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(a) Rasterization (1 sample) (b) Rasterization + convolution (c) Ray-traced reference

Figure 1: Prefiltering in the slope domain over the pixel footprint, with a faint diffuse term, a Beckmann BRDF with roughness α = 0.01, and no normal
maps. Left to right: (a) regular rasterization with 1 sample/pixel; (b) the same method with our analytic NDF filtering; (c) a ray-traced reference with 512
samples/pixel. Note how reliably our solution finds tiny bright highlights that usually require many samples.

Abstract
High-frequency illumination effects, such as highly glossy highlights on curved surfaces, are challenging to render in a stable
manner. Such features can be much smaller than the area of a pixel and carry a high amount of energy due to high reflectance.
These highlights are challenging to render in both offline rendering, where they require many samples and an outliers filter, and
in real-time graphics, where they cause a significant amount of aliasing given the small budget of shading samples per pixel.
In this paper, we propose a method for filtering the main source of highly glossy highlights in microfacet materials: the Normal
Distribution Function (NDF). We provide a practical solution applicable for real-time rendering by employing recent advances
in light transport for estimating the filtering region from various effects (such as pixel footprint) directly in the parallel-plane
half-vector domain (also known as the slope domain), followed by filtering the NDF over this region. Our real-time method
is GPU-friendly, temporally stable, and compatible with deferred shading, normal maps, as well as with filtering methods for
normal maps.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional Graphics and
Realism—Color, shading, shadowing, and texture I.3.3 [Computer Graphics]: Antialiasing—

1. Introduction

Modern offline and game renderers commonly use microfacet-
based surface scattering models as the basis for material ap-
pearance. These models can be a challenge to correctly an-
tialias [BN12]. A particularly important problem, and the focus of
our work, is specular aliasing. Undersampling of the specular com-
ponent of a bumpy surface can lead to jarring visual shimmering of
bright highlights when surface features become sub-pixel [Ama92].

† {akaplanyan,apatney,alefohn}@nvidia.com
‡ stephen.hill@ubisoft.com

Surface appearance can also change under minification, which is
undesirable as artistic intent should be preserved at all scales.

These issues stem from a failure to account for all sub-pixel vari-
ations of a surface. In the offline rendering world this can be ad-
dressed via super-sampling [Cro82], but this is expensive and par-
ticularly impractical for real-time applications such as games.

Partial solutions for real-time rendering are available:

• Numerous techniques handle variance from normal or displace-
ment maps [Tok05, OB10, DHI∗13], but they do not account for
angular variance coming from the base surface geometry.

• Post-filtering, such as temporal antialiasing [Kar14] can reduce
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(a) Rasterization (1 sample) (b) [Vla15] (c) [HB12] (d) Ours (e) Ray-traced reference

Figure 2: A tile of a wavy water surface, with GGX NDF with isotropic roughness α = 0.01 and a faint diffuse term with a point light over it. From left to
right: (a) regular rasterization with 1 shading sample/pixel; (b) specular antialiasing solution of [Vla15]; (c) specular antialiasing solution of [HB12]; (d) our
solution with a rectangular NDF filtering; (e) ray-traced reference with 128 samples/pixel. Note how previous solutions change the appearance of the material.

specular shimmering, but it clamps high-intensity highlights, and
it does not ensure preservation of appearance at all scales.
• Some methods attempt to address geometric variance, but

they either change the appearance [HB12, Vla15] (see Fig. 2)
or are restricted to special cases such as filaments [ZW07],
waves [BNH10], a particular BSDF model [Ama92], or environ-
ment maps [Wil83].

In this paper, we present a new real-time method to antialias
common microfacet models that accounts for sub-pixel variance in
shading in a rigorous, general way. Inspired by the idea of specular
bandlimiting [Ama92], our technique first identifies and transforms
the filtering region (e.g., a pixel footprint) into the slope domain,
where the microfacet model is defined, and then filters the princi-
pal component, the Normal Distribution Function (NDF), over this
transformed region. Our approach accounts for geometric curva-
ture, can be combined with normal map filtering techniques, and
provides a connection between the variations of light path vertices
and the corresponding variation induced in the NDF domain.

2. Previous Work

Modern renderers model material properties using microfacet Bidi-
rectional Scattering Distribution Functions (BSDFs). In these mod-
els, the scattering portion of the BSDF is modeled using a dis-
tribution of microscopic specular facets, or Normal Distribu-
tion Function (NDF). Microfacet BSDFs were first introduced in
physics [TS67] and later reintroduced in computer graphics [CT82]
to describe light scattering during reflection off a rough surface. See
Heitz [Hei14] for a recent survey on microfacet theory.

Two of the most common microfacet NDFs currently used in
rendering are the Trowbridge and Reitz [TR75] model, known
in graphics as GGX [WMLT07], and the Beckmann distribu-
tion [BS63]. The Beckmann NDF assumes a heightfield of mi-
crosurfaces with microfacet slopes distributed according to a bi-
variate Gaussian distribution in the slope domain. The GGX NDF
describes the distribution of slopes produced by an ellipsoid and
provides a closer match for some measured materials [WMLT07,
Bur12].

The NDF of a normal-mapped or displacement-mapped surface
can be arbitrarily complex, requiring careful evaluation to pre-
serve the appearance while still avoiding aliasing. Representation
of complex materials with multiple scales was studied by Westin
et al. [WAT92]. Aupperle and Hanrahan [AH93] used a finite ele-
ment method with adaptive subdivision of geometry under glossy

highlights. Fournier [Fou92] combined NDFs produced by mul-
tiple surfaces and bump maps with the NDF of a surface BSDF.
A smooth transition between displacement maps, bump maps, and
simple BSDF shading at multiple scales was proposed [BM93], us-
ing a hierarchy of multiple BSDF frequency levels as well as a mod-
ification to bump mapping. Kautz and Seidel [KS00] proposed a
shift-variant BSDF model to parameterize well-known BSDF mod-
els into a non-linear basis for efficient filtering. Toksvig [Tok05]
introduced a practical way of computing a variation of normals in a
prefiltered mip chain of a normal map texture by fitting a Gaussian
NDF. More advanced normal map filtering includes storing multi-
ple parametric NDF lobes motivated by frequency-domain normal
map filtering [HSRG07], using a mixture of BSDFs [TLQ∗08],
as well as linearly filterable moments of parametric distributions
stored in mip chains of textures [OB10]. A similar approach was
also applied to gradually convert displacement mapping into an
NDF at a distance [DHI∗13].

Despite progress on filtering NDFs, there is no efficient method
to integrate an NDF over the region of a surface intersected by
a pixel footprint, so one must resort to point sampling instead.
We base our work on the seminal concept of specular antialias-
ing [Ama92] and address this problem by projecting an estimation
of the on-surface pixel footprint into the slope domain, where mi-
crofacet NDFs are defined. With the pixel footprint extent in the
slope domain, we filter the NDF across this region, enabling us to
compute a higher-quality estimate of the NDF variation. More gen-
erally, our formulation integrates over perturbations caused by any
of the three vertices in the eye-surface-light path.

Recently, Jakob et al. [JHY∗14] and Yan et al. [YHJ∗14] pro-
posed two different methods for filtering discrete and spatially
varying mesoscale NDFs. Jakob et al. [JHY∗14] stochastically
model the number of discrete slopes covered by the pixel footprint
and can be quickly evaluated by a hierarchical subdivision of the
latter in the microfacet domain. Yan et al. [YHJ∗14] concurrently
proposed another method for filtering spatially varying microstruc-
ture. They handle a high-resolution normal map texture by resolv-
ing a mesoscale NDF defined on a pixel footprint by hierarchically
pruning irrelevant normal map texels.

Our solution employs recent progress in specular light trans-
port. Manifold exploration (ME) [JM12] is a mutation strategy for
Metropolis Light Transport [Vea98] specifically designed to im-
prove sampling of specular and highly glossy paths. It is based on
the observation that a specular vertex enforces Fermat’s principle
as a constraint on the half vector on a specular vertex. This work
was extended to transform the integration from the on-surface area
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Symbol Description
a Vectors are in bold
i Unit vector of incident direction (towards the light)
o Unit vector of outgoing direction (towards the sensor)
e Point on sensor’s aperture where the viewing ray originates
l Point on a light source where the light ray originates
x Point on a surface where shading is computed
n Unit vector of shading normal at the surface point
m Halfway unit vector on the hemisphere above x
h Halfway vector in the slope domain
M Matrix
T Rotation matrix to shading tangent frame

D(m) Normal distribution function (NDF)
F Pixel footprint projected onto a surface
P Parallelogram of ray differentials on the tangent plane

Table 1: Notation used throughout the paper.

domain to the domain of half vectors at path vertices [KHD14], and
then perform the integration directly in the slope domain [HKD15].
We use the derivatives used to change the integration domain (from
on-surface to slope domain) to transform the pixel footprint from its
on-surface projection (e.g., obtained using ray differentials [Ige99])
into the region directly in the slope domain. Using this region, we
can efficiently filter the NDF across the pixel footprint.

3. Background

The microfacet scattering distribution model assumes that scatter-
ing appears due to a microscopic geometric surface structure, which
can be defined by a heightfield of microsurface heights. The full
microfacet BSDF model is

fs(i,o) =
F(i,o)D(m)G(i,o)

4 |i ·n| |o ·n| , (1)

where n is the surface normal; |·| denotes an absolute value of a
dot product, which is unified for both reflection and transmission;
m is a halfway unit vector between incident and outgoing direc-
tions i and o that defines the micronormal, D is a distribution of
micronormals, called a Normal Distribution Function (NDF); and
F is a Fresnel term that describes the proportion of reflected light
on the interface between two media. The masking-shadowing term
G accounts for self-occlusion of microfacets given directions i and
o. See Table 1 for detailed notation.

Normal Distribution Function. The normal distribution function
D at surface point x is defined as a probability for a microfacet on
a unit patch A to have a normal direction m as

D(m) =
dA(m)

Adm
=

dA(h)
Adh

dh
dm

= D(h), (2)

where A ≡ 1 is the area of unit patch (by convention) and dA(m) is
the area of all microfacets with normals in the infinitesimal proxim-
ity around direction m. We will also slightly overload the notation
and, depending on the argument, will use an alternative definition
of the NDF D(h). In this case, NDF D(h) is evaluated in the do-
main of slopes, with h = mxy/mz being a projection of m onto a
parallel plane one unit away from the surface along the normal (see

0

1

Figure 3: Notation of path vertices and half vector in various domains con-
sidered throughout the paper.

Fig. 3). Note that this change of domain requires a corresponding
Jacobian, which is embedded into the D(h) form of the NDF.

3.1. Transformation into Half-Vector Space

A transformation from the space of light path vertices to half vec-
tors was first plotted by Chen and Arvo [CA00], explicitly for-
mulated in manifold exploration [JM12], and further formalized
in half-vector space light transport [KHD14, HKD15]. We use this
transformation to estimate the region F for NDF filtering in Sec-
tion 4.

First, consider a direct lighting path in Fig. 3 that consists of an
eye vertex e, a vertex on the scene surface x subject to shading,
and a vertex l on the light source. The halfway vector h in the slope
domain is then a function of all three path vertices. It can be defined
in the local shading tangent frame as

h = T (x)hw, (3)

where hw =
i+o∣∣n · (i+o)

∣∣
is the half vector in world space, formed from the incident direc-
tion i(x, l) = l−x

||l−x|| and outgoing direction o(e,x) = e−x
||e−x|| , and

n(x) is the shading normal at point x. This vector is transformed
by T (x) = (s, t,n)T , a matrix formed by the basis vectors of the
orthonormal shading frame at x. In order to convert the halfway
vector from a hemisphere (m) to a parallel plane (hw), we replace
its normalization with division by the dot product with the shad-
ing normal n. Note that this is the same slope domain in which a
microfacet NDF is defined [HKD15].

Derivative at a Vertex. Without loss of generality, we obtain a
derivative of the function h with respect to the middle path vertex
x on the surface. It is also the derivative we will use later for filter-
ing with the pixel footprint. Derivatives with respect to other two
vertices are similarly obtained (see [Jak13] for details).

We will use the derivative matrix M (Jacobian) of h(x) with re-
spect to x to perform a change of variables to convert the domain
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from vertex x to half vector h. The Jacobian matrix M can be com-
puted in a straightforward manner as

M(x) = dh
dx

=

 ∂hs
∂xs

∂hs
∂xt

∂ht
∂xs

∂ht
∂xt

 , (4)

where ∗s and ∗t are the scalar components of a vector along the
corresponding vectors s and t of the shading tangent frame. We
refer the reader to the optimized expressions for computing these
derivatives in Appendix A2 of Jakob’s PhD thesis [Jak13] and in
half-vector space light transport [HKD15, Section 3.2]. This form
can be used for ray tracing-based offline rendering methods, but
we will show how to avoid the bulky computation of this full
derivative when rendering with rasterization on modern GPUs, or
with shading languages that provide partial derivatives, such as
OSL [GSKC10].

We also use this Jacobian matrix M for a first-order Taylor ap-
proximation

h(x+∆x) = h(x)+∆xM(x)+o(∆x),
∆h(x)≈ ∆xM(x). (5)

The last line is a rearrangement of the first equality, followed by a
truncation of higher-order terms. In other words, we can estimate a
first-order change in the half-vector domain caused by the change
of vertex x using this Jacobian matrix M.

Another useful form that reveals the structure of the Jacobian
matrix M can be derived from Eq. 4 as

M(x) = h′(x) = T (x)h′w(x) + T ′(x)hw(x), (6)

where h′w is a 2× 2 full derivative matrix of hw; and T ′(x) is a
2× 2× 2 tensor derivative of the 2× 2 tangent frame matrix with
respect to the tangent axes s and t.

4. NDF Filtering for Direct Lighting

4.1. Filtering an NDF

Consider a direct lighting situation with three vertices e,x, l along
the light path (see Fig. 4, left). In the general case, in order to
compute the incident flux on the pixel surface, we should inte-
grate over three dimensions: camera aperture, pixel area, and light
source area. To simplify the analysis, let us assume a pinhole cam-
era with infinitesimal aperture and a point light source with in-
finitesimal extent, and focus on the example of filtering an NDF
with the pixel area. In other words, we assume that the vertices l
and e stay fixed, while the vertex x moves on the surface based on
the outgoing direction from the pinhole camera. The light transport
integral [Vea98] is then

I =
∫
F

W (e,x)G(e,x) fs(e,x, l)G(l,x)Le(l,x)dx, (7)

where I is the resulting incident flux onto the pixel area, F is the
region of the scene visible through the pixel (the pixel footprint),
W (e,x) is the responsivity of the sensor towards the direction ex,
G(a,b) is a geometric term between vertices a and b, Le(l,x) is
the radiance emitted from the light source towards lx, and fs is the
BSDF at point x evaluated with directions o = xe and i = xl.

Figure 5: The OGRE scene rendered with a Beckmann BSDF that excludes
the NDF itself, and a directional light with unit intensity. Left: all terms
in the BSDF fs except the NDF D are visualized and evaluated only once
at the center of the pixel; middle: reference image, where these terms are
supersampled with 512 samples per pixel; right: false-colored difference
with HDR intensity range from 0 to 1/16 (maximum is 1).

The product W (e,x)G(e,x) is usually evaluated by sampling the
point on the pixel uniformly and then finding the corresponding
visible point x on the surface using ray tracing or rasterization. This
term is therefore perfectly importance sampled and disappears from
the final estimation. The product G(l,x)Le(l,x) is usually handled
during lighting computations.

Here we apply the far field approximation. The far field model
is based on the assumption that the distances between vertices e,
x and l are much greater than the largest extent of the integration
region F . In other words, the shading region is insignificant in size
compared to the distance to the sensor and the light source. There-
fore, we can assume the directions i and o to be constant. We can
then assume that both terms W (e,x)G(e,x) and G(l,x)Le(l,x) stay
relatively constant during the integration and decorrelated from the
varying terms. Therefore, we take them out of the integral (includ-
ing the smoothly varying adjoining cosine terms inside the geo-
metric terms) and integrate them separately. Denoting the integral
with the product of these terms as Cp (path constant) for brevity,
we obtain

I ≈Cp

∫
F

fs(e,x, l)dx. (8)

This is a standard uncorrelated shading assumption that filters the
BSDF fs across the pixel footprintF . We refer the reader to [BN12]
for a thorough treatment of the subject.

Next, we insert a microfacet BSDF from Eq. 1 and apply the far
field assumption again, to pull the slowly changing terms—such as
the shadowing-masking term G, and a Fresnel term F , along with
dot products—out of the integral. We denote the new product of the
integral of these terms with the old constant Cp as C

I ≈C
∫
F

D
(
m(e,x, l)

)
dx =C

∫
F

D
(
h(x)

)
dx, (9)

where m(e,x, l) is the halfway unit vector (in the spherical domain)
that depends on all three vertices. We also rewrite the NDF with a
slope-space argument h(x). Fig. 5 shows the error introduced by
these approximations. Note that due to the smoothness, the integral
inside C can be sparsely sampled.
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0

1

Figure 4: A flatland illustration of filtering an NDF in slope space (on the right) with the variation of half vectors induced by pixel footprint (left). A single
shading point in the center of a pixel is shown with a green dot on the surface (left). On the right we also show a green dot at the NDF value corresponding to
this shading point.

Next, instead of integrating the NDF over the pixel footprint,
we change the integration domain from dx to slope domain dh and
transform the pixel footprint region F into the slope domain region
P using the corresponding linear transformation M defined earlier
as P ≈ M(F) (see Fig. 4). This implies that the curvature variation
in the local neighborhood of the surface is insignificant. Then, the
last integral becomes
∫

F
D
(
h(x)

)
dx ≈

∫

P
D(h)

∣∣∣∣
dx
dh

∣∣∣∣dh ≈ |F| 1
|P|

∫

P
D(h)dh, (10)

where dx/dh = M is assumed to be constant, and we use |P| =
|M||F| by construction. This approximation of the integration re-
gion is valid under the assumption that the mapping from F to P
is a bijection (see [KHD14] for more details).

Similar to an NDF, this integral computes an effective area of
reflective microfacets, except over the macroregion F . Note that
since D does not depend on x any more, the integral over the pixel
footprint F collapses to the area of F , which is computed implicitly
during sampling as previously. In other words, we substitute the
NDF in Eq. 9 by its prefiltered value over the pixel footprint in the
slope domain

D̃(P) = EP
[
D(h)

]
=

1
|P|

∫

P
D(h)dh. (11)

This integral provides an expected density of microfacets oriented
within the region of slopes P . This allows us to perform shading at
a single point, while using the NDF that was filtered over the whole
pixel footprint.

This result can be also interpreted as a convolution with a con-
stant normalized kernel KP = P/|P| (with a support of P shape
and a value of one over the area of P) and then evaluated at zero as

D̃(P) =
1
|P|

∫

P
D(h)dh =

∫

R2
KP (h)D(h)dh = KP ∗D. (12)

This resulting convolution with an effective NDF kernel appears in
various forms in the literature [HSRG07, BN12]. We will use it to
approximate the kernel K to obtain a closed-form filtering solution
for some NDFs.

4.2. Estimation of Filtering Region

In order to estimate the filtering region P in the slope domain,
we first estimate the pixel footprint F projected onto the surface.
Therefore, we begin by using a first-order approximation, ray dif-
ferentials [Ige99], to project the variation of directions from the
sensor’s pixel onto the tangent plane of the surface vertex x. This
variation is then obtained as two vectors ∆xu and ∆xv on the tan-
gent plane of the surface, corresponding to the horizontal and ver-
tical pixel steps in the uv image plane. These two vectors form a
parallelogram approximation of the pixel footprint.

We then transform each of these two differentials into half-vector
space using Eq. 5 and obtain the first-order variations ∆hu = ∆xuM
and ∆hv = ∆xvM in the slope domain, where the NDF is defined.
The parallelogram P formed by these vectors is then used to filter
high-frequency NDFs.

4.3. Filtering Existing NDF Models

To make this method practical, we need an efficient way to compute
the filtered NDF from Eq. 11. We consider two common physically
based NDFs, Beckmann and Trowbridge-Reitz, and provide prac-
tical filtering solutions for them.

Beckmann NDF. In order to filter the Beckmann distribution, we
first recall that it is a scaled version of a bivariate Gaussian distri-
bution in the slope domain [BS63].

Next, we assume that the pixel reconstruction filter is a 2D Gaus-
sian filter in image space with a standard deviation of half a pixel
σu = σv = 0.5∆p. In this case, the vectors ∆hu and ∆hv represent
the vectors of a standard deviation of this 2D Gaussian distribu-
tion tracked from image space into the slope domain. We then use
Eq. 12 to convolve the two 2D Gaussians in the slope domain, by
summing up their covariance matrices.

In order to obtain a covariance matrix from two standard devi-
ation vectors, we use a quadratic matrix form to square the full
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matrix composed of these two standard deviation vectors as

P =

(
∆hu
∆hv

)(
∆hu
∆hv

)T

. (13)

Given an anisotropic Beckmann distribution with roughness val-
ues αs and αt along tangent axes, its covariance matrix can be writ-
ten as

B =

(
α2

s/2 0
0 α2

t /2

)
, (14)

where we use the relation α2 = 2σ2 [BS63] between the standard
deviation of a Gaussian distribution and the roughness parameter
of a Beckmann distribution.

The filtered NDF is then a convolution of the Beckmann distribu-
tion with the Gaussian pixel filter projected into the slope domain.
Both distributions are Gaussians, so the convolution is another 2D
Gaussian with a covariance matrix B′, which is a sum of their co-
variance matrices

B′ = B+P. (15)

Note that the Beckmann distribution should then be evaluated with
the full roughness matrix 2B′ due to the scaling between the stan-
dard deviation and the roughness.

Trowbridge-Reitz NDF. The Trowbridge-Reitz/GGX NDF does
not have an elegant closed-form convolution. Therefore, we use an
ad hoc integration method from Eq. 11.

Moreover, we simplify the integral by circumscribing an axis-
aligned bounding rectangle R around the parallelogram filtering
region with corresponding scalar ranges ∆hs and ∆ht along the axes
s and t (see Fig. 6, (a)). Therefore, the integration can be decom-
posed as

D(P)≈ D(R) =
1

|∆hs∆ht |

∫ hs+
∆hs

2

hs− ∆hs
2

∫ ht+
∆ht

2

ht− ∆ht
2

D(s, t)dsdt, (16)

where integration is performed over an axis-aligned rectangle in
s, t and the argument h for the NDF D(h) is formed out of two
scalar values (s, t) in the slope domain. See Appendix A for the full
expression.

4.4. Filtering Other BSDF Terms

So far, we considered only filtering of the NDF term D. This term
can take high values for smooth materials (low roughness), and is
potentially unbounded, while becoming an extremely narrow peak
in slope space.

In addition to the NDF, there are several other terms in the micro-
facet BSDF (Eq. 1) that can potentially be filtered as well. However,
unlike the NDF term, all other terms, including the shadowing-
masking term G and the Fresnel term F , are bounded, with val-
ues in the range [0,1]. Moreover, all terms except the NDF vary
smoothly and thus do not cause significant aliasing. See Fig. 5 for
the variation of these terms. Therefore, we focus only on filtering
the NDF term of a BSDF in this work.

(a) Over-filtering (b) Rectangular filter

(c) Parallelogram filter (d) Reference

Figure 6: Water surface with Beckmann NDF (α= 0.01). Blurred highlights
occur due to rectangular filtering. Top row, left to right: (a) illustration of
an over-filtering case for the rectangular filter, where the NDF peak (red
circle) is not covered by the parallelogram, but is covered by its bounding
rectangle; (b) filtering of the water surface with rectangular filter R causes
blurred highlights near the horizon. Bottom row: (c) filtering with parallelo-
gram filter P; (d) converged reference image rendered with ray tracing with
256 samples/pixel.

5. Real-time Optimizations

In order to make NDF filtering practical for real-time use, this
section describes an optimized estimation of the filtering region,
approximations for making the method compatible with deferred
shading [DWS∗88], and a more conservative filtering of the NDF
for imperfect game assets.

5.1. Efficient Computation of Jacobian on GPU

To efficiently compute the vectors ∆hu and ∆hv of the parallelo-
gram filtering region P during GPU rasterization, we do not need
to perform the sophisticated machinery from [HKD15] to compute
the Jacobian matrix M and ray differentials ∆xu and ∆xv. Instead,
we utilize the fact that shading is performed in a 2×2 quad of pix-
els for every shading point during GPU rasterization. Therefore, we
rely on the ddx/ddy instructions that provide finite differencing of
arbitrary variables within the same triangle on a quad. The vectors
∆hu and ∆hv are then obtained by taking the corresponding ddx

and ddy derivatives of the half vector h projected into the slope do-
main. This optimization makes the method practical for real-time
graphics. Shading languages with autodifferentiation functionality,
such as OSL [GSKC10], can employ the same approach.

We measure both the difference in image highlights as well as the
difference in estimation of the parallelogram region P between the
precise computation of the Jacobian matrix M and the optimized
GPU method. The difference in parallelogram is estimated as an
area of non-overlapping regions between the two parallelograms.
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(a) Unoptimized (b) Optimized

(c) Difference: (a) − (b) (d) Difference: parallelograms

Figure 7: The OGRE scene rendered with directional light of unit inten-
sity, a faint diffuse term and a Beckmann NDF with roughness α = 0.01
(maximum intensity is 1/(πα2)). First row: (a) derivative matrix M com-
puted using [HKD15] in geometry and pixel shader and then multiplied
by ∆x computed using ddx/ddy instructions; (b) optimized computation of
matrix U = M∆x using ddx/ddy finite differencing of the half vector h.
Second row: (c) heat map image of the intensity difference between the two
images; (d) heat map image of area-based difference between the estimated
parallelograms with both methods.

We provide a false-color visualization of these differences, normal-
ized to the largest of the two areas, in Fig. 7.

5.2. Clamping the Filtering Region

The estimated filtering region P is unbounded and can take large
values in practice, especially at grazing viewing angles or with
shading normals under the visible horizon. Since the filtering re-
gion is centered around the current half vector value, it can cover
the whole slope domain, leading to false highlights in these cases.
This happens due to multiple factors, such as the first-order approx-
imation of pixel footprint, or extrapolation of quad interpolants in
the case of partial pixel coverage.

On the other hand, maintaining the filtering across such large
regions is not required to achieve stable antialiased NDF filtering.
In practice, the region’s linear extents are far below the roughness
value of 1, as demonstrated in Fig. 8. Therefore, for practical filter-
ing, we clamp the extents of large filtering regions to a maximum
of λ (we use λ = 1 in all experiments) by either rescaling the par-
allelogram P or by simply clamping the linear values hs and ht for
the axis-aligned rectangular region R.

Further clamping from below is necessary when filtering the

Figure 8: Heat map visualization of the maximum linear extent of an esti-
mated filtering region P in the slope domain. The magnitude of one cor-
responds to a filter region with maximum extent of one unit in the slope
domain. Two visualizations of the same view with differently scaled ranges
are provided to show both the working range of the filter size, as well as the
outliers with large values at grazing angles.

GGX NDF using Eq. 16, since the division by the area of the fil-
tering rectangle R is numerically unstable when the area is small.
Therefore, we clamp the sides (hs and ht ) of the rectangle to a min-
imum value, ε = 10−3.

5.3. Stable Biased Filtering

In practice, a tight filtering region may not guarantee temporal sta-
bility due to various issues with production geometry, such as many
small submanifolds, non-manifold geometry, and imprecise or im-
properly smoothed shading normals. The filtering region can be ei-
ther tight and more prone to aliasing, or conservatively large and
thereby over-filter, leading to excessive blurring of the highlight.
This is a well-known noise-bias trade-off that has been thoroughly
analyzed in the context of texture filtering (e.g., [Hec89]). Even
though NDF filtering is performed in a different domain, the trade-
off is the same: we either (1) apply a tight filtering region and there-
fore rely on the quality of the input geometry and shading normals;
or (2) conservatively estimate the filtering region and therefore
accept slightly blurred specular highlights. Option 1, while being
prone to aliasing, provides more accurate highlight shapes. Option
2, on the other hand, while over-blurring the highlights, provides
more temporal stability and more robust antialiasing.

Though it appears to be a regular trade-off, with both options
having their own advantages and disadvantages, the second option
is generally favored for real-time graphics [Hec89]. For example,
all GPU-accelerated texture filtering methods perform a conserva-
tive estimation of pixel footprint in order to reduce aliasing.

Following this same reasoning, we propose a more conserva-
tive estimation of the filtering region to provide a robust solution
for antialiasing and temporal stability. At the cost of slightly over-
blurring specular highlights, with this approach we achieve a robust
and temporally stable filtering solution, especially for imperfect ge-
ometry and shading normals.

Instead of using a tight first-order region of a parallelogram P ,
for conservative filtering we use a slope-domain axis-aligned rect-
angle R for all NDFs. This rectangle R is obtained from the paral-
lelogram P by computing the largest linear extent along each axis

c© 2016 The Author(s)
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(a) Forward (b) Deferred (c) Deferred, max roughness (d) Difference: (a) − (b) (e) Difference: (a) − (c)

Figure 9: Deferred shading with NDF filtering, for Beckmann (top row) and GGX (bottom row) NDFs (both with roughness α = 0.01), with two options for
storing prefiltered roughness in G-Buffer. From left to right: (a) forward rendering with no MSAA and NDF filtering; (b) deferred shading with prefiltered
NDF and with two G-Buffer channels for storing the anisotropic roughness; (c) same as (b), but storing the maximum roughness in a single channel; (d) HDR
intensity difference image between (a) and (b); (e) difference image between (a) and (c).

Figure 10: Assumptions for deferred shading. Left: the far field model as-
sumes that both the light source and camera are far enough away to neglect
changes in incident and outgoing directions [Ama92]. Right: we assume
that the direction to the light is close to the perfect reflected viewing direc-
tion in order to conservatively estimate the worst-case change in half vector.

of the slope domain. We set the axes to be the tangent vectors s and t
(Fig. 6, (a)).

Filtering over the axis-aligned rectangle R potentially leads to
a slight over-blurring of specular highlights, as demonstrated in
Fig. 6, while providing stable alias-free results in all of our tested
scenes. It is also the only available option we provide for the GGX
NDF, though more accurate and efficient filtering of this distribu-
tion remains an open question.

5.4. Combining with Deferred Shading

Deferred shading [DWS∗88] is a widespread rendering method in
modern real-time applications such as games. Rendering is split
into two parts: the first pass renders a scene and outputs shading

attributes into a G-Buffer; one or more subsequent shading passes
are then performed in image space in order to shade the visible
shading points with multiple light sources. The challenge of NDF
filtering with deferred shading is that we cannot determine the half
vector h during the G-Buffer generation pass, since the direction to
the light source i is unknown. On the other hand, after this pass the
Jacobian matrix cannot be computed because we do not have access
to the triangle with its shading normals and their derivatives.

Recall that the Jacobian matrix M can be written using a chain
rule as shown in Eq. 6. For deferred shading, we apply a far field
assumption (Fig. 10, left) and thus let h′

w(x)≈ 0, obtaining

M(x)≈ T ′(x)hw(x). (17)

We can compute the tensor derivative of the shading frame during
the G-Buffer generation pass, but the value of hw(x) remains un-
known.

Another assumption is that filtering is only required for highly
glossy materials (Fig.10, right), where we can assume that hw(x)≈
nw(x). In order to avoid degenerate (zero) derivatives with this ap-
proximation, we first compute an average normal within the shad-
ing quad and then set all hw within the quad to this value. Taking
both assumptions into account, we compute an approximation of
the filtering region vectors ∆hu and ∆hv, and filter the NDF (as dis-
cussed above) during the G-Buffer generation pass, before storing
the final filtered roughness.

NDF Prefiltering with Compact Storage. For the Beckmann
NDF we simply perform a convolution using Eq. 15. Note that be-
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cause we use a rectangular filtering region R, the covariance ma-
trix of the corresponding Gaussian is a diagonal matrix, therefore
the resulting matrix B′ is also a diagonal matrix and thus can be
stored as a new prefiltered anisotropic roughness in the G-Buffer.
In cases where the G-Buffer only has one channel available for stor-
ing roughness, we take the maximum of the two roughness values
along s and t. This way we conservatively store the largest filter
extent. See Fig. 9, top row for comparisons of storage options for
the Beckmann NDF.

Approximate Prefiltering for Trowbridge-Reitz NDF. In the
case of the GGX (Trowbridge-Reitz) NDF, we would like to store
the same prefiltered roughness. However, the rectangular integral
in Eq. 16 requires both roughness values and the rectangular filter-
ing region dimensions to be stored in the G-Buffer for subsequent
shading. This requires three to four G-Buffer channels (depend-
ing on the storage options for roughness), which is an undesirable
memory and bandwidth burden. To avoid this, we instead store an
effective roughness α

′
s and α

′
t , which is a result of approximating

the convolution by fitting the filtered distribution back to a new
GGX NDF with these roughness parameters.

In order to fit the effective roughness, we evaluate the closed-
form convolution KR ∗D of the rectangular filtering region with
GGX NDF at h = 0, by taking the integral

C(αs,αt ,∆hs,∆ht) = KR ∗D(0)

=
∫
R2

D(s, t)KR(s, t)dsdt, (18)

where the integration happens over the whole slope domain and the
result is the function of GGX roughness values αs and αt , as well
as the sides of the rectangular region ∆hs and ∆ht . This function is
no longer a GGX NDF and has the peak value at the origin after
convolving with the rectangular kernel. In order to fit it back to
another GGX distribution with effective roughness values α

′
s and

α
′
t , we first equate the peak value of the fitted GGX to the peak

values of the convolution

D(α′
s ,α

′
t )
(0) =

1
πα′sα′t

≈ C(αs,αt ,∆hs,∆ht), (19)

where D(α′
s ,α

′
t )
(0) is the fitted GGX NDF with effective roughness

parameters evaluated at zero. Unfortunately, this equation is under-
constrained if we were to solve it with respect to α

′
s and α

′
t .

Therefore, we assume the following approximations α
′
s ≡ α

′
t ≡

α
′, αs ≡ αt ≡ α, and ∆hs ≡ ∆ht ≡ ∆h and solve Eq. 19 with these

assumptions. The resulting solution

α≈
√

∆h 4
√

4α2 +∆h2

2
√

tan−1
(

∆h√
4α2+∆h2

)
≈
√

α2 +∆h2 (20)

is then evaluated for each triplet of parameters along the s and t
axes separately. The last approximation is another fit done manually
with a simpler function, which fits well when the argument values
are low. In practice it is indistinguishable from the first approxi-
mation, so we use this simpler form for the results. Because this
approximation is identical to the filtering of the Beckmann BSDF,

(a) Reference (b) Normal map
+ NDF filtering

(c) LEAN map
+ NDF filtering

Figure 11: The OGRE scene rendered with normal mapping and LEAN
mapping, with a faint diffuse term and a GGX NDF with roughness α =

0.01. From left to right: (a) reference image with 1024 samples/pixel;
(b) top: regular normal mapping (hereafter, 1 sample/pixel), bottom: reg-
ular normal mapping with NDF filtering; (c) top: LEAN mapping, bottom:
LEAN mapping with NDF filtering. Advanced methods better reconstruct
specular highlights.

we call it a Beckmann proxy for GGX, or simply GGX Proxy. See
Fig. 9, bottom for the various roughness storage options for the
GGX NDF and their associated accuracy.

5.5. Combining with Normal Map Filtering

We can combine our technique with both normal mapping and fil-
tering techniques for normal maps. The combination with normal
maps is achieved by rotating the shading frame according to the
normal from a normal map, before computing the derivative of the
shading frame. This is handled automatically on the GPU via the
ddx/ddy derivatives after applying regular normal mapping to the
shading tangent frame.

Our method is orthogonal to normal map filtering methods.
One of them, Linear Efficient Antialiased Normal (LEAN) Map-
ping [OB10], stores and filters (over a mip chain) the first and
second-order moments of the slope-domain normals. These terms
are then fetched at runtime to estimate the parameters of a bivariate
Gaussian (Beckmann) distribution.

To combine this filtering method with our NDF filtering, we do
the following. We first interpret the first-order moments as a regular
shading normal coming from the normal map and perturb the shad-
ing tangent frame with it. We then compute a covariance matrix Σ

of the estimated Beckmann distribution (Eq. 5 in [OB10]) and in-
terpret this as another kernel filter KL induced by variations of half
vectors caused by the normal map.

Finally, using the convolution formulation of NDF filtering from
Eq. 12, we perform a nested convolution

D̃ = KL ∗KP ∗D = (KL ∗KP )∗D = K′ ∗D. (21)

To filter the Beckmann NDF, it becomes a trivial summation of
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Figure 12: Temporal stability of GGX NDF filtering of the first sequence
in the accompanying video with the OGRE scene. This plot compares vari-
ation of the peak High Dynamic Range (HDR) image intensity of specular
highlights with (orange plot) and without (blue plot) NDF filtering, as well
as the reference ray-traced solution with 512 sample/pixel (green plot). We
plot frame count on the x axis, against the maximum linear HDR intensity
(unitless) on the y axis.

covariance matrices (as with Eq. 15). To filter the GGX NDF, we
compute the axis-aligned bounding rectangle around the vectors of
the standard deviations, by using the approximate Eq. 20. Results
of this combination are demonstrated in Fig. 11.

6. Results

We evaluate NDF filtering using an OpenGL-based real-time GPU
renderer and shaders written in GL Shading Language (GLSL).
Our renderer supports both forward and deferred rendering modes.
For performance measurements, we used a workstation with an
NVIDIA Quadro M6000 GPU. We use low values for the rough-
ness parameter (usually ≤ 0.01) in all of our experiments, as with
high roughness the filtering effect is both less prominent and less
essential.

6.1. Image Quality

The primary advantage of NDF filtering is its ability to produce
images that are closer to the ground truth. As we can see in Fig. 1,
using NDF filtering at just 1 sample per pixel is similar in quality
to ray tracing with 512 samples per pixel.

Fig. 9 compares image quality using our GGX filtering approx-
imation in a deferred renderer. The difference in quality between
NDF filtering in forward rendering and approximate deferred ren-
dering implementation shows that our approximations maintain the
quality of NDF filtering for both forward and deferred renderers.

Fig. 11 shows the image quality of NDF filtering integrated with
normal mapping and LEAN mapping. In both cases, the quality of
the final image is superior to images generated without the use of
NDF filtering, and is closer to the ground truth. NDF filtering com-
plements normal mapping and prefiltered normal mapping tech-
niques in these cases.

Scene Normals
Forward Deferred

B G Gp B G

Ogre
Vertex 0.02 0.14 0.03 0.06 0.09
Map 0.02 0.15 0.03 0.07 0.08

LEAN 0.02 0.13 0.02 0.06 0.06

Ganesha Vertex 0.09 0.53 0.18 0.19 0.28

Sponza
Vertex 0.32 2.40 0.49 0.46 0.78
Map 0.64 2.74 0.53 0.49 0.93

LEAN 0.29 1.50 0.22 0.45 0.68

San Miguel
Vertex 0.32 3.39 0.52 0.62 1.13
Map 0.63 3.73 0.60 0.78 1.29

LEAN 0.48 3.36 0.33 0.88 1.02

Table 2: Performance overhead of NDF filtering, measured as the change in
execution time of shaders due to addition of NDF filtering. All timings are
in milliseconds and correspond to images rendered at 3840×2160 pixels
with 1 sample per pixel on an NVIDIA Quadro M6000 GPU. B represents
the Beckmann BSDF implementation, G represents the GGX BSDF, and
Gp represents the GGX Proxy distribution.

Temporal Stability. Fig. 12 shows a comparison of temporal sta-
bility in animated scenes with and without NDF filtering to the
reference stability. In order to perform this measurement, we ren-
dered High Dynamic Range (HDR) images of the first and second
sequences of the accompanying video (generated with and with-
out the use of NDF filtering) as well as the ray-traced sequence
with converged highlights. Since flickering is most objectionable
on points of high-intensity illumination, we track the variation in
the maximum intensity across the image (L∞ norm) with frame
progression. NDF filtering generates images that are more stable
and closer to the reference peak intensity than those without its use.
This is a conservative metric, therefore the regions where blue and
orange plots are close correspond to fortunate periods where the
non-filtered shading is stable. On the other hand, there are under-
and over-filtering regions in our approach (compared to the refer-
ence) due to the first-order approximation and the rectangular GGX
filter region.

6.2. Performance

We measure the impact of NDF filtering on the performance of
existing shading systems. We investigate this impact from two per-
spectives: change in instruction count of shaders modified to per-
form NDF filtering, and influence on the time taken by shaders.

Table 2 shows the difference in milliseconds of per-frame GPU
execution time using conventional shading techniques, and those
using NDF filtering. We compare performance across multiple
axes: different scenes of varying complexity, forward as well as
deferred rendering modes, shading normals obtained using vertex
normals, normal maps, and LEAN mapping, and BSDFs including
Beckmann, GGX, and GGX Proxy. In almost all cases, the cost of
additional computation for NDF filtering is negligible. The only ex-
ceptions are shaders that filter GGX BSDFs (around 4 ms for San
Miguel for a shader that takes 12 ms). If accurate GGX evaluation
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Renderer Forward Deferred

Normals Vertex Map LEAN Vertex Map LEAN

Beckmann 19 19 11 24 25 36
GGX 272 272 267 — — —

GGX Proxy 22 22 17 24 25 36

Table 3: Instruction overhead of using our technique. We used
glslc [Kub13] to obtain instruction counts of fragment shaders with and
without NDF filtering, and report the difference above. The impact of NDF
filtering in most scenarios is between 10 and 40 static instructions. Using
the GGX BSDF in a forward renderer adds more than 200 instructions. The
approximate GGX Proxy evaluation is a lightweight alternative.

is expensive for an application, our approximate GGX Proxy eval-
uation serves as a lightweight alternative with reasonable image
quality (see Fig. 9).

Table 3 shows the impact of NDF filtering measured as the num-
ber of instructions added by modifying the above shading con-
figurations to incorporate NDF filtering. We measured instruction
counts by using the open-source tool glslc [Kub13], which out-
puts pseudo-assembly for GLSL shaders compiled for NVIDIA
GPUs. Our measurements show that except for shaders with full
GGX filtering, NDF filtering only adds 10–40 static instructions
across all shader configurations, which is acceptable in most ap-
plications. As before, full GGX filtering is heavier, as it adds
250–300 instructions, whereas the alternative GGX Proxy remains
lightweight without significant quality degradation.

Limitations. We address aliasing that comes from specular shad-
ing. Other sources of aliasing such as visibility are not covered,
therefore no improvements should be expected with respect to geo-
metric aliasing. We only take a single quadric into account when fil-
tering an NDF. On geometry with high-frequency details, subman-
ifolds can change rapidly, causing geometric aliasing during occlu-
sion or disocclusion. Since the filtering method works on shading
normals, it is crucial to have accurate shading normals on geometry,
as they define the virtual shading surface used for NDF filtering.

7. Conclusions

In this work, we provide a framework for filtering microfacet NDFs
caused by variations along the light path dimensions (e.g., caused
by a finite pixel footprint). These variations can be efficiently trans-
formed into the slope domain, over which we can integrate the
NDF. This allows us to estimate the NDF response across the whole
pixel footprint by doing the evaluation at a single shading sample.
We can also find small highlights and, more importantly, their av-
erage intensity across the pixel. The method shows good real-time
performance, as well as temporal stability, while being compatible
with other real-time methods, such as deferred shading and normal
map prefiltering.
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Appendix A: Filtering Trowbridge-Reitz NDF

Here we provide a full expression for the integral in Eq. 16 as

Eq. (16) =
1

2π|∆hs∆ht |

(
ϕ(h0

s ,h
0
t ,α,β)−ϕ(h0

s ,h
1
t ,α,β)+ϕ(h1

s ,h
1
t ,α,β)−ϕ(h1

s ,h
0
t ,α,β)+

ϕ(h0
t ,h

0
s ,β,α)−ϕ(h0

t ,h
1
s ,β,α)+ϕ(h1

t ,h
1
s ,β,α)−ϕ(h1

t ,h
0
s ,β,α)

)
,

where hs and ht are coordinates of the current half vector used for
shading (computed at the center of the pixel) in the local shading
frame projected onto the parallel plane. Integration is performed
over a rectangular filtering region that spans from h0

s ≡ hs−∆hs
to h1

s ≡ hs +∆hs along the s axis and from h0
t ≡ ht −∆ht to h1

t ≡
ht + ∆ht along the t axis of the shading frame; the function ϕ is
shorthand for

ϕ(x,y,γ,δ) =
xarctan

(
γ y√

x2+γ2δ

)
√

x2 + γ2
.
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