

Exploiting Asymmetry in Booth-Encoded

Multipliers for Reduced Energy Multiplication

Mike O’Connor
 §†

 and Earl E. Swartzlander, Jr.
 †

§
NVIDIA

11001 Lakeline Blvd., Building 2, Suite 100

Austin, TX 78717 USA

†
Dept. of Electrical and Computer Engineering

The University of Texas at Austin

Austin, TX 78712 USA

Email: moconnor@nvidia.com, eswartzla@ieee.org

Abstract – Booth Encoding is a common technique
utilized in the design of high-speed multipliers. These
multipliers typically encode just one operand of the
multiplier, and this asymmetry results in different power
characteristics as each input transitions to the next value
in a pipelined design. Relative to the non-encoded input,
changes on the Booth-encoded input induce more signal
transitions requiring ~73% more multiplier array energy.
This paper proposes low-overhead approaches to take
advantage of this asymmetric behavior to reduce the
energy of multiplication operations in pipelined SIMD
architectures like GPUs. Compiler-based approaches
that apply constant or uniform inputs to the
Booth-encoded input of the multiplier can save 4.8% of
multiplier energy on average. An additional 1.5%
savings can be achieved with dynamic detection and
steering of uniform inputs.

I. INTRODUCTION

The energy required to perform multiplication operations

is a significant source of power consumption in many

important applications, ranging from deeply embedded DSPs

to GPU-based accelerators used in the largest supercomputers.

Booth Encoding [4] is a commonly employed technique in

multiplier implementations because is reduces the number of

partial products that must be summed using the carry-save

adder tree. Radix-4 Modified Booth Encoding is often used

in commercial multiplier designs [13], and it reduces the

number of partial products by approximately a factor of two.

The goals of these optimizations are primarily to minimize

the delay and to reduce the area of the multiplier. One

consequence of this approach, however, is that changes to the

Booth-encoded input of the multiplier can induce

significantly more switching activity than changes on the

other, non-encoded, input. Earlier research [8] also

observed this energy asymmetry in Booth-encoded

multipliers.

Prior research has proposed some approaches to

constructing reduced power multipliers based on reducing the

switching activity resulting from Booth-encoded operands [6,

15]. Selecting the operand for encoding that results in the

greatest number of encoded “zero” terms, described by [6], is

well suited to integer and some fixed-point applications, but

not widely applicable to floating point values which don’t

typically exhibit long strings of 0’s or 1’s. The approach

described by [15] introduces latches to reduce spurious

transitions generated by switching in the encoding path, but

does not address the intrinsic additional switching that

changes in the Booth-encoded input can induce.

This work explores techniques to minimize multiplier

energy by optimizing the assignment of multiplier input

parameters to the Booth-encoded operand. In particular,

this work focuses on low-overhead techniques that can be

exploited by pipelined, SIMD architectures like those found

in many GPUs.

II. MULTIPLIER DESIGN

 The multiplier design considered in this paper is

commonly used in single-precision floating-point fused

multiply-add units. In this work, only the 24×24-bit

multiplication of the significand is considered. The

additional exponent arithmetic, normalization, addition, and

rounding logic found in these units is not considered. The

approach described can be extended to larger (e.g.

double-precision floating point or 32-bit integers) or smaller

(e.g. 16-bit floating-point formats) multipliers in a

straightforward manner.

 The multiply operation takes two 24-bit values, A and B,

and computes a 48-bit product. Generally, the multiplier

logic consists of two primary components: Partial Product

generation and a Carry-Save Adder.

A. Partial Product Generation

A Radix-4 Modified Booth Encoding scheme is assumed

for partial product generation. The primary benefit of this

approach is reducing the number of partial products that must

be summed using the carry-save adder by a factor of two. The

B input operand is encoded to determine the corresponding

term by which the A input is multiplied. The encoder

considers three bits at a time (bi+1, bi, and bi-1) of the B

operand, and generates three signals – Neg, NotZero, and

Shift – according to Table I. Only the values where i is even

are considered, and bit positions that fall “outside” the

operand (e.g. b-1, b24, and b25) are treated as having the value

0.

In the 24×24-bit multiplier, 13 partial product terms result

from this radix-4 encoding. Each bit, i, of each term, j, of

the partial product is then generated as:

 A_maskedi,j = (ai XOR Negj) AND NotZeroj

 Partial_producti,j = Shiftj ? A_maskedi-1,j : A_maskedi,j

Copyright 2015 IEEE. Published in the Proceedings of the 49th Asilomar Conference on Signals, Systems, and Computer,s Pacific Grove, CA, USA, Nov. 8-11,2015
Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new
collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works, must be obtained from the IEEE.

In order to handle the negative partial product rows

generated by the Booth encoder, the Sign-Generate

Sign-Extension scheme described by [2] is used. The

“single zero” Booth encoding scheme described in [2] is also

used to reduce switching that would have been created by a

“-0” term for the 111 pattern.

B. Carry-Save Adder Generation

The Carry-Save adder in the multiplier is generated with a

Reduced Area Multiplier tree [3] using 3:2 (and 2:1)

compressors. The inputs at each layer of the tree are

selected in order to minimize spurious transitions. The

design strives to match the delays of various inputs to each

stage of the reduction. Sakuta, et al. [14] actively inserted

delay elements to balance delays of the inputs to each stage.

Rather than add gates with their associated area and power, a

heuristic is employed that attempts select 2:1 compressor

inputs that are at the same delay to that point, or 3:2

compressor inputs which two inputs are at the same level,

and a third (corresponding to the “carry-in” term) is

somewhat delayed. If no inputs meet these criteria,

candidate inputs that have the least “spread” in estimated

delay are selected. If multiple input sets meet the criteria,

the lowest delay input set to that point is selected.

Alternative heuristics to determine the configuration of the

CSA tree were evaluated including a transition-minimizing

scheme suggested by Oskuii, et al. [12]. They select inputs at

the upper levels of the CSA tree that are predicted to have the

lowest likelihood of seeing a transition. Their approach

searches the large number of permutations of possible

mappings to find an optimal solution. This time-consuming

approach is not well-suited for larger multipliers studied here.

Instead, a greedy heuristic was employed that simply seeks to

select the inputs with the lowest predicted probability of

transition at each stage of the reduction is used. This

scheme was determined to be most beneficial when it was

used to “break ties” in the delay-balancing scheme described

above.

These heuristics are applied at each level of the carry-save

reduction before proceeding to the next. As a result, it is

possible that some opportunities are missed. For instance,

in the scheme used for this work, a subsequent level of

reduction might expose a better opportunity for a balanced

delay choice that was not possible at the earlier level, and

that result might have been mapped to the input of another

TABLE II

24×24 MULTIPLIER OVERVIEW

Multiplier Avg. Power (pJ) Area (µm2)

Radix-4 Modified
Booth Encoding

18.17 3650.29

compressor which would have been better left to pair-up in

the next reduction stage. The final carry-propagate addition

is performed with a Kogge-Stone adder [9].

III. POWER ASYMMETRY OF BOOTH-ENCODED OPERANDS

The multiplier design is implemented using an

open-source 45nm standard-cell library [11]. Using a

simple wire-load model and the input-capacitance for each

gate, the cells are appropriately sized such that high fan-out

gates keep output transition times within acceptable limits.

Power information based this standard-cell library is used to

compute leakage and dynamic switching power for each gate.

A gate-level discrete-event simulator simulates this multiplier

for a sequence of pseudo-random numbers in a pipelined

fashion, and captures signal transition and power information

for each operation.

Using this infrastructure, the impact on the energy of the

multiplier is evaluated as different input operands change at

various rates. Figure 1 shows that when new

pseudo-random inputs are applied to both inputs on each

cycle, the Radix-4 multiplier requires an average 18.17 pJ of

energy per multiply. If the rate at which the non-encoded, A,

input operand changes is reduced such that a new

pseudo-random value is provided only every 4 cycles (while

the B input continues to change each cycle), the average

energy of each multiply drops 13% to 15.82 pJ. If, on the

other hand, the rate at which the Booth-encoded, B, input

operand changes is reduced such that a new pseudo-random

value is provided only every 4 cycles (while the A input

continues to change each cycle), the average energy of each

multiply sharply drops 41% to 10.81 pJ.

Fig. 1: Energy of 24×24 multiply as each operand varies
 at different rates.

TABLE I

RADIX-4 MODIFIED BOOTH ENCODING

Pattern Result Neg NotZero Shift

000 0 0 0 0

001 +1 0 1 0

010 +1 0 1 0

011 +2 0 1 1

100 -2 1 1 1

101 -1 1 1 0

110 -1 1 1 0

111 0 0 0 0

Fig. 2: Dynamic operand selection and steering.

Relative to the non-encoded input, changes on the Radix-4

Booth-encoded input induce ~73% more multiplier energy

due to increased switching activity. A flip in a single bit in

the Radix-4 Booth-encoded operand changes the encoded

value of up to two partial product terms, potentially including

shifts and negations of the non-encoded operand. Thus, a

single bit in the Booth-encoded input operand can affect up to

54 bits in the partial-product inputs to the carry-save adder

tree. Conversely, a flip of a single bit in the non-encoded

input operand can flip at most 13 bits in the resulting

partial-products. In addition, changes in the encoded input

alter the values of the Neg, NotZero, and Shift outputs of the

encoders. These signals fan-out to every bit in a

partial-product term, requiring higher drive-strength gates,

additional buffers, and longer wire. Variations in the arrival

time of some of these signals also tend to introduce

disproportionally more spurious transitions during the

evaluation of the result. Thus, transitions in these signals

are more expensive than the transitions in the partial product

terms themselves.

IV. EXPLOITING MULTIPLIER POWER ASYMMETRY

Given the substantial asymmetry in the energy cost of

changing the Booth-encoded operand relative to the

non-encoded operand, higher-level architectural techniques

exploiting this behavior are potentially attractive. Generally,

schemes that minimize the switching activity on the

Booth-encoded input will minimize the total multiplier

power.

A. Dynamic Operand Selection and Steering

The most straight-forward “brute-force” approach to

minimize the switching on the encoded input is simply

comparing the Hamming distance of the new A and B input

operands to the previous B input. If the Hamming distance

of the new A input is less than the Hamming distance of the

new B input, the A and B inputs are swapped. This

approach is somewhat similar to a scheme described by Chen,

et al. [5], in which the A or B input resulting in the fewest

number of non-zero Booth-encoded terms is used as the

Booth-encoded B input.

Fig. 3: Pipelined execution of SIMD operations in a GPU.

This approach requires additional latency and energy to

compute the Hamming distance, reducing the potential

savings within the multiplier. The design shown in Figure 2

was implemented and evaluated using the same infrastructure

as the 24×24-bit multiplier. The computation and

comparison of the Hamming distance, and the muxing of the

operands requires 1.31pJ of additional energy per multiply.

However, with pseudo-random inputs, this approach only

saves an average of 0.44 pJ of multiplier power. This

results for a net increase of 0.87 pJ per multiply. Clearly,

techniques that require lower overheads to steer relatively

static inputs to the Booth-encoded input of the multiplier are

needed if this opportunity is to be exploited.

B. Finding Static Opportunities

The overheads of per-operation dynamic detection and

selection of the best Booth-encoded operand make an

approach that can statically determine the best operands

attractive. Potential opportunities arise for this static

approach in pipelined SIMD implementations, such as those

found in GPUs, in which a multiply instruction is performed

across the values in a SIMD (or vector) register.

As shown in Figure 3, GPU implementations may execute

portions of a SIMD operation over several cycles in a

pipelined manner. For instance, AMD’s recent GPUs

execute a 64-element SIMD instruction on a 16-wide

execution pipeline over four cycles [1]. Proposed future

GPU architectures use a temporal SIMT approach that

execute the entire 32-thread GPU warp in a pipelined manner

on a single execution unit over 32 cycles [16]. Thus, if a

constant value or a uniform vector can be steered to the

Booth-encoded multiplier input in these implementations,

energy reductions similar to the 5.0 or 6.3 pJ/multiply

savings shown in Figure 1 between the two bars at the

columns labeled “4” and “32” can be realized.

Prior research has noted that within the SIMD execution

engines of a GPU, a significant number of operands are

scalar (uniform) across all the lanes of execution within a

GPU [7]. Utilizing a cycle-accurate simulation framework

designed for architectural exploration and performance

analysis of current and future NVIDIA GPUs, statistics were

gathered from 168 GPU application traces in which more

than 5% of the dynamic instruction count consists of

single-precision multiplications (or multiply-accumulates).

These applications range across the various domains in which

GPUs are applied. They include supercomputing, mobile,

Fig. 4: Prevalence of single-precision multiplies with one uniform operand.

(Overall average = 27.6%)

workstation, PC gaming, and embedded image-processing

workloads. Figure 4 shows, for each workload, the

frequency of single-precision multiplies in which one

operand is uniform across all 32-elements of a warp. One

common reason for this situation is simply the case in which,

for example, all elements in a vector are being multiplied by

a constant value (e.g. π). The workloads that see ~100% of

the multiplications as having one uniform input are either

convolutions with a constant set of filter weights, or a kernel

operating on a very sparse matrix in which the great majority

of data values are all zero. Overall, an average of 27.6% of

all single-precision multiplications have one uniform operand.

If each of these can be steered to the Booth-encoded input of

the multiplier, up to 12% of multiplication energy could be

potentially saved.

C. Compiler Selection of the Booth-encoded Input

Given the opportunity, a low-overhead approach to

identify and steer these uniform inputs to the encoded

multiplier input is needed. Ideally, the compiler can

determine which inputs are uniform or likely to be uniform.

It can then specify these inputs as the Booth-encoded operand

in the multiply instructions. This approach requires no

additional hardware and no incremental energy cost to make

the operand selection decision.

The first requirement to enable this compiler-driven

operand steering technique is that the implementation must

expose which multiplier source operand in the instruction-set

architecture is mapped to the Booth-encoded input. Ideally,

this would remain constant across different implementations

of the ISA, allowing the same binary to be optimized for a

variety of implementations. Instruction set architectures that

allow constants to be specified as one operand of a

multiplication operation should, obviously, also direct the

constant value to the Booth-encoded input of the multiplier.

Next, the compiler must identify the scalar/uniform

operands across a warp. Prior research [10] describes a

compiler technique for scalarization. The scalarization

optimization tries to identify instructions that produce

identical results across for every element in a warp, and

replace these instructions with a single scalar operation rather

Fig. 5: Multiplier energy savings with compiler-driven steering.

(Overall average = 4.8% w/ pipeline depth 4, 6.5% w/ pipeline depth 32)

than the redundant warp-wide SIMD instruction. This

occurs when the compiler can ensure that all the input

registers to a warp-wide instruction are uniform. The same

analysis that identifies these uniform registers can be

leveraged to determine which multiplication operands are

uniform and best suited to be applied to the Booth-encoded

input of the multiplier.

This compiler approach was implemented to statically

select uniform inputs to be steered to the Booth-encoded

multiplier input. Figure 5 shows the potential energy

savings across the 168 GPU workloads. The baseline to

which it is compared is one in which there is a 50% chance

that a given uniform input register happens to be applied to

the Booth-encoded input. With an architecture that executes

a warp pipelined over four cycles, the average energy savings

is 4.8%. With a temporal SIMT implementation that

pipelines a warp over 32 cycles, the energy savings is 6.5%

on average.

D. Dynamically Detecting Uniform Inputs

Additional benefit can be gained from dynamic detection

of uniform data. After steering data known at compile-time

to be constant to the Booth-encoded input, additional

opportunity remains. For example, data loaded from a

sparse array may consist entirely of zeros, but the compiler

will be unable to prove the result of the load operation is

always uniform.

If logic exists to dynamically detect and flag uniform

warp-wide registers (e.g. when data is returned from a load

operation), then simple operand-muxing hardware can be

added in front of the multiplier to ensure that uniform input

registers are steered to the Booth-encoded input as shown in

Figure 6. Using this approach provides additional

opportunity to save multiplier energy. Figure 7 shows the

additional savings beyond the compiler-only selection

technique. Multiplier energy can be reduced another 1.5%

on average in an implementation with warp execution

pipelined over four cycles. An additional 2.1% savings can

be achieved in a temporal SIMT implementation with a warp

pipelined over 32 cycles.

Fig. 6: Dynamic uniform input steering.

The additional logic that detects and marks uniform

warp-wide registers requires additional area and energy, and

the relatively minor additional savings in multiplier energy

may not justify these overheads. The dynamic detection

logic is also useful in scalarization [7], however. If this

logic is present for other reasons, it can be easily leveraged to

provide incremental multiplier energy benefits.

V. CONCLUSIONS

In this paper, the energy asymmetry of Booth-encoded

multipliers is characterized in pipelined scenarios, showing

that holding the Booth-encoded input constant rather than the

other input can save up to 42% of multiplier energy.

Exploiting this property in the context of pipelined SIMD

processors like GPUs, a zero-overhead compiler-based

approach for identifying uniform inputs and steering them to

the Booth-encoded multiplier input is described. This

approach saves up to 6.5% of single-precision multiplier

energy on average in a temporal SIMT architecture which

executes all 32-elements in a warp on a single, pipelined

execution unit. An additional 2.1% reduction, for a total of

8.3% savings in this implementation, can be achieved if the

architecture supports dynamic detection of uniform

warp-wide registers.

Fig. 7: Additional multiplier energy savings with dynamic detection and

steering of scalar/uniform inputs.

(Overall average = 1.5% w/ pipeline depth 4, 2.1% w/ pipeline depth 32)

Additional benefits can also be gained by applying similar

techniques to double-precision and integer multipliers. Also,

while steering uniform data to the Booth-encoded input was

the focus of this paper, potential other benefits can be derived

from steering affine or other slowly varying data to the

Booth-encoded input. Extending this approach to these

areas and to traditional CPU architectures remains future

work.

REFERENCES

[1] Advanced Micro Devices, Inc, “AMD Graphics Core Next (GCN)

Architecture White Paper,”

https://www.amd.com/Documents/GCN_Architecture_whitepaper.pdf ,

June 2012.

[2] E. de Angel and E.E. Swartzlander, Jr., "Low power parallel

multipliers," Workshop on VLSI Signal Processing, 1996.

[3] K.C. Bickerstaff, M.J. Schulte, and E.E. Swartzlander, Jr., “Parallel

reduced area multipliers,” Journal of VLSI Signal Processing Systems,

April 1995.

[4] A.D. Booth, “A Signed Binary Multiplication Technique,” Q. J. Mech.

Appl. Math. 1951.

[5] A.P. Chandrakasan and R.W. Brodersen, “Minimizing power

consumption in digital CMOS circuits,” Proc. IEEE, Apr. 1995.

[6] O. T.-C. Chen, S. Wang, and Y.-W. Wu, “Minimization of switching

activities of partial products for designing low-power multipliers,”

IEEE Transactions on VLSI Systems, June 2003.

[7] S. Collange, D. Defour, and Y. Zhang, “Dynamic Detection of

Uniform and Affine Vectors in GPGPU Computation,” Euro-Par 2009

– Parallel Processing Workshops, 2009.

[8] K. Han, B.L. Evans, E.E. Swartzlander Jr., "Low-power multipliers

with data wordlength reduction," Asilomar Conference on Signals,

Systems and Computers. 2005.

[9] P.M. Kogge and H.S. Stone, "A Parallel Algorithm for the Efficient

Solution of a General Class of Recurrence Equations," IEEE

Transactions on Computers, Aug. 1973.

[10] Y. Lee, R. Krashinsky, V. Grover, S.W. Keckler, and K. Asanovic,

“Convergence and Scalarization for Data-parallel Architecture,”

International Symposium on Code Generation and Optimization

(CGO), 2013.

[11] NanGate FreePDK45 Generic Open Cell Library -

https://www.si2.org/openeda.si2.org/projects/nangatelib

[12] S. Oskuii, P.G. Kjeldsberg, and O. Gustafsson, “Transition-activity

Aware Design of Reduction-stages for Parallel Multipliers,” Great

Lakes Symposium on VLSI, 2007.

[13] E. Quinnell, Floating-Point Fused Multiply-Add Architectures, PhD

Thesis, Department of Electrical and Computer Engineering, The

University of Texas at Austin, May 2007.

[14] T. Sakuta, Wai Lee, and P.T. Balsara, "Delay balanced multipliers for

low power/low voltage DSP core," IEEE Symposium on Low Power

Electronics, 1995.

[15] S. Saravanan and M. Madheswaran, "Design of low power multiplier

with reduced spurious transition activity technique for wireless sensor

network," Fourth International Conference on Wireless

Communication and Sensor Networks (WCSN), 2008

[16] O. Villa, D.R. Johnson, M. O’Connor, E. Bolotin, D. Nellans, J.

Luitjens, N. Sakharnykh, Peng Wang, P. Micikevicius, A. Scudiero,

S.W. Keckler, and W.J. Dally, "Scaling the Power Wall: A Path to

Exascale," SC14: International Conference for High Performance

Computing, Networking, Storage and Analysis, 2014.

https://www.amd.com/Documents/GCN_Architecture_whitepaper.pdf
https://www.si2.org/openeda.si2.org/projects/nangatelib

