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Figure 1: Example of various materials with microdetails rendered with our procedural real-time approach on NVIDIA GeForce 980 GTX
GPU. Left to right: (a) sparkling fabric on evening dresses (6.6ms/frame); (b) procedural terrain with grainy snow on an overcast day
(7.8ms/frame); (c) brushed aluminum on a car (7.3ms/frame).

Abstract

We present a stable shading method and a procedural shading model
that enables real-time rendering of sub-pixel glints and anisotropic
microdetails resulting from irregular microscopic surface structure
to simulate a rich spectrum of appearances ranging from sparkling
to brushed materials. We introduce a biscale Normal Distribution
Function (NDF) for microdetails to provide a convenient artistic
control over both the global appearance as well as over the appear-
ance of the individual microdetail shapes, while efficiently gener-
ating procedural details. Our stable rendering approach simulates a
hierarchy of scales and accurately estimates pixel footprint at multi-
ple levels of detail to achieve good temporal stability and antialias-
ing, making it feasible for real-time rendering applications.

Keywords: Shading Models, Procedural Textures, Level of Detail

Concepts: •Computing methodologies → Reflectance model-
ing;

1 Motivation

Accurate rendering of photorealistic materials in real-time applica-
tions is a demanding topic. Physically based shading requires both
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the accuracy of underlying scattering models as well as the strictly
constrained computational cost usually limited by a few millisec-
onds per frame on a modern Graphics Processing Unit (GPU).

Procedural discrete materials, such as glints, snow, and sand, have
recently gained attention in both real-time rendering as well as in
the offline rendering.

The state-of-the-art real-time methods [Bowles and Wang 2015;
Michels et al. 2015] are lightweight and usually model simple
sparkling appearance as an additional subtle trait of a material,
making their appearance limited to sparse glints. Artist-made tex-
tures with conventional physically based shading supplement such
approaches to simulate more complex effects, such as anisotropic
highlights, grooves and other details, thus both sacrificing the mul-
tiscale appearance and increasing aliasing.

On the other hand, offline approaches [Jakob et al. 2014; Yan et al.
2014; Meng et al. 2015] provide superior quality and a wide gamut
of appearances varying from anisotropic microgrooves caused by
brushed materials to dense temporally-stable discrete glints that can
transition into a smooth highlight at distance. While providing high
quality appearance and advanced control over the material struc-
ture, such methods are not suitable for real-time applications.

In addition, none of the existing approaches allow the user to con-
trol the appearance of both microdetails of the local structure, as
well as the distant appearance at large scale induced by these mi-
crodetails, such as shape and anisotropy of distant highlights.

In this work, we provide a spatially-varying multiscale appearance
model with following properties:

• fully procedural and real-time evaluation of microdetails;

• anti-aliased and temporally stable shading using multilevel
object-space grids;

• controlled appearance of both microdetails and distant mate-
rial parameters;



• suitable for a wide range of materials, including glints, snow,
and brushed metal.

We first overview the existing body of work on microfacet mate-
rials in Sect. 2, including multiscale materials and material filter-
ing techniques, followed by an introduction of a biscale microfacet
model we will employ for controlling the structure of our materi-
als in Sect. 3. Next, we provide an efficient real-time evaluation
using an approximation with multilevel grids in texture space and
expected number of reflecting microdetails in Sect. 4. We evaluate
performance and quality as well as discuss the limitations of the
proposed approach in Sect. 5.

2 Previous Work

There is a large body of work on studying the light-matter interac-
tion in both physics and computer graphics. We will cover here
only the relevant computer graphics work that model light scat-
tering on the surfaces. Both reflection and transmission of light
through the surface are described by a Bidirectional Scattering Dis-
tribution Function (BSDF) fs, which tells what part of irradiance
dE from incident direction i at surface point is scattered into a par-
ticular outgoing direction o as

fs(i,o) =
dL(o)

dE(i)
=

dL(o)

L(i) di⊥
,

where L(o) is the outgoing radiance and L(i) is the incident radi-
ance. This function describes local scattering at a surface point (the
implicit dependence on surface point x is omitted hereafter) and
therefore is a description of a material appearance commonly used
in rendering.

Among many existing BSDF models there is an important class of
microfacet surface scattering models. Torrance and Sparrow [1967]
introduced a microfacet reflection model, which was adapted to
graphics by Blinn [1977] as well as in a more generic form by Cook
and Torrance [1982]. This model is based on the assumption that
the scattering is caused by an underlying microsurface structure,
which can be usually represented by a height field of microsurface
heights and defined as a product of the following terms

fs(i,o) =
F (i,o)D(m)G(i,o,m)

4 |i · n| |o · n| , (1)

where |·| denotes an absolute value of a dot product; n is the sur-
face normal; m is a half-way vector between i and o that also rep-
resents the direction of a microfacet slope, D is a distribution of
micronormals, called a Normal Distribution Function (NDF), G is
a masking-shadowing term, and F is a Fresnel term. The masking-
shadowing termG estimates how many microfacets are visible from
the given incident and outgoing directions i and o.

Normal distribution function D at surface point x is defined as a
probability of having a slope direction m on a field of slopes de-
fined on a unit patch A as

D(m) =
dA(m)

A dm
, (2)

where A ≡ 1 is the area of unit patch (by convention) and dA(m)
is the area of all slopes with direction m. We will also use an al-
ternative notation where the NDF D(x) is defined on the domain
of slopes with x = mxy/mz being a projection of m onto a par-
allel plane one unit away from the surface along the normal (see
Fig. 2 bottom). Even though this change of domain requires a corre-
sponding Jacobian, we usually omit it in equations until later point
to keep the notation clear. We will devote the rest of the section

to the existing work on NDF, which is mainly responsible for the
final appearance of the material. Beckmann NDF [1963] assumes
to have a height field of microsurfaces with heights distributed ac-
cording to a bivariate Gaussian distribution. Closed-form approx-
imation for shadowing-masking term was also developed for this
distribution [Smith 1967].

Trowbridge and Reitz [1975] proposed another distribution of
slopes, also known in graphics as GGX [Walter et al. 2007], which
corresponds to the distribution of slopes on an ellipsoid and pro-
vides a closer match for some measured materials [Burley 2012].

Materials with anisotropic highlights were first studied by Kajiya
and Kay [1989], followed by works by Poulin and Fournier [1990]
and Ward [1992]. A degenerate one-dimensional distribution of
slopes on a microcylinder was studied in the context of hair ren-
dering [Marschner et al. 2003]. Microfacet distributions as well as
the masking term G were also extended for anisotropic materials,
which corresponds to anisotropic scaling of the height field [Heitz
2014].

Filtering NDFs. The NDF of an advanced material, such as
normal-mapped or displacement-mapped geometry with complex
appearance, can be arbitrarily complex requiring careful evaluation
to preserve the appearance and at the same time avoiding alias-
ing. The challenges of stable filtering as well as of preserving the
appearance when rendering such NDFs were well recognized by
the researchers. Representation of complex materials with multi-
ple scales was studied by Westin et al. [1992]. Fournier [1992]
proposed combining NDF produced by multiple surfaces and bump
maps with the NDF of a surface BSDF. A smooth transition be-
tween displacement maps, bump maps, and simple BSDF shading
at multiple scales was proposed [Becker and Max 1993] by using a
hierarchy of multiple BSDF frequency levels as well as a modifica-
tion to bump mapping. Kautz and Seidel [2000] proposed a shift-
variant BSDF model to parameterize and precompute well-known
BSDF models into a non-linear basis in order to efficiently filter and
accelerate shading with such materials on a GPU. Toksvig [2005]
proposed a practical way of computing a variation of normals in a
prefiltered mip of a normal map texture by using a Gaussian NDF
fit. More advanced filtering of normal maps includes storing multi-
ple parametric NDF lobes motivated by frequency domain normal
map filtering [Han et al. 2007], using a mixture of BSDFs [Tan et al.
2008], as well as linearly filterable moments of parametric distri-
butions stored in mip chains of textures [Olano and Baker 2010].
A similar approach was also applied to gradually convert displace-
ment mapping into an NDF at a distance [Dupuy et al. 2013]. A sur-
vey [Bruneton and Neyret 2012] discusses more advanced prefilter-
ing methods. A related recent work [Nagano et al. 2015] proposes
to simulate skin wrinkle deformation by scaling the displacement
maps using convolution with anisotropic kernels.

Multiscale and Spatially-Varying NDFs. Recent advances in
image quality allowed researchers to look into more sophisticated
microfacet models with spatial variation, which can handle spatially
as well as angularly varying NDFs with distinctly observable mi-
crostructure details, such as glints, grooves, and scratches at var-
ious scales. Bosch [2007] in his thesis provided multiple ad-hoc
methods for measuring and rendering of vector-based scratches and
grooves by checking the configurations of the groove geometry un-
der pixel footprint, as well as derived closed-form approximations
for reflectance and shadowing caused by grooves and scratches.
Wu et al. [2011] proposed an approach for modeling materials us-
ing biscale material design, where a large-scale (macroscale in our
work) appearance is derived from small-scale (microscale in our
work) details designed by the user. In a follow-up work, the same
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Figure 2: Modeling biscale NDF in the domain of slopes (parallel
planes). Left: first we draw a center xi of a microdetail according
to the density of microdetails Dm. Right: next we draw the actual
slope around the selected center xi according to the local rough-
ness of a single microdetail Dl. Vector m is a microfacet (slope)
direction on the hemisphere of surface tangent frame.

authors [2013] proposed to reconstruct the small scale details out
of a target macroscale appearance. Jakob et al. [2014] proposed a
discrete spatially varying mesoscale NDF that stochastically mod-
els the number of discrete slopes covered by the pixel footprint and
can be quickly evaluated by a hierarchical subdivision of the latter
in microfacet domain. This method focuses on NDFs of discrete na-
ture, thus is not suitable for anisotropic or elongated microdetails,
such as grooves and scratches. Yan et al. [2014] concurrently pro-
posed another method for handling spatially varying microstructure
defined by a high resolution normal map texture. Their approach
resolves a mesoscale NDF defined on a pixel footprint by hierar-
chically pruning irrelevant normal map texels. As we will show in
Sect. 3, microdetails potentially affect the macroscale appearance,
which might be undesirable for artistic control. Both methods are
designed for high-quality offline rendering and are too computa-
tionally expensive for real-time applications.

We propose an optimized approximate method suitable for real-
time applications that is completely procedural, provides artist-
friendly control over appearance at all scales, and models a wide va-
riety of materials, such as glints, granular surfaces, and anisotropic
brushed grooves (Fig. 1).

3 Biscale Microfacet Model

First, similarly to Walter et al. [2007], Wu et al. [2011], Jakob
et al. [2014], and Yan et al. [2014], we redefine an NDF in Eq. 2 by
extending the unit patch A to define the NDF on an arbitrary patch,
which in our case is a cell on the user-defined object-space1 regular
grid. This allows us to use a generalized multiscale notion of NDF,
which tells us the probability density of a particular slope on this
patch. This NDF can then be used directly for multiscale rendering
with estimated primary footprint of a pixel [Igehy 1999] or a beam
after multiple interactions [Bagher et al. 2012].

We first model a biscale NDF as a building block for a more gen-
eral multiscale NDF that is composed of local biscale NDFs for
every pair of adjacent levels. This will allow us to have a virtu-
ally infinite zoom into different scales of the slope field. We first
model only two scales in the domain of slopes (also called a paral-
lel plane domain, Fig. 2, left bottom) as follows. First the position

1By object space we consider any reasonable two-dimensional parame-
terization of a surface that provides a deterministic, and, in case of grooves,
piecewise continuous mapping from a surface point to a bounded two-
dimensional domain. Texture mapping is one common choice.

xi of a microscale detail center on a parallel plane is drawn from a
mesoscale distribution of microdetails Dm, then the actual slope is
placed around this center by drawing a value yi from a local nor-
mals distribution for a single microdetail Dl, leading to the final
slope. Since the final slope position is a sum of two random vari-
ables xi and yi, their resulting density Dg is a convolution of two
NDFs at different scales as

Dg(x) =

∫
R2

Dm(y)Dl(x− y) dy = 〈Dm ∗Dl〉, (3)

where Dm controls the density of microdetails, whereas Dl con-
trols the local appearance of a single microdetail. Similar models
have been introduced before in a related context of normal map
filtering [Han et al. 2007; Fournier 1992]. Multiple scales can be
defined recursively by analogy.

With this definition, the support patch of the NDF has finite extent
of one grid cell in order to handle locally correlated microdetails.
Thus, there is a direct correspondence between the slope and its lo-
cation on the support patch. However, later we will define a nested
hierarchy of such grids, so that the actual location of a particular
slope within the patch is procedurally generated on the fly.

Closed Form Convolutions for Existing NDFs. In order to effi-
ciently evaluate all distributions in real time, it is preferable to have
a closed form for convolution of two NDFs. The convolution in
Eq. 3 can be computed in closed form for Beckmann distributions
as a convolution of two bivariate Gaussian distributions in the paral-
lel plane domain (Fig. 2), so given the relation between Beckmann
roughness α and Gaussian standard deviation σ being α =

√
2σ,

the global roughness for distribution Dg can be computed as

α2
g = α2

m + α2
l , (4)

where αg is a roughness of a resulting global Beckmann distribu-
tion Dg that gives the appearance at distance; αl is the local rough-
ness of a single individual microdetail; and αm is the roughness
of the mesoscale Beckmann distribution Dm of microdetails (see
Fig. 2). All normalization equations (see, e.g., [Walter et al. 2007]
or [Heitz 2014]) for energy conservation and physical plausibility
hold as usual, because the resulting distribution is another Beck-
mann distribution.

Unfortunately, Trowbridge-Reitz distribution [Trowbridge and Re-
itz 1975] does not have a closed form convolution neither with itself
nor with Beckmann distribution. Due to this reason, hereafter, we
consider only Beckmann distributions for all working distributions
throughout the paper because of their convenient convolution prop-
erties. In order to compute the final value of BSDF, we are using the
Eq. 1 with appropriate Fresnel term and a Beckmann shadowing-
masking term.

Decomposing Anisotropy. All terms in Eq. 4 are generally 2×2
covariance matrices. However, we consider only diagonal matri-
ces, which is sufficient for representing arbitrary anisotropy in an
orthonormal tangent frame up to a rotation. In this case, Eq. 4
also holds component-wise, along both u and v axes of the tan-
gent plane. This allows us to control global anisotropic roughness
independently from the local anisotropic roughness of a single mi-
crodetail separately for each axis. This can be done by selecting an
appropriate per-axis roughness for mesoscale distribution Dm ac-
cordingly, which we will use in Sect. 4.4. Note that the resulting
densityDg defines the global appearance of the material in the lim-
iting case, when individual microdetails disappear at distance. This
appearance is a desirable parameter of material for user to control,
and thus it is exposed in our model.



One-Dimensional (Semi-Discrete) NDF. In the degenerate case
when αl → 0, each microdetail can take only the slope value at
its center (around 0 in the local frame of a microdetail) turning the
local NDF into a Dirac delta distribution

Dl(m) = δm(0). (5)

This case represents discrete microdetails, such as glints [Jakob
et al. 2014]. We extend this definition to model anisotropic slopes
that are constant along one direction on the parallel plane, such as
long grooves on brushed materials. The Dirac delta in Eq. 5 denotes
a deterministic selection of a microfacet slope at the center. Since
we model our NDF in the domain of slopes, we can reparameterize
and expand the Dirac delta in this domain along u and v axes as

δm(m0) = δ‖(x0)

∣∣∣∣dmdx
∣∣∣∣ = δu(u0)δv(v0)

∣∣∣∣dmdx
∣∣∣∣ ,

where δ‖ is the Dirac delta in the domain of slopes (parallel plane
domain), and the Jacobian transformation from the microfacet di-
rection to the domain of slopes is∣∣∣∣dmdx

∣∣∣∣ = |m · n|4 ,
where n is the surface normal; and m is the unit vector of micro-
facet direction. Here, δu(u0) and δv(v0) are the canonical one-
dimensional Dirac deltas on the axes of a tangent plane at u0 and
v0 respectively. They represent a deterministic choice of the xu and
xv components of the slope x on the parallel plane. Now we can
extend a two-dimensional discrete distribution Dl to a line (one-
dimensional discrete) distribution D1

l on this domain by mollifying
one of the Dirac deltas into a one-dimensional Gaussian distribution
(for example, along v) as

D1
l (x) = δu(u0)B1

v(v0, αv) |m · n|4 , (6)

where B1
v is a one-dimensional analog of Beckmann distribu-

tion with scalar roughness αv along v axis, which can be writ-
ten as a one-dimensional Gaussian distribution B1

v(v0, αv) =

Nv(v0, αv/
√
2). One-dimensional distribution along u is ob-

tained analogously. Note that the normalization factor of B1 is
now 1/

√
π instead of 1/π as in the conventional two-dimensional

Beckmann. This NDF models long grooves, where the slope stays
constant along one axis, while along another axis it has Beckmann-
distributed variation. Even though, in order to faithfully represent
fixed-location grooves, we would need to apply a spatial Dirac delta
to lock them to particular surface positions [Jakob et al. 2014], in
practice, we will always select the scale such that the correlation
between location and slope can be neglected. We will use this for-
mulation of one-dimensional NDF to simulate highly anisotropic
effects such as brushed grooves. To our knowledge, this is the first
time the semi-degenerate one-dimensional NDF was defined for lin-
ear distributions of slopes.

From Microscale to Macroscale. Recall that by design our NDF
in Eq. 3 is defined on a finite-sized cell of a regular object-space
grid with user-controlled density. This induces a natural transition
from microscale to macroscale. If a microdetail gets larger than
the considered rendering region, such as the pixel footprint, the mi-
crodetail is supposed to span across multiple regions. This means
that after some scale, individual microdetails become observable.
In the limiting case of anisotropic one-dimensional distribution, the
anisotropy spans across the object, i.e., the selection of a groove
is done only once along the degenerate axis to guarantee the con-
tinuity of a groove. In Sect. 4.4 we will make sure that the large
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Figure 3: Pixel footprint is approximated in texture space to a first
order using ray differentials as a parallelogram (blue). High and
low grid cell sizes are selected based on the minor extent of the
parallelogram by rounding to the closest power of two from above
and from below (red lines).

microdetails are observed as continuous grooves at macroscale by
extending the patch for such microdetails to be long enough to ac-
commodate the extents of the microdetails.

In the next section we will discuss how to practically define a mul-
tilevel grid for infinitely many microdetails using a biscale NDF as
a building block, and how to evaluate NDF defined on cells within
each grid level.

4 Real-time Shading with Microdetails

First, we consider a regular grid in object space parameterization;
practically we rely on an existing uv texture mapping. The grid
is defined with user-specified density, which is a global scalar that
specifies the density of microdetails per unit area in uv space, thus
setting the granularity of the grid, i.e., its cell size. We use this grid
level as a reference level.

In order to simulate multiscale NDF, we consider a hierarchy of
such grids, where each next grid level is twice as dense in every
dimension as the previous one, similarly to texture mip chain. We
employ the procedural nature of our model: the microdetails are
independently and identically distributed. This means that the ap-
pearance should have the same distribution, but it is not required to
refine exactly the same realization from this distribution at multiple
scales, as long as we preserve the overall statistics of the distribu-
tion at all scales. In Section 4.3 we evaluate the expected number of
microdetails such that the distribution is preserved across all levels.
Thus, we use a biscale NDF at every grid level and define a nested
multilevel NDF with infinite number of scales this way.

We evaluate this multilevel NDF by estimating the total area of
finite-sized microdetails covered by each pixel (pixel footprint) that
are reflecting the light. There are two challenging aspects for the
real-time evaluation of the biscale NDF on each grid: (1) pixel foot-
print can potentially cover an arbitrarily large area in the multiscale
hierarchy; and (2) the search is four-dimensional: first we need to
collect all covered cells on the surface, then we need to compute the
area of actively reflecting microfacets.

In order to tackle the first problem, we quantize the pixel footprint
on each grid and then estimate the reflecting area. For every pixel,
we consider two adjacent texture-aligned grid levels with scales
based on the pixel footprint (see Fig. 3). Similarly to the mip level
selection, one grid is the closest coarser level and one is the clos-
est finer level for the projected pixel granularity. Then, similarly
to anisotropic texture filtering, we evaluate shading at all covered



1 pixel P
2 H = normalize(L + V), Hp = paraboloid_map(H)
3 // Normalization for a single microdetail (Eq.7)
4 m0 = Dl(0)
5 // Probability mass of reflecting facets (Eq.7)
6 pmf = Dg(H) / m0
7 find grids G[0], G[1] in footprint(P)
8 reflectance = 0
9 for i = 0, 1:

10 foreach cell C in G[i] intersecting P:
11 // Quantize perturbed paraboloid facet orientation
12 Hidx = quantize(Hp + m0 * rand(C))
13 // Number of microdetails inside cell
14 Cn = area(C) * density
15 // Randomize scale of microdetails
16 Cn = Cn * abs(gauss(rand(Hidx + C), 1, mdsVariance))
17 // Draw number of reflecting microdetails
18 rn = binomial(rand(Hidx + C), Cn, pmf)
19 // Cell reflectance
20 Cr = rn * m0 / Cn
21 // Compute bilinear cell weight
22 Cw = approximateCoverage(C, P)
23 // Blend between grid levels
24 reflectance += mipWeight(G[i], P) * Cw * Cr

Listing 1: High-level pseudocode for simulating microdetail by
counting within each grid cell covered by a pixel. Note that
rand(..) is a deterministic quasi-random number generator that
provides the same results for the same seed.

cells in both grids and blend between the shading results in each
cell. This ensures stable anti-aliased glints at arbitrary scales.

Our multilevel grid approach, while being approximate, provides a
significantly more efficient evaluation compared to the hierarchical
search processes used by Jakob et al. [2014] and Yan et al. [2014].
While their hierarchical approaches lead to perfectly coherent re-
sults that guarantee area preservation across all scales, they greatly
increase the complexity of the search.

In order to tackle the second problem, the problem of finding re-
flecting microfacets in the four-dimensional space, (within pixel
footprint and within parallel plane given the reflection direction)
we first split it into two steps: (1) estimate the number of micro-
facets within a cell; (2) estimate the expected number of reflecting
microfacets out of these. This way, we partition the total number
of microdetails into reflecting and non-reflecting microdetails in-
side each cell. Instead of handling each microdetail separately, we
compute the expected number of reflecting microdetails within the
region, and then draw the final number of reflecting microfacets us-
ing stable random process. The cone of reflecting microdetail ori-
entations is determined by the roughness of the microdetails and the
size of the light source (see Sect. 4.3). The final partitioning for a
particular cell is done using a binomial random processB(ξ, n, P ).
The selection probability P corresponds to the probability mass of
a continuous Beckmann distribution of microdetails inside the re-
flection cone. The process is seeded with the distinct noise value ξ
of each cell, giving deterministic and thus stable results. Listing 1
provides pseudocode for the main algorithm.

4.1 Coherent Multiscale Grids

We use an interleaved hashing scheme of cell indices that ensure
that the same seeds occur at similar locations across all scales. This
ensures the blending between the results of the random processes at
different scales always retains parts of the features on both levels.

Since all our grid scales are powers of two, our hashing scheme
needs to ensure that the indices of a coarser grid reappear with dou-
ble spacing in the finer grid. We achieve it by making the result of
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Figure 4: Nested power-of-two grids with mapping from per-grid
cell indices (red) to coherent indices (given inside the cells). Note
how one out of two generated indices is always preserved between
coarser and finer levels across all scales.

Figure 5: Regular noise with naı̈ve non-coherent blended noise
grids (left) and the proposed large-scale coherent noise grid (right).

the hashing invariant under input multiplication by two. Instead of
multiplying the grid ids at each level multiple times (also, we do
not have a root level), we reverse the doubling process and bit-shift
the index of each grid cell to the right until the least significant bit
is a one (i >> trailingZeros(i)). This ensures we have
a coherent noise throughout all levels (see Fig. 4 for illustration).
While this leads to some recurring patterns for small grid indices,
we decorrelate the results by adding an arbitrary constant coordi-
nate offset at every level.

4.2 Filtering with Anisotropic Pixel Footprint

We approximate the pixel footprint in texture space by a parallelo-
gram formed by the screen-space derivatives of the texture coordi-
nates uv (see Fig. 6). We compute the cell size sc using the shorter
of the distances between the parallel edges projected to each texture
axis using the max-norm of the inverted derivative matrix:

sc =
(
‖(Mxy uv)

−1‖max

)−1

.
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Figure 6: A pixel footprint’s parallelogram is defined by its edge
centers (blue circles). The two side centers are shifted by half a cell
inwards along the diagonal to provide a tight range of grid cells.
We sample along the longer median of the parallelogram. On the
median, the samples are snapped to the cell centers of our discrete
grid along the longer extent. Number of samples is determined in
the spirit of anisotropic texture filtering along the major extent with
the steps that are defined by the minor extent. The olive thick lines
on the outside shows how far the samples are from the cell centers.
This distance is used for bilinear weights.

Afterwards, we round the cell size to the next power of 2. In each
of the corresponding grids, we step along the longer median of the
pixel parallelogram, accumulating the results of all cells along the
way (see Fig. 6). We use the bilinear interpolation weights cor-
responding to the offsets of the steps from the cell centers as an
approximate value for the pixel coverage of each cell. The cover-
age is then used as a weight for the contribution sampled in each
cell. We normalize by the total weight afterwards to handle multi-
ple anisotropic line samples. In order to properly blend along the
longer axis, the first and last steps are offset towards the pixel center
in texture space by half a cell size each.

In order to avoid excessive tapping, we limit the anisotropy to a
factor of Ka by enforcing ‖Mxy uv‖max/Ka as a lower bound for
the cell size cs, which corresponds to a fraction of the axis-aligned
box that bounds the pixel’s edge centers in texture space. In prac-
tice we use a maximum allowed anisotropy of Ka = 16 in all our
experiments, which appears to be sufficient. This is analogous to
the anisotropy clamping in texture filtering to limit the number of
tapped texels. Our motivation is the same, and, notably, the maxi-
mum practical anisotropy level is also similar to the maximum level
commonly used in anisotropic texture filtering.

4.3 Sampling the Number of Reflecting Microdetails

Half Vector Quantization. We project the half vector at the cur-
rent pixel center to a plane using a paraboloid mapping. This keeps
the density of half vectors approximately uniform in solid angle.
Afterwards, we discretize this plane into multiple cells, the index
of which can then be used for microdetail orientation-dependent
seeding. This is an efficient way to approximate a spherical grid of
half vectors. We choose the slope-domain cell size proportional to
the sum of microroughness and light source cone angle (see Fig. 8)
to approximate the complex integration over all slope-domain grid
cells that contribute due to either high microroughness or larger
light cones.

Now that we have a cell in object space and a current cell in half
vector space, we need to estimate the expected number of reflect-

ing microdetails within these current cells. We first compute the
probability whether a microdetail reflects light by stochastically es-
timating the number of such microdetails based on their density in
parallel plane domain. However, we need to extend it to handle
non-specular microdetails. Since we are working with rough mi-
crodetails, all microdetails reflect at least a fraction of the light.
Therefore, we cannot make a deterministic decision whether an in-
dividual microdetail contributes or not. Instead, for a single mi-
crodetail m, we turn the continuous decline of contribution into a
probability of the microdetail centered at m reflecting for half vec-
tor h as

Pm(h) =
Dl(h−m)

Dl(0)
.

Here, we make an assumption that the local density of microde-
tails within the current half-vector cell is relatively flat. Thus, we
can compute the overall probability mass P (h) of contributing mi-
crodetails as

P (h) =

∫
R2

Dm(m)Pm(h) dm

=

∫
R2

Dm(m)
Dl(h−m)

Dl(0)
dm =

Dg(h)

Dl(0)
, (7)

here, as an exception, we use m and h as points on the parallel
plane of slopes for clarity of convolution (in the rest of the work
they are used as unit vectors). We use the resulting probability mass
as the second parameter of the binomial distribution. We cancel out
Dl(0) after the binomial sampling. Note in the limit this results in
the correct global BSDF.

So far, apart from some variation due to the global NDF Dg , our
random process gives the same results for all microdetail orienta-
tions. This is unrealistic, since a surplus in microdetails of one ori-
entation has to be compensated by a shortage of microdetails with
different orientations in order to conserve the overall surface area.
While we do not enforce area conservation, we apply an additional
randomization seeded by the microdetail orientation. Thus, the ex-
pected total area is constant and stays conserved on average.

Sampling the Binomial Distribution. In order to be able to
quickly draw the number of reflecting microdetails N from the bi-
nomial distribution at line 18 in Listing 1, we only compute the ex-
act distribution for small expected numbers. Beyond that, we switch
to a Gaussian distribution using the first and second moments of the
binomial distribution for fitting. Additionally, we enforce an upper
bound on the number of iterations in the binomial draw by replac-
ing the tail with an exponential distribution after a fixed maximum
number i of iterations:

N = i+ 1 + logp

(
1− CU − P (N ≤ i)

1− P (N ≤ i)

)
,with

C = 1− pNmax−i−1.

Microdetail Size Variation. With a fixed microdetail density, in-
teresting results are restricted to a rather small range of scales. In or-
der to achieve rich appearance across a large range of scales (Fig. 7),
e.g., from close-up across an entire landscape, we additionally ran-
domize the size, and thus the density of microdetails in each grid
cell (lines 13-16 in Listing 1). We use a Gaussian distribution to
model the randomization of the number of microdetails in each cell.

4.4 Anisotropic Microdetails

In order to distribute anisotropic microdetails and preserve the
global appearance as discussed in Sect. 3, we use Beckmann distri-
butions. Given the user-defined global roughness αg and the local



Figure 7: DRESS scene rendered with a glittery material with the
same density of microdetails with varying sizes of microdetails.
Left: constant size of microdetails; right: user-tweaked Gaussian
variation of microdetail size.

roughness of a single microdetail αl we can derive the mesoscale
parameter αm of the Beckmann distribution of microdetails based
on the convolution in Eq. 4 as

αm =
√
α2
g − α2

l .

It is important to note that in order for the global roughness αg to
be possible, the local roughness of a single microdetail is limited
by αl ≤ αg . In order to handle one-dimensional NDFs in Eq. 6,
we compute the quantities directly in the parallel plane domain and
then apply the transformation Jacobian.

We compute the anisotropy factor γm of the distribution of mi-
crodetails along each axis as the ratio of the roughnesses on the
axes u and v as

γm = αm(u)/αm(v).

This is equivalent to stretching the surface with isotropic rough-
ness αm(u) by γm along v [Heitz 2014]. In order to pro-
vide continuity for elongated anisotropic microdetails (observed in
macroscale as discussed in the last paragraph of Sect. 3), we apply
this stretching to the texture space grids along the corresponding
axes after footprint estimation and grid level selection.

It is important not to apply NDF anisotropy before that, otherwise
the anisotropic pixel footprint filtering will fight against the NDF
anisotropy: While the former tries to make up for the mismatch of
texture space grid and screen resolution by filtering, here we delib-
erately induce an anisotropic mismatch of cell sizes to allow for cor-
relation across multiple pixels in the case of anisotropic microdetail
distributions.

In order to obtain anisotropic microdetails, we stretch both the tex-
ture coordinates of the pixel center and the pixel footprint used for
determining the covered grid cells. Care has to be taken in order
not to unnecessarily increase the number of taps taken by the grid-
based filtering. For that, we always downscale texture coordinates.
Stretching one axis with a stretch factor greater than one is equiva-
lent to stretching the other axis with the reciprocal factor.

4.5 User Parameters

In order to provide a convenient control over the appearance at mul-
tiple scales, we expose the following user parameters: the rough-
ness of the macroscopic material, the roughness of a single mi-
crodetail, the density (number of microdetails per unit object-space
area), the microdetail scale variation, and the overall intensity. Both
roughness parameters can be anisotropic and exposed along u and

Figure 8: Glittery snow material on a terrain with varying-sized
light source. Light source cone size varies from a point light (left)
to an almost overcast illumination (right).

v tangent plane’s axes separately. Since the roughness of a sin-
gle microdetail is bounded by the global roughness, we expose the
microdetail roughness scaled relatively to the current global rough-
ness values for convenience. This allows to easily steer anisotropic
glints by setting the fractional roughness along one direction to 1.
The density is specified on a logarithmic scale to allow for more
linear control over the apparent density.

For colored glints or grooves, one can also pick an albedo color
for a microdetail out of a user palette. We demonstrate a uniform
chromatic distribution by drawing a random albedo from the color
wheel in each cell. In order to comply with the variance caused by
the uniform color distributions of N microdetails previously drawn
from the binomial distribution, the coloring is normalized with a
factor of 1/

√
N .

5 Results and Discussion

In this section we evaluate the performance as well as visual re-
sults of the proposed approach. The real-time performance of the
OpenGL 4.5 implementation of our method is evaluated on multiple
scenes using an NVIDIA GeForce 980 GTX GPU and the timings
are presented in Table 1. All timings are in milliseconds per frame
and measured for 1920×1080 (1080p) image resolution with verti-
cal synchronization switched off. It is generally difficult to measure
the shading performance, as it varies depending on the screen cov-
erage, amount of overdraw, and the amount of other shading com-
putations in the shader. Therefore we first measured a simple plane
(no overdraw) and covered full screen with it at different viewing
angles. In order to measure the pure shading time, we first measure
the frame time without our approach to account for bandwidth, syn-
chronization and all the additional passes for frame rendering and
take this measure as a baseline. Then we enable our approach and
report the time difference. Variance in timing for different scenes

Scene Polys Steep angle Grazing angle
SCREEN PLANE 2 0.9 2.9
SNOW 32k 2.5 4.0
DRESS 100k 1.4 4.4
CAR (GROOVES) 570k 2.5 3.9
CRYTEK SPONZA 262k 3.0 5.9

Table 1: Performance in milliseconds for intra-frame shading over-
head at 1080p HD resolution, measured on NVIDIA GeForce 980
GTX GPU for scenes with specified polygon count (second col-
umn). Top table shows measurements of multiple scenes with vari-
ous viewing angles: steep (perpendicular view), grazing (about 10
degrees to the surface, maximum 16× anisotropy).



Figure 9: False colored visualization of the number of cells visited
by our algorithm (number of iterations) for varying pixel footprint
in CRYTEK SPONZA scene.

mostly comes from the amount of overdraw, thus our approach can
potentially benefit from deferred shading, where the shading over-
draw is almost non-present.

A false-colored visualization of number of iterations for the inner-
most foreach loop in Listing 1 is provided for CRYTEK SPONZA
scene in Fig. 9. It demonstrates that our method requires more it-
erations to accurately resolve microdetails at grazing angles. Even
though pixel footprint can theoretically cover arbitrarily many cells,
in practice we limit the maximum anisotropy to the ratio of Ka =
16, thus limiting the maximum number of iterations. For the best-
to-worst case scenarios of a plane observed at different angles (first
row in Table 1) performance ranges by 2 milliseconds from the min-
imum of 8 cells to the maximum of 64 cells required by our method.
The shader has 412 static instructions according to the GLSLC dis-
assembling utility, 204 of which are inside the innermost foreach
loop of Listing 1.

Fig. 10 demonstrates the ability of our approach to handle materials
with dense microdetails, including granular materials, such as sand
and snow, as well as glitter, and an anisotropic example of colored
brushing. In all images we use a simple star-shaped posteffect to
better convey the dynamic range of the sparkles.

Please see the supplementary video for the demonstration of tem-
poral stability as well as the user control over the appearance. Note
that some aliasing can be still observed in highly curved places, like
the left front pillar of car’s frame, which is caused by the macroscale
NDF.

Our method is completely procedural, thus does not require any
memory traffic, which makes it a perfect candidate for interleaving
with the conventional real-time shading workload. Our approach is
also very modular, thus is readily available for a plug-in integration
into a shading system of an existing large-scale application or game
engine.

Limitations and Future Work. We rely on parameterization of
the mesh (texture uv mapping) for orientation and microdetail den-
sity. This requires a reasonable parameterization without singular
or degenerate primitives. Stretched parameterization can cause un-
necessary anisotropic filtering in texture space, thus hurting the per-
formance, and, in case of anisotropic microdetails, such as brushed
grooves, it can change the density of microdetails in such places.

Our work also relies on a common assumption about the pixel foot-
print and works with its first-order parallelogram approximation.
The computation of the footprint can be further improved to pro-
vide more accurate results, e.g., by accounting for surface curva-
ture that compresses the footprint. Anisotropy of pixel is limited
by Ka = 16× of maximum aspect ratio, which suggests a po-
tential future work in analytic integration of stable shading across
the arbitrary footprint shape. We found that practically the current
footprint computations are usually sufficient for our needs even in
the cases of extreme anisotropy. Pixel footprint is also defined only
for primary rays. The notion of an NDF patch can be extended to
handle multiple indirect bounces (e.g., in the spirit of [Bagher et al.
2012]) as another potential future work.

Another limitation is that our method requires a practically com-
putable convolution of two NDFs, which was the reason for con-
sidering only Beckmann NDFs throughout this work. Approximate
numerical fit for convolution with a Trowbridge-Reitz distribution
can be an important potential future work.

One interesting future work is to apply the quantized shading grids
to conventional real-time shading to improve shading stability.

We also envision other applications for stable multiscale object-
space noise, such as procedural placement of instances (e.g., grass,
trees, etc.), and local procedural object-space content (e.g., various
procedural texture maps, decals, and other object details).

6 Conclusion

In this paper, we propose a practical real-time method for stable
antialiased rendering of challenging materials, such as glints and
brushed grooves. Our biscale NDF model allows simulation and
control of the material with microdetails by exposing separate con-
trols for macroscopic appearance as well as for the appearance of
local microdetails. We provide a stable multiscale noise generation
pattern in object space, which is temporally stable and passes infor-
mation across scales. We also use an accurate filtering across the
anisotropic pixel footprint in object space to ensure robust sampling
of microdetails at grazing angles of view. We demonstrate that our
method can achieve a wide range of microdetail appearances, rang-
ing from glitter and snow to brushed metal. In addition, we show
that the method is readily applicable to modern real-time lighting
models, such as light sources with finite angular extent. Our perfor-
mance numbers indicate that the method is feasible to use in current
and upcoming real-time applications.
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Figure 10: Examples of high-density microdetails: (a) sand on a sunny day; (b) colorful anisotropic brushed grooves; (c) glitter illuminated
by environment mapping; and (d) circular colored brushing.

American Classic Cars) commercial models are provided by http:
//www.cgriver.com.
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