(b) Diffuse reflection
An outgoing direction ωo
in the phase function
f diff
p (ωi → ωo)

Figure 13: Computing the outgoing directions in our importance
sampling algorithm.

Validation We validated our importance sampling technique ex-
perimentally with the χ2 test provided by Mitsuba [Jakob 2010].
The test shows that the distribution generated by importance sam-
pling effectively converges towards the correct phase function.

Comparison Our SGGX importance sampling scheme has bene-
ficial properties and significantly improved performance compared
to previous specular microflake phase functions:

[Jakob et al. 2010] [Zhao et al. 2011] SGGX
analytic 7 3 3

deterministic 3 7 3

2 random numbers 3 7 3

performance 7 7 ×10

5.4 Evaluating the Diffuse Phase Function

As mentioned above, the evaluation of the diffuse phase function
requires the computation of the integral in Eq. 25 which, unfortu-
nately, is not possible analytically. A numerical evaluation would
introduce a (considerable) bias unless the integration is very accu-
rate and thus very costly. In the context of Monte Carlo rendering
(which we target), we can achieve an unbiased evaluation at reason-
able cost by evaluating the integral stochastically with an unbiased
estimator. We observe that

f diff
p (ωi → ωo) =

1

π

∫
Ω

〈ωo,ωm〉Dωi(ωm) dωm

= lim
N→+∞

1

N

N∑
n=1

1

π
〈ωo,ωm(n)〉 (26)

where ωm(n) is the n-th sample from the distribution of visible
normals Dωi . That is, an unbiased estimator of the diffuse phase
function is obtained by sampling a normal ωm from Dωi with the
procedure explained in Section 5.3 and evaluating the diffuse con-
tribution of the light source to this normal 1

π
〈ωo,ωm〉.



6 Results

We generated our results on an Intel Core i7-3770 CPU with 20
GB memory and an NVIDIA Quadro M6000 GPU. Our main im-
plementation is integrated into Mitsuba [Jakob 2010], and we in-
troduce our main results in the following paragraphs. Additionally,
we implemented a GPU renderer in CUDA that exploits an octree
stucture [Crassin et al. 2009], which we used to generate Fig. 1.
This GPU implementation is able to trace 1.15M paths per second
and shows that our method is simple enough to be implemented on
such platforms.

Specular vs. Diffuse Microflakes Fig. 15 compares the appear-
ance of a triangle mesh and surface scattering models (diffuse and
GGX microfacet BRDFs) to the appearance of density volumes
with our SGGX phase functions. The comparison shows that the
specular and diffuse SGGX phase functions allow for modelling
volumetric appearance beyond simple isotropic scattering.

Performance Fig. 14 compares the performance of the SGGX
operators to those of the Gaussian microflake distribution by Zhao
et al. [2011]. We used the implementation provided in the current
release of Mitsuba, where we also integrated our method for faithful
comparison. We generated 1 million random configurations with
different Gaussian microflake distributions and different incident
and outgoing directions. The SGGX parameters were converted
on-the-fly as described in Section 4.3 and the cost of the conversion
is part of the measured timings.

The results show that the evaluation of the projected area σ(ωi)
and the specular phase function fp(ωi → ωo) are about twice as
fast with SGGX while being easier to implement. This is due to
our analytic SGGX operators, while the implementation of Zhao et
al. [2011] uses precomputed data that must be fetched and inter-
polated. For both methods, importance sampling is the most ex-
pensive operation. For the Gaussian distribution, it requires a non-
deterministic rejection sampling scheme which uses costly numer-
ical CDF inversions in each iteration. Our importance sampling is
more than one order of magnitude faster. Furthermore, it follows a
predictable instruction sequence, which makes it efficient on GPU
architectures. Finally, note that our importance sampling takes a
constant number of random numbers as input and provides a con-
tinuous parameterization of the sampling space, which also makes
it better suited for more elaborate global illumination methods such
as Metropolis light transport.
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Figure 14: Performance. We compare the performance of the mi-
croflake operators of Zhao et al. [2011] against SGGX.

Compatibility with Existing Data Fig. 16 shows SGGX conver-
sion examples performed on-the-fly (Section 4.3) using data from
Zhao et al.’s [2011] method as input. Although the images do not
converge exactly to the same result (because the representations are
not identical), the appearance remains consistent. The rendering
performance for the scarf model is approximately 25% faster due
to our more efficient SGGX operators. We found that the bottleneck
is the I/O overhead for accessing the volume data in Mitsuba. The
third example shows a spatially-constant volume. In this case the
rendering is not slowed down by I/O and the speedup is about 2×
to 3×. Multi-scale rendering put aside, the SGGX operators thus
improve rendering performance.

Filtering SGGX Distributions Fig. 17 shows the high resolution
volumetric models of a hairball and a tree that we used to eval-
uate the prefiltering of our SGGX representation. We generated
these datasets procedurally and through surface voxelization, re-
spectively. Fig. 18 shows the models viewed at a distance. We
computed the reference with the full resolution model (10243 vox-
els) and the downscaled SGGX data with 3D MIP mapping. As
shown by Kraus and Bürger [2008], direct density MIP mapping
yields poor results. Hence, we rely on their work to filter both den-
sity and albedo. We compare several levels of detail; the number of
the LOD denotes how many times the model has been downscaled
(LOD0: full resolution, LOD2: downscaled by a factor of 4 in all
dimensions).

In both views we chose the LOD for SGGX to match a one-voxel-
per-pixel ratio, and varied the LOD for density. SGGX downscaling
with full resolution density works well and results in stable appear-
ance. However, we observed that downsampling the density gen-
erally alters the result. This is because the density downsampling
procedure does not account for correlation of visibility along a light
path. Another limitation of our approach is that we neglect the cor-
relation between visibility of the voxels and material properties.

Still, we observe that if SGGX data matches a one-voxel-per-pixel
ratio and the density is downsampled less aggressively, then we ob-
tain results close to the reference. For instance, the combination
“SGGX LOD3 with density LOD2” in the second row is close to
the reference. Thus, for distant views, only 15MB of memory are
enough to produce similar appearance.

7 Conclusion

We introduced the SGGX microflake distribution, which provides
closed-form analytical expressions for the operators used in the
microflake framework. In addition to being simple to implement
and use, it significantly accelerates the rendering of microflake
volumes. Furthermore, it can represent specular and diffuse mi-
croflakes in a unified manner.

Our representation can be linearly filtered. We have seen that our
prefiltered distributions are able to preserve the roughened appear-
ances that emerge from shiny materials. We have also seen that, at
a distance, a small amount of memory contains enough information
to restore the appearance of complex volumetric objects.

The most important limitation of our approach is the way we pre-
filter density. In many configurations, the visibility of the material
can be correlated with itself or with spatially-varying material prop-
erties. Density downsampling thus remains an important problem
for future work.
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Figure 15: Specular and diffuse SGGX phase functions.
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[Zhao et al. 2011] converted SGGX [Zhao et al. 2011] converted SGGX [Zhao et al. 2011] converted SGGX
γ = 0.1 time: 77min time: 59min γ = 0.5, time: 73min time: 57min γ = 0.1, time: 12.3min time: 5.22min

average path length: 7.39 average path length: 7.38 average path length: 7.33 average path length: 7.34 average path length: 4.62 average path length: 4.61

Figure 16: Converting existing data to SGGX. Left: The scarf model rendered with Mitsuba’s implementation of Zhao et al.’s phase function
and the same data converted to our SGGX representation on-the-fly, which we use for importance sampling and closed form evaluations.
This yields almost identical result images with better performance. Right: A homogeneous microflake medium with high anisotropy rendered
with Zhao et al.’s phase function and SGGX. All six images were computed at 1024 × 1024 resolution with Mitsuba’s volumetric forward
pathtracer using 256 samples per pixel.
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Figure 17: High-resolution volumetric models. The images were computed at 1024 × 1024 resolution with Mitsuba’s volumetric forward
pathtracer using 256 samples per pixel.
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Figure 18: Prefiltering the volumetric models. The left column shows the rendered view at 512× 512 resolution, all other images show 8×
magnifications, rendered with the reference (full resolution) and different levels of detail settings.


