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Figure 1: left: the new IRT sampler (top) and a traditional raster sampler (bottom). The texture is mapped onto a waving flag. Right top:

green color indicates areas where the IRT sampler is effectively blended with the raster sampler; in blue areas only the raster sampler is used.

Right bottom: close-up. IRT chooses the sampler dynamically by analyzing texture coordinate differentials. In all cases, only a single texel

from the raster image is fetched per pixel. The original texture resolution is 533×606. The IRT sampling rate is about 6 billion texels per

second on an NVIDIA GeForce GTX 980 graphics card. The image is a photograph of the airbrush painting “Celtic Deer” © CelticArt.

Abstract

We propose a new texture sampling approach that preserves crisp silhouette edges when magnifying during close-up viewing, and

benefits from image pre-filtering when minifying for viewing at farther distances. During a pre-processing step, we extract curved

silhouette edges from the underlying images. These edges are used to adjust the texture coordinates of the requested samples

during magnification. The original image is then sampled — only once! — with the modified coordinates. The new technique

provides a resolution-independent image representation capable of billions of texels per second on a mid-range graphics card.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [I.3.3]: Three-Dimensional Graphics and
Realism—Color, shading, shadowing, and texture; Computer Graphics [I.3.3]: Picture/Image Generation—Antialiasing; Image
Processing and Computer Vision [I.4.3]: Enhancement—Sharpening and deblurring

This is the authors’ version of the paper. The definitive version is available at diglib.eg.org.
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1. Introduction

Graphics applications such as games combine 3D geometric data
and 2D textures. These assets behave differently under scaling. The
3D data represents the shape of the objects in a scene and as such
can be sampled at any resolution. 2D textures are typically used to
represent material properties and minute geometric details, and have
a limited resolution defined by the underlying image. Unlike 3D
models, textures can be easily pre-filtered at multiple coarse levels
and stored in a mipmapped format. This is a significant advantage,
as it allows integrating over all subsamples in a pixel by issuing a
single texel fetch. Using trilinear mipmapping [Wil83], the level of
detail can vary smoothly, so when a computer graphics object moves
away from the viewpoint, its texturing will change gradually from
the fine to the coarse levels. Unfortunately, when we zoom in on
such an object, the pixels in even the highest-detail texture image
will eventually become larger than the pixels on the screen. When
this happens we will see a familiar blotchy structure of the texture
and the image will become over-blurred.

Ironically, this wasn’t always the case. The earliest 2D computer
graphics were all based on such geometric primitives as straight
and curved line segments, directly rendered on vector displays. The
wide use of discrete raster images came later, supported by the rapid
development of raster displays and hardware texture samplers.

Vector graphics continue to proliferate in areas in which quality
approximation is not acceptable, such as professional graphics. This
includes, in particular, illustration and computer-aided design. Vector
graphics allow storing data in a resolution-independent format which
can then be rendered on any device or printed as a hard copy. Most
vector graphics formats (such as PostScript or SVG) can be treated
as programs prescribing the process of rendering an image composed
of (potentially overlapping) geometric primitives. For this reason,
computing a color at a single position might necessitate executing the
whole program. This is not an issue in professional applications when
the whole image emerges as a result of executing such a program,
but it makes vector graphics a less efficient substitute for texture
assets in games, where often only a portion of an image is accessed
every frame and samples are irregularly distributed.

Vector graphics formats, considered as programs, tend to be se-
quential in nature. This hindered their hardware optimization, until
the groundbreaking work of Loop and Blinn [LB05], Kilgard and
Bolz [KB12], and Ganacim et al. [GLdFN14]. Kilgard and Bolz
introduced a two-step “Stencil, then Cover” approach, allowing ef-
ficient GPU rendering of vector textures as a whole. Ganacim et al.
went further, employing an acceleration structure whose traversal
enabled rendering parts of the image.

Human visual perception relies on the ability to detect edges
[Sha73] and most vector formats store and process silhouette edges
natively. Vector graphics is also well-suited for close-ups, providing
a theoretically infinite resolution. Yet rendering such images at a dis-
tance is superfluous as multiple primitives overlap the same pixel. In
principle, it is possible to pre-render vector graphics into a sequence
of raster images at decreasing resolution and then blend vector and
raster samples together, as suggested by Ray et al. [RCL05]. How-
ever, this is still rather wasteful and can also exhibit ghosting.

Instead, our approach (named “Infinite Resolution Textures” —

IRT) unifies vector and raster representations by always computing
the resulting color through a single texel fetch as

f l oa t4 c = tex .SampleLeve l (s , uv+duv, lod ) ; (1)

This HLSL example shows how an application would ordinarily
fetch the color c from the texture tex using the sampler s, except for
the texture coordinate adjustment duv. IRT computes duv to produce
crisp silhouette edges at close distances. When moving away from
an object, this adjustment is scaled back until it completely vanishes,
decreasing the duv vector to zero magnitude. At this point, the IRT
color is simply the conventional mipmapped raster color, taking
advantage of the minification at the level of detail l od.

Our goal is to sample a color at a position that is a) close to
the sample uv but b) farther away from any silhouette edge than a
given distance (of a few pixels). In other words, we want to move the
sample outside of the blurred area around the curves, but do it conser-
vatively. This will not create any new image details, but, hopefully,
sidestep the limitations of a fixed resolution of the original image. It
is similar to the existing image deblurring techniques but executed
on demand at run-time with just a small performance overhead.

We compute duv by accessing the curved silhouette data in the
neighborhood of the sample point uv. These records are typically
shared among multiple subsamples in the neighborhood of the curve,
allowing a good memory cache utilization (section 6.2).

The stored curved silhouettes are either given, if the underlying
image is provided in vector format, or have to be computed from
the underlying raster image. There are many approaches to edge
detection in raster images; we will describe one that is well suited
for our purposes. Our ultimate goal is an efficient way to increase
the resolution of a broad class of available texture assets, suitable for
a drop-in replacement in games and 3D applications.

The texture resampling was first used in the pinchmaps proposed
by Tarini and Cignoni [TC05]. A similar approach was latter ex-
ploited for antialiasing [Res12] and super-resolution [JP15]. We
compare our implementation with pinchmaps in section 2.1.

2. Related Work

The research community has long recognized the need for a
resolution-independent texture representation that allows real-time
sampling. This need can be directly addressed by devising ways
to efficiently sample the existing vector formats such as SVG
or PostScript. A significant corpus of work exists in this area,
for a comprehensive review refer to the specialized publications
[KL11, SXD∗12, KB12, GLdFN14, BKKL15].

Approaches aspiring to represent a broader class of genuine raster
images include bixels [TC04], silmaps [Sen04], pinchmaps [TC05],
and Vector Texture Maps (VTM) [RCL05]. A VTM decomposes tex-
ture space into different regions delineated by a set of implicit cubic
polynomials. Each region can be sampled by a different fragment
shading function. Antialiased filtering is done for pixels straddling
the borders of such regions by computing blending coefficients for
the two colors returned by the shaders at the each side of the discon-
tinuity. Bixels use the similar strategy by decomposing the texture
plane into addressable tiles with straight boundary segments and
using supersampling for antialiasing.

This is the authors’ version of the paper. The definitive version is available at diglib.eg.org.
Eurographics Proceedings © 2016 The Eurographics Association.
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Figure 2: top: two pinchmap images [TC05]; bottom: IRT rendering

of these images retrieved from the pinchmaps paper at 256×256

resolution.

Silmaps were originally proposed to fight undersampling artifacts
in shadow maps by constructing a piecewise-linear approximation to
the true shadow [SCH03]. This work was latter extended to general
textures [Sen04] and volumetric data [KHPS07]. Silmaps eliminate
blurring during texture magnification by custom-filtering colors on
the same side of the discontinuity. The algorithm supports six possi-
ble configurations of the linear silhouette edges inside a pixel.

Diffusion curve textures [OBW∗08] employ a different way to
achieve a resolution-independent texture representation by constru-
ing an image as a solution of radiative heat transport equation. Sun
et al. [SXD∗12] proposed to use an explicit form of such solution
for closed diffusion curves as a sum of Green’s functions. Such re-
duction allows a random access to the color of each texel (a few
milliseconds per 1M texels in a typical image).

Observing that infinite resolution of vector textures is rarely re-
quired, Song et al. [SWWW15] introduced a variable resolution
scheme in which an image is first partitioned into a kd-tree. Each
leaf node is then compressed with an acyclic feed-forward neural
network. Such representation by vector regression functions (VRF)

allows very fast random access and filtering. VRF approximation
can cause artifacts, in particular sharp features will appear as smooth
gradients in close-ups. This behavior might still be more visually
appealing than traditional pixelization artifacts.

2.1. Comparison of IRT with Prior Art

Pinchmaps [TC05] employ the same approach as IRT by resampling
the original raster image near the edges. A single quadratic silhouette
edge per pinchmap texel is reconstructed by bilinearly interpolating
the four corner values that describe the edge orientation and position.

These values are then used to compute the texture coordinate offsets
that are thence limited by a pinchmap texel size.

This method is attractive in its simplicity, always executing a
single auxiliary fetch (from a 4-channel pinchmap) for each texel.
However, it does not allow edge intersections and reconstructs only
a single silhouette per pinchmap texel. Even more limiting, the
pixels that are not intersected by edges will have uv offset equal to
0 by design — even if there are edges in close proximity passing
through the neighboring pixels. Accordingly, the texture coordinate
offsets across the pixels with zero and non-zero pinches will be
discontinuous. This creates artifacts that cannot be easily avoided
(Figure 2).

We address these problems by storing multiple contributing sil-
houette edges per texel and not limiting the magnitude of the texture
coordinate adjustment. This allows better image reconstruction and
smoother silhouettes (third order) at the cost of the more complicated
data structures (section 5.6).

In comparison with pinchmaps, silmaps [Sen04] can represent
silhouette intersections. This is achieved by considering piecewise-
linear segments with some mild restrictions on the edge topology
(one silhouette edge per pixel side). Silmaps produce crisp edges by
always interpolating colors on the same side of the edge. To avoid
fetching four corner colors that are called for by a straightforward
implementation of this custom interpolation scheme, a clever strategy
is proposed that uses a single bilinear texel lookup for 1, 2, and 4-
corner cases and needs three lookups only for the 3-corner case.
This compares favorably with bixels [TC04], in which a sample is
evaluated by a one of the proposed ten patch functions that might
necessitate fetching all colors at a patch boundary.

However, these custom-made interpolations make mipmapping
more complicated, requiring an explicit color blend in a shader. An
edge antialiasing would also require an extra work, making multiple
texel lookups unavoidable.

In contrast, pinchmaps allow natural antialiasing and mipmapping
by scaling the texture coordinate offset and we also employ a similar
strategy (section 4.2). The difference between pinchmaps and IRT in
this respect is that the expressive power of pinchmaps is somewhat
diluted by limiting the maximum magnitude of this adjustment; this
also introduces additional frequencies pertinent to the resolution of
the pinchmap.

All these algorithms require a pre-processing step. Pinchmaps
are extracted from either a vector-based representation or a high-
resolution raster image. At run-time, the appropriately downsampled
raster image is used as well. The same scheme would work for
silmaps, except that for the better results the accompanying raster im-
age would require special processing to recover distinct non-blurred
colors on both sides of any stored silhouettes (to facilitate custom-
made interpolation at run-time). This makes this algorithm better
suited for man-made images with pronounced edges.

Due to its less restrictive format (multiple curves per pixel, user-
controlled offsets), IRT might also be suitable for some natural
images as well (see Figures 5, 14, 12, 13). To facilitate this function-
ality, we have designed an edge detection and smoothing scheme that
converts a single raster image to a coordinated vector format (sec-

This is the authors’ version of the paper. The definitive version is available at diglib.eg.org.
Eurographics Proceedings © 2016 The Eurographics Association.
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INPUT PRE-PROCESSING (SECTION 5)

raster image

vector graphics

RUN-TIME (SECTIONS 4 AND 6)

5.6 Create acceleration structure

5.1-5.4  Extract 
silhouettes

6.4  Application: sample the texture

// sample texture with the adjusted uv+duv

float4 c = tex.SampleLevel(s, uv+duv, lod);

4.1  IRT run-time: compute duv

// TC offset along the interpolated normal

duv += distance_to_rim * ni;

5.5 Render
raster image

Figure 3: IRT flowchart.

tion 5). We conjecture that other texture magnification approaches
would benefit from this functionality as well.

3. Algorithm Outline

Figure 3 shows the IRT data flow, with corresponding paper sections.

To compute the texture coordinate adjustment duv in (1), we need
both a raster image and its silhouette edges. When starting from
a raster image, those silhouettes have to be determined from the
image; our approach to this task is described in sections 5.1 – 5.4.
Conversely, vector images do not have paired raster images as such,
so one has to be rendered from the vector format at the appropriate
resolution (section 5.5).

We use a grid acceleration structure to store the relevant curved
silhouettes in the neighborhood of a given uv query (section 5.6).
Note that a grid might not be an ideal structure, especially when
different parts of an image have vastly contrasting scales (a 2D
equivalent of the “teapot in a stadium” problem). We plan to continue
exploring possible alternative approaches in this regard.

We begin by explaining our chosen way of computing the
uv 7→ duv mapping, since this is at the core of IRT (section 4.1).
This mapping is continuous everywhere except on edges. To avoid
aliasing near the edges, we must handle such samples differently;
two pertinent approaches are described in section 4.2.

Finally, we discuss performance (section 6.1) and limitations of
the technique (6.3), then conclude with potential application areas
and future work (6.4).

4. Run-Time Computations

All algorithms in this paper use the following two parameters:

• σ — the maximum distance in the RGB color space
between similar pixels; we use σ = 25 for all images in
this paper (for 8-bit RGB colors).

• h — an assumed size of a convolution kernel that distorts
the colors around the edges; we use 2

√
2, which is the

length of the two pixel diagonals.

(2)

A sample IRT implementation is provided in Appendix A. IRT
uses three types of values to compute the texture coordinate adjust-
ment duv in the statement (1):

p0 = q0

q1 q2

p2 = q3

p1

b

a

θ0 θ2

n 0 n3

n b x

d0 d3

ni

Figure 4: a continuous silhouette consisting of two straight and

two curved segments. Color shaded regions demarcate areas of

influence of each segment. At shared vertices (b,q0,q3), bisectors

split the angle between two adjacent tangent lines, separating the

corresponding truncated Voronoi regions.

• level of detail l od for the given texture coordinates uv.

• distances dc to all the silhouette edges closer to the
sample than the supplied distance h above.

• vectors n i that point away from the found silhouettes.

(3)

To handle a broad class of images, we use smooth curves as
silhouettes. Each curve is split into curved segments and we create
truncated Voronoi regions for such segments delineated by curve’s
normals at its endpoints (Figure 4).

Our algorithm will work with any curve representation (including
a piecewise linear format) for which there is an efficient way of com-
puting the distance dc. Since IRT can use any curve format and it is
not essential for the algorithm itself, we describe our implementation
later in section 5.

For mipmapped textures, l od is usually computed as
l og2(p ix ra t io ), using the ratio of a pixel size to a texel size,
though IRT does not depend on it. We also use reduce factor to
smoothly fuse vector and raster textures by scaling the value of duv

(line 15 in Appendix A). For p ix ra t io ≥ 1, i.e., when pixels become
bigger than texels, we immediately return the mipmapped color, so
there is a very little overhead during minification.

Distance to the curve dc is a continuous function of uv coordinates,
but the curve’s normal at the closest point is not (and there could
be multiple such points). Since we approximate the distance dc

(section 5.3.2) — and we want continuously sampled colors outside
the curves — we can use an approximate “normal” as a value of n i.
The simplest solution is to employ a 2D version of Phong normal
[Pho75] by interpolating two normals defined by the side edges of
the curve’s Voronoi region. In Figure 4, these are normals n0 and n3
for the curve q0,1,2,3. For the interpolation weights, we use distances
to these edges since we already compute them during a clipping step
(lines 36 and 39). By design, such an interpolated normal will vary
smoothly when moving across the side edges (i.e., between the two
adjacent Voronoi regions).

4.1. Computing the Adjustment for Texture Coordinates

We want to conservatively move the sampling position uv (in the
statement 2) away from the edges. In a simplest possible implemen-
tation, we just move by duv = (h - dc ) * n i along the interpolated
normal n i for the closest curve. If the sample is overlapped by multi-
ple areas of influence (x in Figure 11), we sum all such adjustments,

This is the authors’ version of the paper. The definitive version is available at diglib.eg.org.
Eurographics Proceedings © 2016 The Eurographics Association.
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Figure 5: from left to right: raster image with the detected edges;

bilinearly interpolated image; crisp edges; smoothed out edges.

given that those overlaps could only happen for samples at sizable
distances from curves where any adjustment is small anyway.

Only curves that are closer to the sample than h — and not oc-
cluded by the other curves — influence duv computations. This
assures a continuous function of uv coordinates, i.e., small changes
in uv result in small changes in duv, unless uv passes through the
curve. If edges of a Voronoi region were reduced to avoid overlaps
with other such regions (as in Figure 7g), we scale down the value of
h accordingly. This ensures that the new sampling position will be
inside the corresponding Voronoi region.

This will create crisp edges. Depending on an application area
or an image at hand, this might not be a desirable outcome. Instead
of a strict linear dc 7→ duv mapping, we could employ a different
scheme, e.g., smoothing out areas near the edge similar to Optical
Low Pass Filter (OLPF). A few such possible alterations are provided
in comments to the code in Appendix A, see lines 61–65, 89, and
104. In Figure 5, the result of such OLPF-style filtering is shown on
the right (the only change to the shader is to uncomment line 65).

4.2. Antialiasing Options

Due to the discontinuous nature of uv 7→ uv+duv mapping at edges,
antialiasing is a requisite part of IRT.

The most straightforward approach is to reproduce the behavior
of an analytical box filter for all pixels closer to any curve than the
screen pixel size. To detect this, we convert dc — that is computed
in texture space — to screen space using screen-space derivatives
of the texture coordinates as shown in Appendix A, line 6. We then
blend two colors, each one fetched with its own duv. One vector
is computed by the algorithm directly (lines 50 or 55), another by
negating the signed distance to the closest curve (i.e., considering
the mirrored sample with respect to the edge). Two blending weights
at line 80 approximate areas of the pixel split by the edge.

This approach causes just a small overhead for the affected pixels
by requiring two color fetches. Still, despite being at the core of the
hardware texture filtering, box filters are subpar in removing aliasing,
especially in a temporal domain. A detailed discussion is carried out
by Ganacim et al. [GLdFN14].

A better solution would require convolving resampled colors with
a data-dependent smoothing kernel, a feat that might look unattain-
able with our chosen mode of operations. Yet, we can approximate
the result of such convolution with just a single color fetch. The key
idea is to use a higher LOD mipmap that already contains pre-filtered
colors.

A dashed green line in Figure 6e shows the length of the vector
duv = (h - dc ) * n i as a function of the distance to the curve. It is

distance to a curve

threshold h

(convolution kernel size)

threshold a

(antialiasing kernel size) 

|duv| old |duv|

lod adjustment

modified |duv|

(a) (b)

(c) (d) (e)

Figure 6: (a) original image (as in Figure 3) with the detected

curved edges; (b) IRT without antialiasing; antialising with two (c)

and one (d) fetches; (e) the modified ‖d u v‖ profile used for the

antialiasing with a single fetch (section 4.2).

a monotonically decreasing function with a maximum at dc = 0.
Vectors duv for the two close samples on the different sides of an
edge will have the same magnitude but opposite directions — this is
why we actually need antialiasing for such samples.

One way to dampen such discontinuity is to impose a ∧-shaped
profile for ‖d u v‖ function (blue line), but this will not solve aliasing
problems since color gradients in the immediate neighborhood of
an edge are at local maximum as a matter of choice. This can be
mitigated though by increasing l od for samples that are close to an
edge (red line). By adjusting the position of the threshold at which
this adjustment is effected, we can create edges with different levels
of blurriness (line 72).

In Figure 6(cd) these two antialiasing modes are shown side-by-
side.

5. Preprocessing

IRT accepts both vector and raster images as an input. After the
preprocessing stage, the distinction between these two categories
disappears and at run-time we use a uniform acceleration structure,
as shown in Figure 3.

To extract curved silhouettes from a raster image, we pursue a
three-prong approach to

1. find pixels that lie on an edge (section 5.1),

2. connect such pixels (5.2), and

3. convert the connected sequences to either Bézier
curves (5.3) or rational polynomials (5.4).

(4)

These goals can be achieved by using existing software, such as
Inkscape [Bah07] or several online tools including Adobe Creative
Cloud® [SOT13]. Some of these systems aim at an artistic image
depiction with exaggerated edges; others target a faithful image
conversion, albeit in a restricted context (Computer Aided Design).
Since we seek a representation of a wide range of images used in
computer graphics, we opted for our own silhouette detector.

5.1. Finding Edge Pixels

Edge detection is one of the core problems in computer science. A
multitude of approaches exist, targeting different applications with
disparate requirements. Several researchers have reviewed the state
of the art [MA09, PP11, SC12, MSH12].

This is the authors’ version of the paper. The definitive version is available at diglib.eg.org.
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(a) (b) (c) (d) (e) (f) (g)

Figure 7: From left to right: improving the quality of the found

edges. (a) tangent lines (orthogonal to gradients) with chosen edges

in dark color; (b) tie breaking; (c) increasing sub-pixel accuracy

through parabola fitting; (d) it still will result in wavering silhouettes,

unless we apply (e) 3-tap or (f) 5-tap filter; (g) curved edges with the

corresponding Voronoi regions.

Maini and Aggarwali [MA09] show that the Canny edge detector
[Can86] performs better than most other straightforward techniques
under almost all scenarios. IRT generally follows the steps of the
Canny edge detector. We will briefly describe our implementation,
emphasizing the additional steps we introduced to smooth out the
found continuous edges.

Gradient detection. We use RGB colors, following the ideas of
Novak and Shafer as described by Kanade in [Kan87]. This tech-
nique requires computing the 3×2 Jacobian J of the partial deriva-
tives along x and y directions for each RGB component and then
finding the largest eigenvalue of 2×2 matrix JT J. The square root
of this eigenvalue gives the edge strength and the corresponding
eigenvector — its normal (with gradient = strength ∗ normal). To
compute partial derivatives, we use the Scharr operator [JSK99] due
to its improved rotational symmetry.

Non-maximum suppression. We elected to use a continuous ver-
sion of the edge thinning step by invalidating all pixels for which
the edge strength is less than either of the two values sampled in the
positive or negative gradient direction.

These steps are illustrated in Figure 7. Initially, we compute the
gradient at all pixels, but only some of them survive non-maximum
suppression (a). In rare cases, such as the red box in the middle,
colors will have an axial symmetry in some local neighborhood. This
would result in detecting edges on both sides of the axis of symmetry,
or (which is more likely due to numerical errors) randomly choosing
edges on both sides. This ambiguity can be resolved by slightly
decreasing gradients for brighter pixels (b).

Edge positions can be tuned by fitting a parabola to the three
strength values that were used for the non-maximum suppres-
sion (c). Once we connect the found edge pixels (section 5.2),
we can further smooth out these curves by applying (e) 3-tap or
(f) 5-tap filter. We found that the simplest 5-tap filter given by
weights =[−1,3,6,3,−1]/10 is quite adequate for our purposes.
This is comparable with weights =[−2,5,10,5,−2]/16 proposed
by Dyn et al. [DLG87] except for somewhat reduced weights for the
two farthermost points. More evolved topics are discussed by Nehab
and Hoppe [NH12].

p0

p1

p2

p3

e1

e2

γ1

γ2

Figure 8: choosing the best connections by maximizing the similarity

measure (5). The result of a 3-tap filterig is shown as a green curve.

5.2. Connecting Edge Pixels

So far, we found points that we believe should lie on a silhouette,
and the plausible silhouette orientation. We will refer to these values
as expected to differentiate them from the adjusted positions and
directions. Now we have to connect such points.

Our goal is to determine two neighbors for each edge pixel in such
a way that directions to these neighbors will not differ too much
from the expected edge orientation. To facilitate a possible parallel
execution, we adopted the following procedure (which is somewhat
different from the traditional hysteresis thresholding).

Using notation in Figure 8, for each edge pixel p1 and edge pixel
p2 in its immediate neighborhood, we compute the similarity mea-
sure

m =
(cosγ1 +|cosγ2|)

‖p2 − p1‖
√

s2 (5)

where γ1 and γ2 are angles between p2− p1 and the expected tangent
vectors e1 and e2; s2 is the strength of the edge at the pixel p2.

We prefer smaller angles γ1 and γ2 and also prefer the adjusted
silhouette to go through the stronger pixels that are closer to p1. We
compute the maximum of m (ignoring negative values). It will yield
us the best candidate pixel to continue the silhouette in the positive
direction of e1. Together with a connection in the negative direction
−e1, we will have 2 candidate connections for pixel p1. If p1 is
in turn among the candidate connections for p2, we join these two
pixels. This will give us sequences of the connected pixels.

Once all the sequences are found, we eliminate those for which
the average magnitude of the gradient is less than the predefined
parameter σ in (2). This is a more relaxed form of the hysteresis
thresholding, aimed at finding longer sequences and avoiding the
sequential nature of the traditional approach (start at pixels with the
gradient magnitude > σ and keep connecting the points until the
magnitude drops below q σ where q < 1).

5.3. Extracting Bézier Curves

Cubic Bézier curves are used in most vector graphics formats. It
makes sense to approximate the found sequences of edge points
with such curves in like manner. Our goal is to reduce the overall
number of the used curves while keeping the approximation error
below the given threshold. We also enforce an additional linearization
constraint to allow using implicit representation of a Bézier curve as
a proxy to a distance to such curve (see section 5.3.2).
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5.3.1. Bézier Curve Implicitization

We compute the texture coordinate adjustment duv in Equation (1),
using distances to all curves in the neighborhood of sample uv. A
direct approach requires solving an equation of fifth degree. Approx-
imate algorithms [LB05, NH08] compute the distance with an error
vanishing at the curve. We could use either technique, but we took
another approach pursuing the lowest possible execution complexity.

Following Floater [Flo95], for each planar cubic Bézier curve
with control points q0,1,2,3 (Figure 4) we define λ1 and λ2 such as
q1 = (1−λ1)p0 +λ1 p1 and q2 = (1−λ2)p2 +λ2 p1 and

αi = 3(1−λi), βi = 3λi, φi = βi −αkβk, i = 1,2, k = 2,1

A =−β2
1φ1, C =−3β1β2 +2β2

1α1 +2β2
2α2 −β1β2α1α2

B =−β2
2φ2, D = α2φ1, E = α1φ2, F = 1−α1α2

f (x,y) = Aτ2
0τ2 +Bτ0τ2

2 +Cτ0τ1τ2 +Dτ0τ2
1 +Eτ2

1τ3 +Fτ3
1

(6)

For any point [x,y], we compute its barycentric coordinates τ0,1,2
for the Bézier triangle p0,1,2. The function f is an implicit representa-
tion of the Bézier curve ( f ≡ 0 at the curve). At run-time, computing
f is just slightly more expensive than computing two dot products,
see the fragment shader example in Appendix A (line 50).

5.3.2. Distance to Bézier Curve

Floater proves that f in equation (6) is unique inside the Bézier
triangle p0,1,2 (i.e., equal to 0 only on the curve) if and only if
φ1φ2 > 0. We want to be able to handle texels inside (the bigger)
curve’s Voronoi region, so this result is not directly applicable. We
scale coefficients A−F so that f approximate the distance to the
curve for all such texels. Using f/|∇ f | would result in a better
approximation, but is more expensive.

To analyze typical errors of such approximation, we consider a
plurality of Bézier curves with equispaced control points. Up to a
uniform scaling, rotation, and translation, such curves are defined by
two angles θ0 = 6 p1 p0 p2 and θ2 = 6 p1 p2 p0 in Figure 4, reducing
a search space. We found that if such angles are smaller than 0.6,
the error will not exceed 0.1 inside the Voronoi region with sideway
edges equal to 2‖q0 −q3‖. In turn, when we fetch the color with the
adjusted duv, it will result in color differences not exceeding 10%
of 255 in agreement with the supplied σ in (2).

Each straight segment can be treated as a cubic Bézier curve with
q1 and q2 lying on [q0,q3] and we intend to do so to minimize the
code divergence. Yet, it would result in infinite barycentric coordi-
nates, requiring a division by zero (area of the triangle p0,1,2). Since
f is a uniform polynomial, we can avoid this problem by dropping
the normalization requirement (τ0 + τ1 + τ2 ≡ 1). We can also di-
rectly bake-in the distance scaling into A−F coefficients in equation
(6) arriving at a very simple way of computing τ0,1,2 using the two
dot products with the Bézier triangle edges (line 46 in Appendix A),
followed by the distance-to-the-curve computation in line 50.

5.3.3. Fitting Bézier Curves To Point Sequences

The results of the previous section give us a simple way to fit se-
quences of points to Bézier curves. First, at each point we find a
direction of a tangent line by averaging unit vectors to two adjacent
points. Then, starting with the first point in a sequence, we traverse

the connected points until either of θ0,2 exceeds 0.1radian ≈ 34° or
φ1φ2 ≤ 0.

The angles θ0,2 are uniquely identified by the tangent lines and
q0,3 endpoints which we acquire from the sequence; the exact posi-
tion of q1,2 on the tangent lines is computed by requiring a uniform
split of the interval [q0,q3].

This approach creates smoothly connected curve segments (with
geometric G1 continuity) that are neither too big nor too small.
However, situations could arise when an angle between the two
vectors toward the neighbors is smaller than 180° −2∗34°= 112°.
In that case we will create a straight segment (see two left segments
in Figure 4). We also modify a tangent line to ensure smoothly
connected straight-curved segments, so the only non-smooth (G0)
connections are at straight-straight joints.

5.4. Using Rational Curves

A cubic polynomial is a bad choice for approximating a linear dis-
tance far off the curve. To remedy this situation, we will consider a
quotient of two multivariate polynomials. Floater theory holds for
rational Bézier curves, but we instead derive a suitable representation
from first principles using variables that are natural to the problem
at hand and easy to compute. We consider (Figure 4)

d0,3 – signed distances to the edges of curve’s Voronoi region

dn – distance from a sample x to the edge q0,3

along the interpolated direction ni

(7)

We compute ni = t3n0+ t0n3 by interpolating normals to the curve
at endpoints q0,3 with weights t0,3 = d0,3/(d0 +d3). Variables d0,3
can also be used to verify that a sample is inside the region (if and
only if d0,3 ≥ 0). We intend to use (non-normalized) interpolated
vector ni for duv adjustment since the modified texture coordinates
always stay inside the Voronoi region delineated by q0 + t n0 and
q3 + t n3 lines.

The sought-after implicit function f should be 0 at q0,3 and its gra-
dient at these points should be collinear with normals n0,3. These Her-
mite conditions guarantee a smooth stitching of silhouette segments
by restricting numerical values of coefficients of given polynomials.

For a variety of rational polynomials over d0,3,n (and a few other
feasible variables) we eliminated those that cannot satisfy Hermite
conditions. We then sorted out the remaining polynomials by how
well they approximate random Bézier curves. One representation
stands out. For better insight, we will deduce this representation by
examining — and exploiting — its desired properties.

We want f to behave like O(dn) afar from the curve. Without loss
of generality, f = dn +g(d0,dn,d3) t0 t3. Both these terms equal to 0
at q0,3, so we only need f to satisfy the second Hermite condition.
We will be interested in the simplest form of g that also has nice
asymptotic properties at a distance from the curve (vary like O(d)).

The simplest such function that is also symmetric with respect to
its variables is g = a3d0 +a0d3. The second Hermite condition leads
to a0 = tan(θ0), a3 = tan(−θ3).

We have used all degrees of freedom (available coefficients) to
satisfy Hermite conditions. In Figure 9a, a yellow unit circle is ap-
proximated by four such curves with the Hausdorff distance between
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Figure 9: (a) a circle approximation by four implicit rational curves

( f = x+ y− 1− x y/(x+ y) in the first quadrant); (b) contour lines for

f = (x2 + y2 − 1)/(x+ y+ 1) that approximates a unit arc exactly; (cd)

approximation by expression (8).

the two sets equal to 0.06. We can improve the approximation by
adding f2 = c (d0 + d3) (t0 t3)

2 to f . This quadratic term automati-
cally satisfies both Hermite conditions and asymptotically behaves
as O(d0,3). We can use the constant c to fit the given points between
q0,3. For a unit arc in the first quadrant, the resulting function

f = x+ y−1− xy (1+0.664 xy/(x+ y)2)/(x+ y) (8)

deviates from the true distance to the arc by no more than 0.2% at
any distance from it, as shown in Figure 9(cd). For comparison, the
Hausdorff distance between a unit quarter arc and its cubic Bézier

approximation is
√

71/6−2
√

2/3−1 ≈ 0.03% [AKS04].

We could have approximated the arc exactly, e.g., by choos-
ing f2 = c d0 d3 d1/(d0 +d3)/(d0 +d3 +1), where d1 is a distance
from x to a line passing through q0,3. Yet, the resulting function,

f = (x2 + y2 −1)/(x+ y+1), significantly deviates from the true
distance to the arc, as can be seen in Figure 9b.

In situations when we want a sharp edge (like the two green re-
gions in Figure 4 or one of the triangle vertices in Figure 7), tangent
lines will be different on the two sides (G0 connectivity). Conse-
quently, edges of the corresponding Voronoi regions will not be
orthogonal to the tangent lines. Values of a0,3 can be then computed

as (using (·) notation for a dot product and v⊥ for an orthogonal
vector) :

a0 =
(q⊥10 ·q30)

(n⊥0 ·q30) (n
⊥
0 ·q10)

, a3 =
−(q⊥23 ·q30)

(n⊥3 ·q30) (n
⊥
3 ·q23)

(9)

where q10 and q23 are two tangential vectors and q30 = q3 −q0.

To find the coefficient c that minimizes curve deviation from
a given set of points, we solve the system of over-defined linear
equations

dn +(a0d3 +a3d0) t0 t3 + c (d0 +d3) (t0 t3)
2 = 0

where equation coefficients are computed at each given point (i.e.,
perform a linear regression). Run-time evaluation of the distance to
the curve dc from sample uv is given in Appendix A, lines 52 – 55.

5.5. Choosing Rendering Resolution for Vector Images

When a vector image is rasterized and antialiased, a color of each
pixel is obtained by averaging all relevant subsamples. A color of
pixel p3 in Figure 11 is influenced by colors on both sides of the
blue curve that intersects it. The intent of the resampling offset duv

15422

(a)

30842

(b)

41122

(c)

raster only

(d)

stored colors

(e)

Figure 10: (a-c) increasing a resolution of a companion raster

image improves fidelity near very thin features (right part of the

image); (d) reconstructing edges from 15422 raster image (not using

SVG data at all); (e) using stored colors together with raster image

improves quality near sharp corners (bottom right).

in the statement (1) is to move away from such pixels since they do
not faithfully reproduce the colors of the original vector image.

We choose a resolution of a raster image so that most of uv+duv

samples land in pixels that are not intersected by any curve; there
are 96% such samples for the Garfield image in Figure 12 with the
resolution set to 1542×1542. Figure 10 illustrates effects of varying
the resolution of a companion raster image.

For some vector images with a significant amount of intersected
curves or ones with a very thin strokes, the required resolution might
be too high. For such images, we could store colors on both sides of
curve segments in an acceleration structure. This will work though
only for images with a piecewise flat colors (Figure 10e).

5.6. Acceleration Structure Layout and Optimization

Formulae (6) and (9) provide us with an opportunity to trade band-
width for computations, given that (smoothly) connected segments
require very little storage as such. Analyzing such trade-offs on dif-
ferent architectures is an interesting problem in itself, but for the
sake of clarity in this paper we precompute and store all coefficients
for each curve and its Voronoi region separately.

Following Qin et al. [QMK08], we use a grid acceleration structure
with the dimensions of the original raster image. Since each pixel can
be overlapped by multiple regions, this would have required a double
indirection: pixel index 7→ list of indices for overlapped regions 7→
region data (similar to indexed meshes in Computer Graphics).

We opted for a single indirection with pixel index directly pointing
into a sequence of the curves influencing this pixel. Referring to
Figure 11, pixel p0 has three Voronoi regions covering some parts

p0 p1 p2 p3
x

green curve violet curve blue curve end

Texture2D<uint2> curveIndexMap;

Texture2D<float2> curveDataMap;

uint2 i = curveIndexMap.Load(int3(xy,0));

if (i.x != 0xffff) do { // iterate

// load curve’s data

q0 = curveDataMap.Load(int3(i.x++,i.y,0));

on0 = curveDataMap.Load(int3(i.x++,i.y,0));

// load more data
...

last = on0.x > 1; // is it the last entry?

// compute uv adjustment
...

} while (!last);

Figure 11: acceleration structure layout using two texture maps.

For a given sample x with scaled texture coordinates xy, we use

cur ve IndexMap to access a list of curve segments (cur veDataMap)

overlapping a texel that contains x.
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of it and its index points into the start of the sequence of three such
curves. Pixel p1 is overlapped by only violet and blue regions and it
points into the second entry in the same sequence, while p2,3 share
the blue region at the end of the sequence. At run time, we iterate
over all corresponding curves until the end-of-the-sequence flag is
read (see do ...whi le loop at line 21 in Appendix A).

To minimize the overlap of areas of influence for each curve (as
for sample x in Figure 11), we construct a Voronoi diagram for super-
sampled edges and then consider intersections of normals at curves’
endpoints with such a diagram to produce side edges for truncated
Voronoi regions. We clip such vectors if their length exceeds the
supplied parameter h in (2) and (optionally) reduce them for weak
edges as defined by the gradient magnitude during the edge detection
step (section 5.1). If the intersection of these two vectors for each
region is closer to q0,3 than their assigned length, we reduce this
length to exclude the intersection from the area of influence and
avoid potential division by zero during the run-time computation
(line 37 in Appendix A). By linearly interpolating the found edge
vectors — considering both positive and negative directions — we
will get an area of influence for a particular curve (line 58). Such
areas will contain points that are closer to the given curve than to
any other (as in Figure 7g). Small overlaps are still possible and we
handle them by summing the corresponding duv offsets so not to
impair duv continuity (line 86).

6. Discussion

IRT combines the best traits of vector and raster textures in a unified
arrangement. It smoothly blends vector and raster representations
to exploit the pre-filtered accommodating properties of the tradi-
tional textures at farther distances. This blending does not incur any
additional penalty, besides computing the mipmap level. Thus, the
infinite resolution textures are only slightly more expensive than
traditional mipmapped textures for distant objects and exhibit rea-
sonable performance for close-ups (section 6.1).

IRT textures differ from traditional textures at closer distances,
revealing crisp edges that hopefully agree with human intuition.
There are clearly limits to such detail hallucination (section 6.3).

6.1. Performance

By creatively using hardware not originally designed for vector
graphics per se, GPU-accelerated methods for vector textures [KB12,
GLdFN14] achieve rendering times of 20+ milliseconds per 1M
texels. This works well when the whole image has to be rendered,
since certain operations are amortized over the whole image.

Our goal is to complement such methods, targeting resource con-
sumption by games with random texture sampling, rather than re-
source creation. We measured the performance of our algorithm on
a discrete GeForceTM GTX 980 using a Direct3D 11 viewer.

For 24 images in the Kodak Image Suite, a single frame with 1M
pixels runs from 140 to 412 microseconds. The slowest performance
was observed for image№13, for which almost all pixels are in close
proximity to one or more curves. A fragment of this image is shown
in Figure 12c.

The performance numbers for the USC-SIPI Image Database are

(a) Bézier = [166,2021,2305], rational = [136,1655,1803]

(b) Bézier = [161,2008,2065], rational = [138,1656,1728]

(c) Bézier = [616,10275,8990], rational = [412,5560,5837]; edges shown on the left

(d) Bézier = [456,7193,6979], rational = [305,4481,4653]

(e) Bézier = [178,2587,1692], rational = [177,2603,1693]

Figure 12: Details of various images rendered with bilinear (left

column) and IRT sampling (right). Performance for the whole image

is given in µs per 1M texels for [discrete NVIDIA GeForceTM GTX 980,
mobile GT 720, integrated Intel® HD Graphics 4400 (performance mode)]
GPUs.
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Figure 13: GeForceTM GTX 680 memory controller traffic in MB

per a single 1024×1024 frame at three different viewpoints. Four

different texture sampling approaches were used: TX0 — sampling

the original 512×512 raster image with a hardware texture unit;

IRT — the method in this paper; single map — IRT with a single

record per pixel; TX∞— mipmaped texture that achieves the same

quality as IRT (shown at the bottom of the chart).

in the range of 136 – 305 µs; the slowest image is, not surprisingly,
the mandrill (a fragment of which is shown in Figure 12d).

Just sampling a raw raster texture incurs a performance overhead
of about 90 µs per 1M texels for any image, so for simpler images
the IRT cost roughly doubles texture unit timing. On the tested
mobile platforms, this observation also holds true with the overall
performance constrained by the texture sampler throughput.

These measurements are for the rational polynomials (5.4); Bézier
curves (5.1) are about 30% slower. For each image in Figure 12, we
give measurements for one desktop and two mobile cards.

We believe the low cost of IRT during magnification and negligible
cost during minification should allow it to be turned on all the time
for all textures the artist deems appropriate.

6.2. Bandwidth

IRT uses two precomputed data structures (section 5.6) supplement-
ing a given raster image:

• an array of the curved segments whose size is proportional to the
number of the segments and

• per-pixel indices into these segments.

These two structures exhibit different memory utilization patterns.
The index data is a constant overhead for all texels with LOD that
is less than the IRT threshold (see line 19 in Appendix A). The
segment data, however, is amortized over visible pixels, benefiting
from the texture cache at closeups. This is illustrated in Figure 13,
for which we evaluated the GPU memory controller traffic by ren-
dering a quad with Lenna image at three different viewpoints. This
data was measured by GPU-Z — Video card GPU Information Util-
ity [Tec16]. The third bar in the chart shows a hypothetical situation
when there is only one 32-bit record per pixel that describes the sole
segment overlapping the pixel. We did not implement this version
of IRT per se, but simulated it to understand the bandwidth require-
ments of the methods with the constant per-pixel overhead, such

as pinchmaps [TC05] or silmaps [Sen04]. Pinchmaps always fetch
a single record per texel, while for silmaps accessing neighboring
records is necessary for texels with more than one border segment,
but there could be only up to 4 boundary edges in each cell.

The IRT segment data might cause a noticeable memory traffic
increase, especially at midrange distances for images that are more
complex than Lenna. On the positive side, this extra data provides a
flexibility to describe multiple curved segments intersecting a given
pixel.

An obvious alternative to edge preserving techniques is a tradi-
tional texture format that is mipmapped from a coarse to a very
detailed representation (if such hi-res representation is available at
all). The bandwidth data for such implementation is approximated in
the fourth bar in Figure 13 by capturing IRT-rendered image and then
reusing it as a bilinearly interpolated texture. This creates the same
image that is rendered faster at the expense of increasing memory
traffic at close-ups, even though only a single mipmapped level is
used (trilinear interpolation is not necessary in this scenario due to
1:1 correspondence between pixels and texels).

Note that there are (hardware-specific) limitations on the max-
imum texture size. The right image in Figure 13 requires a
4096×4096 texture to achieve the same level of quality as IRT with
512×512 base raster image. We did not use a 4096×4096 texture
as such, instead creating a 1024×1024 snapshot by capturing the
IRT-rendered framebuffer.

Raster images, used in Figure 13, were not compressed. Real
applications, such as games, tend to use compressed formats to save
memory and bandwidth. Rendering a single quad is not a good way to
evaluate all possible trade-offs. Still, to get some insight into potential
issues, we redid all measurements using DXT1 compression. This did
not change the frame rate in any measurable way (since it is already
near the limit of the graphics pipeline throughput), but reduced
the memory controller load from 68% to 51% for the last image
in the TX∞ mode. Even though this reduction is significant, the
memory controller can be a limiting resource by itself, accentuating
the complex nature of the modern GPUs.

The most efficient compression techniques introduce artifacts, es-
pecially near high-frequency edges. In this respect, splitting the im-
age into a low-resolution raster and a high-resolution edge represen-
tation might allow deeper compression levels for the low-resolution
parts. We plan to explore all such trade-offs, also considering a po-
tential curve data compression as well. Another bandwidth saving
approach would require stealing a bit from the RGBA representation
to indicate whether the particular pixel is influenced by any curve.
This would significantly reduce the memory traffic due to the curve
indexing but it is application-specific as those extra bits might not be
readily available.

6.3. Limitations

IRT is only as good as the edge detection algorithm it uses. Underde-
tected edges can lead to incorrect conclusions about object affinities:
similarly-colored candies in Figure 12a look melted. In a digital
era, viewers tend to expect a correlation between an image acuity
and visible details. IRT may break this correlation by slumping into
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Figure 14: Both IRT (right) and 9X superresolution (middle) reduce

blurring and aliasing near edges; such artifacts are symptomatic of

the bilinear interpolation (left).

an uncanny valley: the IRT-rendered eye in Figure 5 looks better
than the bilinearly interpolated one, but individual eyelashes are not
visible and neither is a reflection in the iris. To a certain degree, IRT
creates an impression of a painted human figure at close proximity,
rather than a high fidelity photograph (Figure 12b). If needed, we
could even exaggerate this effect by filtering a raster image that is
used in tandem with IRT — high frequency details will be preserved
in IRT curves anyway.

It is interesting to note that for some objects, even widely used,
there are no a priori expectations of the discernible details; IRT-based
image magnification of a can in Figure 14 looks roughly equivalent
to one obtained with a super-resolution technique — nonlocal au-
toregressive modeling [DZLS13] — but significantly faster to render.
Notably, the recently proposed super-resolution method based on
subpixel shifting model [JP15], which is similar in spirit to IRT,
achieves remarkable reconstruction results.

When used for sampling genuine vector graphics, IRT images
are somewhat different from ones obtained with the more evolved
techniques [KB12, GLdFN14]. Away from edges, we rely on a trilin-
ear mipmapping to compute a sample color, while SVG colors are
analytically calculated for all samples. IRT colors are always derived
from the corresponding raster image. A low resolution of this image
could be a problem for samples that are close to multiple curves, see
Figures 10 and 12e.

Our current implementation uses Matlab code for the edge detec-
tion 5.1, and requires a few minutes per image; we expect this to be
drastically reduced by switching to a GPU version. We also have not
yet explored any benefits of data compression; rational polynomial
approximation (section 5.4) looks more appealing in this regard as
it operates on naturally compressible entities such as distances and
angles.

6.4. Future Work

Texture sampling is ubiquitous in modern computer graphics. We
anticipate that IRT can be used for a wide range of effects, including:

• Material properties (colors).
• Normal maps, which are typically used to represent minute ge-

ometric detail. The prospect of providing infinite resolution and
crisp edges for such maps is appealing.

• Vegetation rendering. Traditionally, foliage is rendered by repre-
senting individual leaves or branches as textures with an alpha

channel for transparency. This works well at a distance but breaks
at close-ups. A vector representation should help with this, see the
leaf image in Figure 3.

• 1D curve rendering (hair).
• Video game decals (like bullet holes or char marks) and pellucid

text on arbitrary surfaces.
• User interface elements for games and web pages.
• Shadow maps and light maps.
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Appendix A: HLSL implementation of IRT.
1 Texture2D < uint2 > curveIndexMap : r e g i s t e r ( t 2 ) ; / / s e e F i g u r e 11
2 Texture2D < f l o a t 2 > curveDataMap : r e g i s t e r ( t 3 ) ; / / i n s e c t i o n 5.6

4 f l o a t 4 Resample ( f l o a t 2 uv ) {
5 f l o a t 2 xy = uv * texd im ; / / t exd im = t e x t u r e d i m e n s i o n s
6 f l o a t p i x r a t i o = 0 . 5 f * l e n g t h ( f w i d t h ( xy ) ) ; / / p i x e l / t e x e l s i z e
7 f l o a t adc , we ig h t = 1 , l o d = max ( 0 , l og2 ( p i x r a t i o ) ) ;
8 / / l o d = t e x . C a l c u l a t e L e v e l O f D e t a i l U n c l a m p e d ( s , uv ) ; / / a l t e r n a t i v e
9 / / p i x r a t i o = exp ( l o d ) ; l o d = max ( 0 , l o d ) ; / / v e r s i o n

10 / / s e e https://www.opengl.org/discussion_boards/showthread.php/171485
11 / / ( T e x t u r e LOD c a l c u l a t i o n u s e f u l f o r a t l a s i n g )

13 / / We s t a r t r e d u c i n g duv when p i x r a t i o >0 .5 and c o m p l e t e l y s t o p
14 / / o f f s e t t i n g uv when p i x r a t i o >= 1 .
15 f l o a t 2 r e d u c e = min ( 1 , 2 * (1 − p i x r a t i o ) ) / t exd im ;
16 f l o a t 2 q0s , duv = {0 , 0 } ;

18 u i n t 2 i = curveIndexMap . Load ( i n t 3 ( xy , 0 ) ) ; / / c u r v e i n d e x

19 i f ( i . x != 0 x f f f f && p i x r a t i o < 1) { / / ∃ curves near uv
20 bool l a s t ; / / f l a g f o r t h e l a s t c u r v e i n t h e l i s t
21 do { / / sample−d e p e n d e n t number o f i t e r a t i o n s
22 f l o a t 2 / / r e a d c u r v e d a t a
23 q0 = curveDataMap . Load ( i n t 3 ( i . x ++ , i . y , 0 ) ) , / / e n d p o i n t
24 on0 = curveDataMap . Load ( i n t 3 ( i . x ++ , i . y , 0 ) ) , / / o r t ( n0 )
25 on3 = curveDataMap . Load ( i n t 3 ( i . x ++ , i . y , 0 ) ) , / / o r t ( n3 )
26 aux = curveDataMap . Load ( i n t 3 ( i . x ++ , i . y , 0 ) ) , / / aux d a t a
27 n30 = curveDataMap . Load ( i n t 3 ( i . x ++ , i . y , 0 ) ) , / / o r t ( q3−q0 )
28 a03 = curveDataMap . Load ( i n t 3 ( i . x ++ , i . y , 0 ) ) , / / p1−q0 or t a n
29 n l 0 = curveDataMap . Load ( i n t 3 ( i . x ++ , i . y , 0 ) ) , / / Voronoi
30 n l 3 = curveDataMap . Load ( i n t 3 ( i . x ++ , i . y , 0 ) ) ; / / s i z e s
31 l a s t = on0 . x > 1 ; / / i s i t a l a s t c u r v e ?
32 i f ( l a s t ) on0 . x −= 3 ; / / r e s t o r e o r i g i n a l v a l u e
33 q0s = q0 − xy ; / / from sample t o q0
34 f l o a t d0 = d o t ( on0 , q0s ) ; / / b a r y c e n t r i c c o o r d i n a t e s
35 f l o a t d3 = d o t ( on3 , xy ) + aux . x ; / / i n Voronoi r e g i o n (VR)
36 bool o u t s i d e = d0 < 0 | | d3 < 0 ; / / i f o u t s i d e , duv += 0 ;
37 f l o a t den = 1 / ( d0 + d3 ) ; / / we a v o i d 1 / 0 by d e s i g n
38 f l o a t t = d0* den ; / / d {03} > 0 i n s i d e VR
39 f l o a t 2 o n i = l e r p ( on0 , on3 , t ) ; / / o r t ( n i )
40 f l o a t 2 n i = f l o a t 2 (−o n i . y , o n i . x ) ; / / i n t e r p o l a t e d normal

42 # i f d e f EXACT_BEZIER / / implementation of section 5.3; a03 = p1-q0; (Figure 4)
43 f l o a t 2 ab = curveDataMap . Load ( i n t 3 ( i . x ++ , i . y , 0 ) ) ; / / s i x
44 f l o a t 2 cd = curveDataMap . Load ( i n t 3 ( i . x ++ , i . y , 0 ) ) ; / / po ly
45 f l o a t 2 e f = curveDataMap . Load ( i n t 3 ( i . x ++ , i . y , 0 ) ) ; / / c o e f f s
46 f l o a t w = ( xy . x−q0 . x ) * n30 . x + ( xy . y−q0 . y ) *n30 . y ; / / Bary−
47 f l o a t v = ( xy . x−q0 . x ) * a03 . y − ( xy . y−q0 . y ) * a03 . x ; / / c e n t r i c
48 f l o a t u = aux . y − w − v ; / / aux . y = 2 * a r e a o f B e z i e r t r i
49 f l o a t dc = u*v *( ab . x*u + ab . y*v + cd . x*w) + / / e v a l F l o a t e r
50 w*w*( cd . y*u + e f . x*v + e f . y*w) ; / / p o l y n o m i a l
51 # e l s e / / implementation of section 5.4; a03 = equation 9 (≈ tangents); aux.y = c;
52 f l o a t dc = d o t ( q0s , n30 ) / d o t ( n i , n30 ) ; / / xy+dc * n i ∩ [ q0 , q3 ]
53 f l o a t po lq = t *d3 ; / / p o l y n o m i a l r a t i o
54 f l o a t a i = l e r p ( a03 . x , a03 . y , t ) ; / / i n t e r p o l a t e d t a n
55 dc += ( a i + aux . y * po lq * den ) * po lq ; / / | xy − c u r v e |
56 # e n d i f

58 f l o a t 2 hs = l e r p ( nl0 , nl3 , t ) ; / / s c a l e d down h
59 f l o a t r im = dc > 0? hs . x : hs . y ; / / choose s i d e o f c u r v e [ i ]
60 f l o a t d2r = rim − dc ; / / d i s t a n c e t o t h e r im
61 / / smoo the r a l t e r n a t i v e s
62 / / f l o a t d2r = r im − ( dc + rim / 2 ) * 2 / ( 2 + 1 ) ; / / s o f t l a n d i n g
63 / / f l o a t d2r = s q r t ( abs ( r im ) ) * s i g n ( r im ) − dc ; / / a n o t h e r way
64 / / edge smooth ing = 1 / q ; no need f o r a n t i a l i a s i n g i n t h i s c a s e
65 / / f l o a t q = 1 ; d2r *= min ( 1 , q* abs ( dc / r im ) ) ; p i x r a t i o = −1;

67 adc = o u t s i d e * 1 e6 + abs ( dc ) ; / / f o r c e duv += 0 o u t s i d e VR
68 p i x r a t i o −= vismode & (1 < <4) ; / / i g n o r e n e x t b l o c k i n !AA mode
69 i f ( adc < p i x r a t i o ) { / / a n t i a l i a s t h e sample (2 modes )
70 i f ( vismode & (1 < <7) ) { / / a s i n g l e sample
71 s t a t i c c o n s t f l o a t h = 2* s q r t ( 2 . 0 ) ;
72 f l o a t f i x = min ( 0 . 5 f , p i x r a t i o * f a l l o f f ) ; / / edge wid th
73 f l o a t morph = f i x * h ;
74 i f ( morph − adc > 0) {
75 f l o a t l o d a = ( morph − adc ) / morph ; / / [ 0 , 1 ]
76 d2r *= 1 − l o d a ; / / m o d i f i e d d i s t a n c e
77 l o d += l o d a ; / / i n c r e a s e d L .O.D.
78 }
79 } e l s e { / / b l e n d 2 samples wi th
80 w e i gh t = ( adc + p i x r a t i o ) / ( 2 * p i x r a t i o ) ;
81 }
82 duv = 0 ; / / on ly use t h e
83 l a s t = t ru e ; / / c u r r e n t c u r v e
84 }
85 d2r *= adc < abs ( r im ) ; / / 0 f o r a f a r samples
86 duv += d2r * n i ; / / uv o f f s e t a l o n g t h e i n t e r p o l a t e d normal
87 } whi le ( ! l a s t ) ;

89 i f ( vismode & (1 < <2) ) {
90 f l o a t r = min ( 1 , l e n g t h ( q0s ) / ( 5 * p i x r a t i o ) ) ;
91 i f ( adc < p i x r a t i o ) { / / show c u r v e
92 f l o a t 4 c = t e x . SampleLevel ( s , uv , l o d ) ;
93 re turn l e r p ( f l o a t 4 ( r ,1− r ,1− r , 1 ) , c , adc / p i x r a t i o ) ;
94 }
95 f l o a t l o = abs ( 0 . 5 * l e n g t h ( duv ) / p i x r a t i o − 1) ;
96 i f ( l o < 1) { / / show curve ’ s i n f l u e n c e
97 f l o a t 4 c = t e x . SampleLevel ( s , uv , l o d ) ;
98 re turn l e r p ( f l o a t 4 ( 1 , 1 , 0 , 1 ) , c , l o ) ;
99 }

100 }
101 }

103 f l o a t 4 c = t e x . SampleLevel ( s , uv − r e d u c e *duv , l o d ) ; / / eq (1)
104 / / r e t u r n 1− f l o a t 4 ( abs ( duv ) , 0 , 0 ) ; / / VR 7→ p s e u d o c o l o r s
105 i f ( we ig h t == 1) re turn c ; / / no need i n second sample
106 / / b l e n d wi th t h e second sample f o r edge a n t i a l i a s i n g
107 re turn l e r p ( t e x . SampleLevel ( s , uv + r e d u c e *duv , l o d ) , c , w e i gh t ) ;
108 }
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